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Yet Another Type Theory…

Did you say hot? No, I said HoTT!
• Foundation of mathematics
• Basis of formal systems
• Implementation in Coq, Agda, …

Original image: https://xkcd.com/927/
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HoTT is not Weird, it’s Special

HoTT’s raison d’être
Can be used to formalize weird things

Why Would you Want This? (maybe)
• Isomorphic structures are equal!! �
• Formalization of “properties up to isomorphism”
• Everything is (secretly) geometry
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Why Would I Want This?

Having Fun While Working
• We can compute fun things!
• For instance: the number of groups of finite order

There’s Always a “but”
• Very inefficient computations
• Very slow (hours?) to yield “1” with groups of order… 2 (duh)
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Motivations

Our Goal
Find the reason(s) that make(s) it so bad.

Our Tool
postt, experimental type-checker s.t. HoTT computes (+ analysis).

Our Contributions
• A start of standard library for postt (impl.)
• Structures finiteness up to isomorphism (impl.)
• Analysis of the proof with (semi)groups
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Martin-Löf Type Theories

Dependent Types

λx.t :
∏
x : A

B(x)

think of as ∀x, B(x)

(x, p) :
∑
x : A

P (x)

think of as ∃x, P (x) + explicit witness

A → B shortcut for
∏

(_ : A) B and A × B for
∑

(_ : A) B.

Inductive Types

inl(x), inr(y) : A + B

think of as A ∨ B

? : 1, 0
think of as >, ⊥

0 : N, sucN(n) : N unary encoding of integers
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Identity Types

• Defined inductively by: reflx : x =A x

• Multiple proofs of identity

x y

p

q

p, q : x =A y

A

Often-used operation: transport

b
tr(q, b)

tr(p, b)

∑
(x : A) B(x) B(x) B(y)
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The Finiteness we Choose

Standard Finite Types

Fin0 :≡ 0
FinsucN(n) :≡ Finn + 1

i.e., there are n elements in Finn.

Equivalence
A ' B if back-and-forth maps f : A → B, g, h : B → A s.t.

f(g(x)) = x h(f(x)) = x
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The Finiteness without Choice

Propositional Truncation
‖ A ‖: prop. trunc. of A, ω : ‖ A ‖ is an undefined inhabitant of A.

•
∥∥∥ ∑

(x : A) P (x)
∥∥∥ is ∃x, P (x) without explicit witness

• We thus write ∃x, P (x) for
∥∥∥ ∑

(x : A) P (x)
∥∥∥

• We only care about the fact that the type is inhabited

Finite Type
is-finite(A) :≡

∑
(k : N) ‖ Fink ' A ‖

Another Example: Surjectivity
is-surj(f) :≡

∏
(y : B) ∃x, f(x) = y
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(Finally) Our First Proof

Decidable Type
A is decidable if d : A + ¬A.

Key Theorem 1: Finite Codomain
Let f : A → B a surjective function and A finite. Then B is finite
whenever its equality is decidable.

Proof.
• Prop. is shown: get surjective map g : Fink → B.
• By induction on k . If k ≡ 0, then B is empty.
• k > 0: decide whether g(inr(?)) has more than 1 preimage
• If not, the induction hypothesis is enough.
• Otherwise, take n yielded by the induction hypothesis on B

without g(inr(?)) and return n + 1

Let’s take a look at the complexity
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Type Wars VI: Return of the Definitions

Set Truncation
‖ A ‖0 is the set of connected components of A. Defined as A quo-
tiented by ‖ x = y ‖ for x, y : A. | a |0 for a : A denotes a quotiented
with the relation ‖ x = y ‖.

| · |0

Connectedness
A is connected whenever there is an ω : ‖ x = y ‖ for every x, y : A

Read: A connected if ‖ A ‖0 has a unique element
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Finiteness up to Isomorphism

• Isomorphic structures are equal
• Hence they are in the same connected component

Slightly more generic:

Homotopy Finiteness

is-π0-finite(A) :≡ is-finite ‖ A ‖0

is-πsucN(n)-finite :≡ is-finite ‖ A ‖0 ×
∏

x,y : A

is-πn-finite(x = y)

If A is π0-finite, then it is finite up to isomorphism
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Finiteness up to Isomorphism

Key Theorem 2
For B family of π0-finite types over connected, π1-finite type A,∑

(x : A) B(x) is π0-finite.

Read: if B family of types finite up to isomorphism over A type with
one connected component s.t. its identity types are finite up to
isomorphism, then

∑
(x : A) B(x) is finite up to isomorphism.
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Finiteness up to Isomorphism

Key Theorem 2
For B family of π0-finite types over connected, π1-finite type A,∑

(x : A) B(x) is π0-finite.

Proof.
• Assume a : A, then f :≡ b 7→ (a, b) : B(a) →

∑
(x : A) B(x) surj.

• ‖ f ‖0 : ‖ B(a) ‖0 →
∥∥∥ ∑

(x : A) B(x)
∥∥∥

0
also surj.

• By Key Thm. 1,
∑

(x : A) B(x) is π0-finite if it has dec. equality.
• By HoTT shennanigans,

(x, y) =∥∥ Σ(x : A)B(x)
∥∥

0

(x′, y′) '
∥∥ Σ| p |0:‖ a=a ‖0

‖ trB(p, y) = y′ ‖
∥∥

• Then: π1-finiteness ⇒ ‖ a = a ‖0 finite and ‖ trB(p, y) = y′ ‖ '
| trB(p, y) |0 = | y′ |0 decidable proposition hence finite.

• Sum of finite types is finite, and a finite prop. is decidable.
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Just the Once Will Not Hurt

Let’s compute the complexity
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Quick Application: Finite Semigroups

Complexity of Key Thm. 2: O(| ‖ B(a) ‖0 |2(| ‖ a = a ‖0 |))

Finite Semigroup
Finite Type G + associative multiplication µ : G → G → G

• Semigroups of order n: |B(x)| ≡ o(nn2)
• G is a set (as finite) thus type of assoc. mult. is set
• ‖ B(x) ‖0 ' B(x) hence same cardinal
• (G = H) ' (G ' H), |G ' H| ≈ O(n!)
• G, H sets hence G = H is a set

Total complexity: O(n2n2
n!)

For n = 2, 512 operations ⇒ some big constant is hidden
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Conclusion1

What have we seen?

• Over 9000 (lines of λ-terms needed to analyze the proof)
• What is actually computed in the proof
• Theoretical complexity: high but others bottlenecks (evaluation,
term size)

What’s next?

• Better proof complexity-wise: maybe
• Balance between theoretical improvement and term size

1Thanks to T. Coquand and J. Höfer for their precious advice
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Scribitur ad narrandum, non ad probandum.

Thanks for your attention!

A special thanks to Adrien M. for typesetting the xkcd and his help
throughout the internship.


