
Algorithms and data structure for
hyperedge queries

M1 internship report

Jules Bertrand
ENS de Lyon

Supervised by:
Bora Uçar and Fanny Dufossé
Team ROMA, LIP, Lyon, France

Contents

Introduction 2

1 Background and notation 3

2 Algorithms and data structures 4
2.1 Usual sparse matrix storage and extensions to hypergraphs 5
2.2 Hashing hyperedges . 6

3 A data structure with a OpDq time for query response 8
3.1 Preliminary results . 9
3.2 Algorithm and example . 12
3.3 Time and space complexity . 13

4 Experiments 14
4.1 Construction time . 14
4.2 Query answer time . 16
4.3 Size of data structure . 18

5 Conclusion 18

1

Introduction

We consider the problem of querying the existence of hyperedges in hypergraphs. More
formally, let H “ pV,Eq be a hypergraph, where V is the set of vertices, and E is the set of
hyperedges. The problem is to answer a set of queries of the form “is h Ď V a member of E
?” one by one. We are interested in data structures and algorithms enabling constant time
per query in the worst-case. We will mostly deal with D-uniform D-partite hypergraphs,
where the vertex set is the union of D disjoint sets V “

ŤD
i“1 Vi, and each hyperedge has

exactly one vertex from each part Vi.
In the special case where D “ 2, the queries ask for existence of edges in a graph or for

a non-zero coefficient in a matrix.

The difficulty of this problem is the following : our structure has to have a construction
complexity and a size in memory which doesn’t grow quickly with the number of elements
in the universe. In this way, this structure may be useful to work on sparse matrices or
graphs and hypergraphs with a high number of vertices.

The problem arises in the context of sparse tensor decomposition [KH19]. Kolda and
Hong investigate a stochastic, iterative method for enabling the decomposition of dense
and sparse tensors. For the sparse case, they propose a sampling method in which the
non-zeros and zeros of a sparse tensor are sampled separately for accelerating the conver-
gence of the stochastic decomposition method. This method is called stratified sampling
and works as follows. The non-zeros of the input tensor sampled uniformly at random. For
sampling zeros in a D dimensional tensor, a set of positions pi1, . . . , iDq are created and
checked if the given tensor contains a non-zero at that position, if so the index is rejected
and a new one is sampled, until a desired number of zeros are sampled. Sampling non-zeros
is straightforward, as the non-zeros of a tensor are available in a list. On the other hand
testing if a given position is non-zero in a tensor is time consuming. That is why Kolda
and Hong propose and investigate other approaches, where the stratified sampling method
is shown experimentally to be the most useful one.

During my internship, I began by reviewing the existing approaches, starting by the sort
based ones, as used by Kolda and Hong [KH19]. Other solutions, mainly using hashing,
allow a OpDq time for query response but a non-zero false-positive probability. In other
words, the data structure may answer that an element is in the set when it isn’t, but won’t
make any mistakes when dealing with elements that are really in the set. I have then
tried to adapt a method [FKS84] used to store a set of bounded integers. I compared it
to the sort based approaches to show that the gain in time complexity is measurable with
hypergraphs and graphs of realistic size.

2

1 Background and notation

Graphs and hypergraphs are data structures frequently used in computer science. They
can be used to describe constraints, to represent coalitions in game theory or to modelize
a set with an associated relation.
Graph can be considered as a set V of vertices and a set E Ă V 2 of edges while a

hypergraph considers E Ă PpV q. Therefore, graphs can be considered as a specific case of
hypergraphs.
A hypergraph is said finite if V is finite and therefore E is finite. We worked only on fi-

nite graphs and finite hypergraphs, as they both can be stored naively as their set of edges.

The easiest way to store a graph is to use its adjacency matrix. It is a matrix M of size
|V | ˆ |V | such that Mi,j “ 1 if pi, jq P E and Mi,j “ 0 otherwise.

1 2

3 4

5

¨

˚

˚

˚

˚

˝

0 1 0 1 0
1 0 0 1 1
1 0 0 0 0
0 0 0 0 1
0 1 0 1 1

˛

‹

‹

‹

‹

‚

Figure 1: A graph and its adjacency matrix.

Such a representation can hardly be used to store a hypergraph because it require to be
able to store a set of size |V ||V | which grows too quickly.

Therefore why we usually use sample matrices. For a given hypergraph, its sample ma-
trixM is defined as follows : each row corresponds to a vertex and each column corresponds
to a hyperedge. Mi,j “ 1 if j is a vertex of the i-th hyperedge and Mi,j “ 0 otherwise.
One can remark that it is the representation of the bipartite graph built by the vertex and
the hyperedges with the belonging relation. This bipartite graph is known as the incidence
graph of the hypergraph.

In this report, we will consider only D-partite hypergraphs. These hypergraphs verify
this property : V can be partitioned in D sets such that each vertex of E has a unique
intersection with each of the elements of the partition. The hypergraph H can be written
as p

ŤD
d“1 Vd, E Ď V1 ˆ V2 ˆ . . .ˆ Vdq with Vi

Ş

Vj “ H if and only if i ‰ j.
To each hypergraph, it is possible to associate a D-partite hypergraphs, with D being

the size of the biggest hyperedge, if we have an order on the vertices of V .
Given H “ pV,Eq, we build D copies V ˚i of V

Ť

tωu. We consider ω bigger than any
element of V . V ˚ “

ŤD
d“1 Vd and for each hyperedge e in E, we build a corresponding

e˚ P V ˚ by sorting the elements of e and adding ω at the end to keep e˚ sorted and of size
D. E˚ is the set of such e˚.

3

The hypergraphs H˚ “ pV ˚, E˚q is a D-partite hypergraphs.

v1

v2
v3

v4

v5
v6

v7

e1
e2

e3e4

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

Figure 2: A hypergraph and its incidence graph.

We can associate a D-partite hypergraph H “ p
ŤD

d“1 Vd, Eq with a given D dimensional
tensor T . In this hypergraph, there is a unique hyperedge for each non-zero of T , where the
vertices of the hyperedge are the coordinates of the position of the corresponding non-zero.
With this correspondence, sampling a non-zero from T corresponds to sampling a hyper-
edge from H. Sampling a zero corresponds to creating a random hyperedge by choosing a
random vertex from each vertex part and testing if that hyperedge exists in E.

Because of the direct link between tensors and hypergraphs and the one between matri-
ces and graphs, we can consider one or the other without any problem.

Our aim in this report is to design an O
´

ř

ePE |h| `
řD

d“1 |Vd|

¯

space structure that
allows OpDq time for query response in the worst case. In other words, the goal is to find
a structure with an efficient time for query response with a memory storage linear in the
number of hyperedges.
In all our analysis of complexity, we will consider that both the access to an integer in

memory and usual integer operations can be performed in Op1q.

2 Algorithms and data structures

When one want to use an algorithm which needs the answer to a similar query many
times, precomputing may be a way to improve the execution time. It consists in modifying
the way to store the concerned data in order to accelerate the answers to a specific query. It
is often used to compute complex functions, such as trigonometric functions or logarithmic
ones, in order to avoid spending time to approximate them with the necessary precision
during the execution of the program. But it can be used in many context such as finding
the Lowest Common Ancestor of two vertices in a tree. Without any precomputation,
such a query has a complexity linear in the height of the tree. With just a computation
of complexity linear in the number of vertices, it is possible to answer to these queries in

4

constant time.

We want to study data structures and linked algorithms that allow efficient memory space
and low time for query response in the case we study. We will try to use precomputation
in order to be able to answer our queries quickly.

2.1 Usual sparse matrix storage and extensions to hypergraphs

Graphs and therefore matrices are a simple sub-case of hypergraphs. One can try to
extend methods developed to store sparse matrices to the storage of hypergraphs. In such
matrices the number of non-zero coefficients is way smaller than the number of zero ones.
That’s why a naive implementation, storing the value of each coefficient, although allowing
a Op1q time for query response, is a very bad solution regarding the memory used. This is
even quickly unusable in practice as the memory used grows quadratically with the number
of vertices.

In the case of a sparse matrix, storing only the non-zero coefficients is a key-principle.
Different data structures can be used and require less memory compared to the full-matrix
approach. But accessing individual elements becomes slower. There exists a lot of differ-
ent way to compress a sparse matrix, depending on how it will be used. Some of them
enable quick modifications such as List of lists, where each sub-list matches one row, or
the Coordinate format in which each non-zero coefficient is stored as a pair (row, column).

Matlab, a software used for numeric scientific computation, proposes an other format,
the Compressed storage by columns one [GMS92].

The non-zero elements are stored in a one-dimensional array in column-major order. A
second array of integers stores the row indices of these values. The last array stores one
element per column in the matrix and encodes the index in the two previous arrays where
the given column begins.
There exists a similar format named Compressed storage by rows where the rows and the

columns have reverse roles. Depending on the shape of the matrix, one may be preferable
to the other, as the storage space required depends on the number of columns or rows.
The operations we may want to apply to the matrix might make one preferable, for

example, row slicing is way faster on matrix stored on compressed storage by rows.
However, the choice to use such a format to store sparse matrices in Matlab is due to

the efficiency of usual matrix operations when such a compression is used.

As matrices can be seen as a set of pairs, hypergraphs can be seen as a set of tuples.
Therefore a data structure made for D-uniform hypergraphs could easily be applied to
matrices. Because of the similarity between matrices and hypergraphs, one may want to
use the formats detailed previously to store hyperedges. But when we want to adapt one
of these formats, the number of nested lists grows quickly with the dimension of the con-
cerned hypergraphs.
Therefore, we chose to privilege the Coordinate format, which allows us to store hyper-

graphs as a list of D-tuple. Once sorted, it enables a time complexity to answer a query of

5

Worst case time complexity
Size of the
format in
memory

Construction Addition Multiplication Access to
an element

Full-matrix
storage Opn2

q Opn2
q Opn3

q Op1q n2

List of lists Opnz logpnzq`nq Opnz` nq Opn2
ˆnz logpnzqq Oplogpnzqq 2nz ` n

Coordinate
format Opnz logpnzqq Opnzq Opn2

ˆnz logpnzqq Oplogpnzqq 3nz

Compressed
storage by

rows
Opnz logpnzqq Opnzq Opnˆ nzq Oplogpnzqq 2nz ` n` 1

Table 1: Performance of different storage format of sparse matrix. The matrices are con-
sidered of size nˆ n with nz non-zeros elements.

OpD logpnqq with n being the number of hyperedges. There exists other formats but the
coordinate one is the most used and answers quickly to our queries [BK08]

Although all these data structures allows us to use as few memory as possible and to
compute quickly classic matrix operations, the time complexity to answer our queries isn’t
better as logarithmic in the number of hyperedges in our hypergraphs because they have
been built to answer other queries.

2.2 Hashing hyperedges

As usual sparse matrix and tensor storage gave unsatisfying results, we decided to look
for data structures build to answer quickly a more global query : “is x a member of the
set S”. Some of the methods used to built such structures could be adapted to show good
results in our specific case, the belonging of an hyperedge to a hypergraph.
Our research showed us that lots of data structures designed to answer these queries

were probabilistic. These data structures allowed a non-zero false-positive probability. In
other words, the data structure will consider that some elements are in the set when they
are actually not. But the contrary will never append.

Our problem is now to store n elements of a subset S1 of S.

We studied at first the Bloom filters [Blo70]. Such a data structure require k hash func-
tions phiq1ďiďk : S Ñ J0,m ´ 1K. They are supposed to be perfect hashing functions. In
other words, if x follows a uniform law on S, for any i in J1, kK, hipxq follows a uniform
law on J0,m´ 1K.
Using a bit-array of size m, for each elements x of the subsets S1, we modify the bit

index by th1pxq, . . . , hkpxqu to 1. If we want to know if an element of S is in S1, we com-
pute h1pxq, . . . , hkpxq and check if all the corresponding bits equals 1. If it is case, x is

6

considered as an element of S1. We can notice that an element x1 which doesn’t belong to
S1 can be considered as in the set while not being hashed exactly as an element in S1 to .
For a given n and m, if we want to minimize the false positive rate, we have to choose

k as close as possible to m
n lnp2q. If k is smaller, the false-positive probability will grow

because of the unreliability of the membership test as few bits are checked. If k is bigger,
the false-positive rate will grow because of an high number of bits set to 1.

0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0

e1 e2 e3 e4

p2, 5, 7q

Figure 3: Example of a Bloom filter applied to the hypergraph of figure 2.

In this example, the hash functions used are the dot product of the sorted hyperedges
by p2, 3, 4q, p5, 5, 5q and p7, 9, 3q quotient by 19. p2, 5, 7q is the example of an hyperedge
considered in the hypergraph by the Bloom filter while it is not.

The other alternative was the cuckoo filters which are based on hashing of the same
name [FAKM14]. The purpose is to avoid collisions by computing different indices where
we can store an hash of the element. In that way, we will be able to move this element if
we want to store an other element in that place.
Usually, cuckoo filters require two perfect hash functions, one returning an index hash

and the other one returning a fingerprint f of the element hashed. The two indices i, j
where one can store the fingerprint are defined by hashpxq and hashpxq‘ fpxq. When one
want to add an element to the filter, one will compute the fingerprint of the element and
its indices. If one of them is free, the fingerprint may be stored in the available place. If
it is not the case, one of the already stored fingerprint can be moved to its other index in
order to free space for the new element. It is possible because one is able to find the other
index, if one know one index and the fingerprint stored. An insertion may fail because the
array is too full and the replacement of a fingerprint create a loop.
One may want to use another involutory function than XOR to determine the second

index. It is possible to replace the computation of the 2 indices by k indices if we want to
use a function such that fk “ id.

7

0 A 0 E 0 0 0 D B H 0 0 0 0 0 C 0 0 F

Figure 4: Example of a cuckoo hashing.

The arrows of figure 4 symbolize the alternative index where each element can be stored.
If we want to add an element which has 7 and 8 as possible indices, we can move D and
A in order to free the 7-th index. But if we want to insert the element in the 8-th cell, it
will fail as the possible indices for B and F are creating a loop.

In order to have an idea of the performance of such data structures, one may want to
use them on big instances. For a false positive probability of 0.19%, a Bloom filter uses 13
bits per element in the set, while a cuckoo filter uses 12.6 bits per element but is slower to
answer the queries [FAKM14].
As we consider that usual operations on integers have a complexity of Op1q, computing

the fingerprint and the indices of an hyperedge can be performed in OpDq. As an insertion
may fail, it is sometimes required to rehash the cuckoo filter but the amortized insertion
complexity remains OpDq. Adding an element in a Bloom filter can be performed in OpDq
for the same reasons. Building a set of n elements using one of these structures can be
performed in OpDnq
As answering a query in both structures only requires computation of hash functions

and access to indices, it can be performed in OpDq.

Despite the problem to find perfect hash functions on a set of hyperedges, these struc-
tures have a major issue [RK12]. It is due to the size of the universe in comparison with
the considered set. Even for a small false positive probability, a main part of the elements
considered as in the set are actually not.
We can consider an example to understand better the problem. For a 3-partite hyper-

graph with 1000 vertices in each subset of V and 1000000 hyperedges with a false positive
probability of only 0.1%, in average there are 999000 false positive. The probability for a
positive query to be an actual hyperedge of the hypergraph is around 1

2 .
So theses data structure will not be able to represent correctly a hypergraph even if we

gain a OpDq complexity time to answer a query. It would require a big amount of memory
to have a reliable filter on hypergraphs.

3 A data structure with a OpDq time for query response

After analysing classics matrices storage and probabilistic methods to represent a set,
we studied a method built on integer sets [FKS84]. Considering n integers of J1,mK, this

8

data structure allows us to compute in Op1q if an element is in the set with a table of size
linear in n.
This method use two layers of hashing. The first layer is made to construct small subsets

of the set. For each of this subset, the second layer is an injection built in order to avoid
collisions. The complexity of the construction of the table is Opnq.
A naive generalization of this method can be used on graphs and hypergraphs but it

require to use large numbers. It is based on a bijection between the set of the hyperedges
and the integers. We work on a generalization which avoid such a problem in order to
improve the construction time, the query answer time and the memory used.

3.1 Preliminary results

Our algorithm uses two layers of hashing in order to have an perfect hashing on the
hyperedges of the set. In other words, we are not avoiding collisions between a hyperedge
of the hypergraph and one which is not.
Each layer is built using a probabilistic method. We prove in this section two properties

which assure us that the two layers are constructible.

We work in the universe U “ J0, n ´ 1Kd, the set of d-tuples with each element of the
tuple being an integer between 0 and n´ 1. We want to store W , a subset of the universe,
where |W | “ N . Let p be a prime number larger than N and n. We recall that as p is
prime, every element of Z{pZ has a multiplicative inverse. Let U 1 be an enlarged universe,
U 1 “ J0, p´ 1Kdzp0, . . . , 0q.

Theorem 1.
Let Bps,W,k, jq “ |tx PW |pkTxq mod p mod s “ ju| .
We have the following inequality :

Σ
kPU 1

s´1
Σ
j“0

ˆ

Bps,W,k, jq

2

˙

ă
|U 1|N2

s
.

If we consider a hash function which associate p
řd

i“1 ki ˆ xi mod pq mod s to a hy-
peredge px1, . . . , xdq , Bps,W,k, jq is the number of hyperedges of the hypergraph such
that our hash function characterized by k send them on j. Since there is no collision for
single elements, maxt0, Bps,W,k, jq ´ 1u gives the number of collisions for j. Note that
the bigger the value of Bps,W,k, jq, the more collisions there are for j.

The total number of collisions is thus equal to
s´1
ř

j“0
maxt0, Bps,W,k, jq ´ 1u.

Proof. For a given k and a given j,
`

Bps,W,k,jq
2

˘

is the number of two element subsets tx,yu
of W such that

j “ pkTx mod pq mod s “ pkTy mod pq mod s .

9

Therefore
s´1
ř

j“0

`

Bps,W,k,jq
2

˘

is the number of two element sets tx,yu such that

pkTx mod pq mod s “ pkTy mod pq mod s .

Therefore,
ř

kPU 1

s´1
ř

j“0

`

Bps,W,k,jq
2

˘

is the number of pairs pk, tx,yuq such that :

pkTx mod pq mod s “ pkTy mod pq mod s .

We can rewrite

ÿ

kPU 1

s´1
ÿ

j“0

ˆ

Bps,W,k, jq

2

˙

“
ÿ

tx,yu
x‰y

|tk : pkTx mod pq mod s “ pkTy mod pq mod su| ,

since the right hand side formula counts the total number of times any two elements x and
y of W give the same value ppkTx mod pq mod sq for different k.
To compute this number, we want to find, for a given tx,yu,x ‰ y, the number of

non-zero k such that

pkTx mod pq mod s “ pkTy mod pq mod s .

If pkTx mod pq mod s “ pkTy mod pq mod s, we have:

kT px´ yq mod p P ts, 2s, 3s, . . . ,

Z

p´ 1

s

^

s, p´ s, p´ 2s, p´ 3s, . . . , p´

Z

p´ 1

s

^

su .

Let t be an element of ts, 2s, 3s, . . . ,
Z

p´ 1

s

^

s, p´ s, p´ 2s, p´ 3s, . . . , p´

Z

p´ 1

s

^

su .

We want to compute the number of k such that kT px´ yq mod p “ t .
As px´ yq is non-zero, one of its coordinates i is non-zero.

kT px´ yq “ ki ˆ pxi ´ yiq `
d´1
Σ
j“0
j‰i

kj ˆ pxj ´ yjq.

If ki “ pt´
d´1
Σ
j“0
j‰i

kj ˆ pxj ´ yjqqpxi ´ yiq
´1, we have kT px´ yq mod p “ t .

No other value of ki give the same result as f : ki ÞÑ kiˆpxi´yiq`z in Z{pZ is a bijection.
It is due to the existence of an inverse for each element in Z{pZ .
For all the pd´1 possible values for the kj , j ‰ i, there exists a unique ki such that kT px´yq
mod p “ t .

Therefore, for all tx,yu, there are pd´1 values of k such that kT px´ yq mod p “ t .

|ts, 2s, 3s, . . . ,

Z

p´ 1

s

^

s, p´ s, p´ 2s, p´ 3s, . . . , p´

Z

p´ 1

s

^

su| ď
2pp´ 1q

s
.

10

There is at most 2pp´1q
s possible values for t .

Therefore, for a given tx,yu,x ‰ y, there is at most 2pd´1pp´1q
s possible k such that

pkTx mod pq mod s “ pkTy mod pq mod s .

If we sum on the
`

N
2

˘

sets tx,yu,x ‰ y, we have

Σ
kPU 1

s´1
Σ
j“0

ˆ

Bps,W,k, jq

2

˙

ď
pd´1pp´ 1qN2

s
ă
ppd ´ 1qN2

s
.

As, |U 1| “ pd ´ 1, we deduce immediately what we wanted to proof :

Σ
kPU 1

s´1
Σ
j“0

ˆ

Bps,W,k, jq

2

˙

ă
|U 1|N2

s
.

Corollary 2.
We recall that N “ |W |.
At least 1

2 of the k P U 1 are such that

N´1
Σ
j“0

BpN,W,k, jq2 ă 5N .

Proof. From theorem 1, we have

Σ
kPU 1

N´1
Σ
j“0

ˆ

BpN,W,k, jq

2

˙

ă
|U 1|N2

N
.

As at most one half of the terms in the sums can be larger than twice the average value,
at least one half of the k are such that

N´1
Σ
j“0

ˆ

BpN,W,k, jq

2

˙

ă
2N2

N
.

We deduce:
N´1
Σ
j“0

BpN,W,k, jq2 ă 4N `
N´1
Σ
j“0

BpN,W,k, jq ă 5N .

Corollary 3.
At least 1

2 of the k P U 1 are such that x ÞÑ pkx mod pq mod 2N2 is an injection.

Proof. By the same reasoning, we show that for at least one half of the value k :

2N2´1
Σ
j“0

ˆ

Bp2N2,W,k, jq

2

˙

ă 1 .

We immediately deduce that for such a k,
`

Bp2N2,W,k,jq
2

˘

“ 0 for all value of j.
Therefore, we have Bp2N2,W,k, jq ă 1 for all values of j from which we have the corollary.

11

3.2 Algorithm and example

Algorithm 1: Construction of the data structure
Input : D the number of dimensions of the hypergraph, n his number of vertices,

H the array of size N containing the hyperedges and p a prime integer
bigger than n and N .

Output: T an array of integers.
Let k be a random integer array of size D with values bounded by p´ 1.
while k is not verifying corollary 2 do

Generate a new random value for each cell of k.
Store k in the first D cells of an array T in which cells are initialized to 0.
H is now divided in N subsets Wj by the function x ÞÑ pkx mod pq mod N .
sum :“ d`N
for j :“ 0 to N ´ 1 by 1 do

if Wj ‰ H then
T rd` js :“ sum
sum :“ sum` |Wj |

2

for j :“ 0 to N ´ 1 by 1 do
if Wj ‰ H then

debut :“ T rd` js
while k is not verifying corollary 3 with W :“Wj do

Generate a new random value for each cell of k.
Store k in the first D cells of T rdebuts.
T rdebut` ds :“ |Wj |.
for each hyperedge x in Wj do

T rdebut` d` 1` ppkx mod pq mod 2|Wj |
2qs :“ index of x in H.

return T

The first research of a k has the following goal : dividing H into N subsets of small
size. In each subset, we search a new k such that there is no collision. For a hyperedge
in H, the two layers will allow us to find the index of the hypergraph and to compare it
to itself. If a hyperedge is not is H, for any index returned by the data structure, the
comparison will fail.

1 3 0 5 16 2 2 2 1 0 2 0 0 0 0 0 2 2 1 0 0
looomooon

k
|W1|

looomooon

k1

|W2|
k2

hkkkikkkj

W1

W2

Figure 5: An example on the hypergraph tp1, 2q, p2, 3q, p2, 4qu.

In this example, p “ 5 and k :“ p1, 3q. Therefore, p1, 2q and p2, 3q have the same image
1 by pk ¨ mod 5q mod 3 while it maps p2, 4q to 2. As W1 is the first Wj non empty, it is

12

stored from cell 5 to cell 14 and W2 is stored from cell 15 to the end.
pk ¨ mod 5q mod 8 maps p1, 2q and p2, 3q on the same image for the initial value of k.

A new value is computed and we can store the indices of the hyperedges of W1 are stored
using the new function. k is unchanged for W2 as there is only one element.

Algorithm 2: Search for a hyperedge
Input : D the number of dimensions of the hypergraph, n his number of vertices,

H the array of size N containing the hyperedges, p a prime integer bigger
than n and N , T an array build by the previous function and x a
hyperedge.

Output: True if and only if x P H.
k :“ the first D cells of T
j :“ pkx mod pq mod N
if T rj ` ds “ 0 then

return False
debut :“ T rj ` ds
k :“ the first D cells of T rdebuts
S :“ T rdebut` ds
index :“ T rdebut` d` 1` ppkx mod pq mod 2S2qs

if Hrindexs ‰ x then
return False

return True

3.3 Time and space complexity

We first want to analyse the complexity of the construction of the array T .
Thanks to corollary 2, we know that the algorithm will find a k which verifies the prop-

erty with a probability at least equal to 1
2 . Testing such a property can be done in OpNDq

by computing each of the Bp2N2,W,k, jq. Therefore, the algorithm will find a suitable
value for k in OpNDq.

The first loop can be computed in OpNq as one loop can be performed in Op1q.
For a given j, testing if k verify corollary 3 can be performed in OpD`|Wj |

2q by checking
if each element of Wj has a different image using an array of size |Wj |

2. Because there is a
probability of 1

2 of finding a suitable k, the algorithm will perform this step in average in
Op|Wj |

2q. Storing k and |Wj | is made with a complexity of OpDq. Storing the index of all
the elements of Wj is done in Op|Wj |q. One execution of a loop is done in OpD ` |Wj |

2q.
The whole loop is computed in OpNDq because corollary 2 gave us an upper bound on the
sum of the |Wj |

2.
Building the array T has a complexity in average of OpNDq.

As knowing if a hyperedge x is in H requires only comparisons and dot products on
vectors of size D, answering a query is performed in OpDq.

13

We finally want to bound the size of T . The first k is stored using D cells while the first
layer of hash is stored using N cells. For any j, Wj is stored using 2|Wj |

2 `D ` 1 cells.
The second layer uses at most 10N `ND `N according to corollary 2. The whole array
is at most of size Np12`Dq `D.

We achieved our goal to build a data structure which answers in OpDq to our queries. Its
construction is still linear in average in the number of hyperedges as is the space in memory.
But the upper bound in memory is much worse than the usual storage on hypergraphs.

4 Experiments

We studied both the time and space efficiency but we now want to know if our algorithm
is efficient in practice. As a binary search is done in OplogpNqDq on a sorted array of N
D´hyperedges, we want to verify if our algorithm can be faster for realistic values of N .
Otherwise, although its complexity is lower, it will not be useful.
An other problem we want to answer is about the construction time. We would like to

have an acceptable construction time in comparison with the time to sort the list of hy-
peredges. Finally we want to evaluate the memory used in order to know if the theoretical
bound of Np12 ` Dq ` D is effectively achieved. It will be paired with a test to know if
the probability to find a k verifying corollary 2 or corollary 3 is near 1

2 .

All the following data has been acquired using the crunch2 experimentation machine of
the LIP. The technical characteristics are detailed in table 3. The algorithm were executed
under reservation of the machine in order to avoid any other processes to be run in parallel
to it.

All matrices used as test data where from SuiteSparse Matrix Collection, a set of sparse
matrices collected from a wide range of applications [DH11]. The tensors are extracted
from FROSTT [SCL`17]. The matrices and tensors used are described in table 4 and table
7

In each experiment, the algorithms of creation and research are executed 10 times in
order to average the execution time and the memory used. The results are given in the
appendix in the table 6 and table 8. A graphic representation will be used when required
in order to study only the interesting data. A link to the codes of the algorithms I used
are available in the appendix.

4.1 Construction time

As explained in the section 2.1, we decided to use sorted Coordinate format as control
case to our algorithm. The search function which results from this choice is a binary search
but we have to decide which sort we use. So, we will be able to compare the hyperedges
sort and the construction of T .
As we work on hyperedges, which are analogous to tuples of constant size, the radix sort

was a relevant choice. We compared it to the sort implemented in the library algorithm

14

of C++ in order to decide which one will be used as the control case. Detailed results are
stored in table 5.

104 105 106 107 108 109
Number of non-zeros0

1

10

102

103

t (s)

Radix sort
algorithm sort

Figure 6: Evolution of sorting time as a function of the number of edges

Even if we see that the points of the two sets are aligned in figure 6, it is not sufficient to
say that both algorithm are linear in the number of edges. We have to verify if the slope
of the line is equal to 1 as both axis are in a log scale. For example, the line obtained
by linear regression with the least-squares method has fpxq “ 0.998x´ 0.888 as equation
with X 2 equals to 0.9996 . The line is drawn in blue in figure 6.
We can remark that the sort implemented in algorithm is much slower despite be-

ing of the same complexity of the radix sort we implemented. The radix sort will then
be used as the control case to evaluate the construction time performance of our algorithm.

We first wanted to test if the number of non-zeros was the only parameters which modify
the time execution when D remains constant. To test such an hypothesis, we used four
matrices with almost the same numbers of non-zeros (˘1‰) and compare the construction
time of the data structures.

Name
Radix sort

construction time
(s)

Construction
time of the array

T (s)
Number of rows Number of columns

SiO2 13.8522 19.529 155,331 155,331
Rail4284 15.864 19.074 4,284 1,096,864
Bmw3_2 13.342 19.347 227,362 227,362
Fcondp2 13.635 18.885 201,822 201,822

Table 2: Construction time of the different matrices

15

We remark in table 2 that the construction time of the array T remains the same when
the dimensions of the matrices vary. It is not totally the case with the radix sort because
the number of buckets required are linked to the dimensions of the matrices.
Therefore, we will use only square matrices to compare the two construction time, as a

rectangular matrix could greatly modify the results of the radix sort for a given number
of non-zero.

We then used matrices with a various number of non-zeros to compare the construction
time of the two structures.

104 105 106 107 108 109
Number of non-zeros0

1

10

102

103

t (s)

Radix sort
Construction of T

Figure 7: Evolution of construction time as a function of the number of edges

The construction of T is linear in the number of edges as the line obtained by the least-
squares method has 1.01 as slope with a X 2 of 0.9996. The construction of the sorted list is
faster for almost any matrices of the test set and the difference between the two algorithm
grows with the number of edges.
We can remark that Kmer_A2a does not follow this phenomenon. It is due to a signifi-

cantly low number of non-zeros regarding the dimensions of the matrix, as the radix sort
efficiency decreases when the size of the matrices grows while the number of non-zeros
remains constant. Wiki-Talk shows the same result .

On matrices with a relatively high numbers of non-zeros per row or column, the radix
sort is clearly faster than the construction of T despite being of the same complexity.

4.2 Query answer time

After having evaluated the construction time of T , we now want to test if our OpDq
query response time is relevant for realistic size of matrices. To do so and to minimize the
variance, we computed 106 random D-hyperedges search requests in the two structures.
We want to evaluate at first if the query response time remains constant when D is fixed

to 2.

16

104 105 106 107 108 109
Number of non-zeros0

1

2

3

4

5

6

7

t (s)

Radix sort
Construction of T

Figure 8: Evolution of query response time as a function of the number of edges

We remark on figure 8 that the query response time is not totally constant when the
number of non-zeros grows. However, in addition to being faster than binary search algo-
rithm for any number of non-zero, the query response time is multiplied by less than 1.4,
when we multiply the number of non-zeros by 1000. It seems to grow logaritmically but
with a low coefficient regarding the one used by the binary search. Such a result is very
satisfying as binary search is a fast method when one want to look for an element.

As we evaluated the complexity of a query to OpDq, we tested if it grows fast with the
order of the hypergraph. To do so, we considered the query response time to be constant
when D is and we then compared the average of the time to answer a query.

We remarked that, in practice, the query response time is not linear in D. It is probably
due to the architecture of the machine. Indeed, the cache allows faster access to data close
to those already called. The main cost of the search is the first call in memory in each of
the steps of the algorithm. The call to values stored in the cache and the computation are
fast compared to these calls. Therefore, the algorithm has a constant execution time while
D remains small.

17

4.3 Size of data structure

Finally, we wanted to test if the theoretical bound of memory usage is achieved in prac-
tice and to study how this usage vary with D. We can at first remark that the numbers
of cells by hyperedges required by T depends only on D. Only Fcondp2 is an exception to
this rule.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

2 3 4 5

Size of H

Size of T

Theoretical bound on the size of T

Figure 9: Evolution of the number of cells per hyperedge as a function of the order of the
hypergraph

The theoretical bound of OpNp12`Dq `Dq on the size of T is actually far from being
achieved even if the number of cells per hyperedges seems to be linear in D, as we can see
on figure 9. H grows faster in size than T . It means that if D is big enough, storing T in
parallel of H will be negligible in memory usage while it allows to answer our queries faster.

Finally, the bound of 1
2 obtained in corollary 2 and 3 seems very high in practice. During

all the computation, no failure were registered for the first research of k.

5 Conclusion

During this internship, we wanted to build a data structure in order to answer our
queries in OpDq using a memory space linear in the size and number of hyperedges. This

18

goal has been achieved and the difference of complexity has been highlighted on matrices
and tensors of realistic size. The main problem of our data structure remains the construc-
tion time, much slower than a sort on the hyperedges. The loss in memory usage decreases
with the order of the hypergraph.
We can weight our theoretical results by removing the assumption that all access and

computation of usual operations on integers can be done in Op1q. A factor OplogpNqq is
hidden in the experiments because all the computations were done on integer of bounded
size. The array T requires computation of numbers of size N which may slow down both
the construction and the query answer. It is not the case when using a sorted approach.
It will improve the memory usage by requiring bigger cells. However, the query response
time being way faster using T , using integers of unbounded size will not make the binary
search faster.

My internship was at first supposed to be focused on Bloom filters and more generally,
on probabilistic data structures, in order to store hypergraphs. However, I took a totally
different direction because I worked on a data structure with no error probability. It was
both very exciting and frightening for me to be able to change my goal depending on what
was the most intriguing. I think that this freedom of research allowed me to enjoy this
internship a lot. Moreover, personal research was more in the heart of my internship than
last year and I really liked it.
I would like to thanks Bora Uçar, my internship supervisor and Fanny Dufossé for

agreeing to supervise me in these complicated conditions. Our regular meetings have
allowed me to stay motivated and produce this work which I am satisfied of.

References

[BK08] Brett W. Bader and Tamara G. Kolda. Efficient matlab computations with
sparse and factored tensors. SIAM Journal on Scientific Computing, 30(1):205–
231, 2008.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[DH11] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

[FAKM14] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo filter: Practically better than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’14, pages 75–88, New York, NY, USA, 2014. ACM.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with Op1q worst case access time. J. ACM, 31(3):538–544, June 1984.

[GMS92] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab:
Design and implementation. SIAM Journal on Matrix Analysis and Applica-
tions, 13(1):333–356, 1992.

19

[KH19] Tamara G. Kolda and David Hong. Stochastic gradients for large-scale tensor
decomposition. arXiv, June 2019. http://arxiv.org/abs/1906.01687.

[RK12] Ori Rottenstreich and Isaac Keslassy. The bloom paradox: When not to use a
bloom filter? IEEE/ACM Transactions on Networking, 23:1638–1646, 05 2012.

[SCL`17] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing
Liu, and George Karypis. FROSTT: The formidable repository of open sparse
tensors and tools. http://frostt.io/, 2017.

20

http://frostt.io/

Appendix

My gitlab deposit

https://gitlab.aliens-lyon.fr/jbertr02/internship-m1/-/tree/master

CPU Total Cores Memory (GB) System type
4 ˆ Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz 32 378 PowerEdge R820 (Dell Inc.)

Table 3: Technical characteristic of the crunch2 experimentation machine

Name Matrix Id Number of rows Number of columns Number of non-zeros
Vibrobox 379 12,328 12,328 342,828

Soc-Epinions1 2284 75,888 75,888 508,837
Md2010 2601 145,247 145,247 700,378

G_n_pin_pout 2574 100,000 100,000 1,002,396
Analytics 2851 303,813 303,813 2,006,126
Wiki-Talk 2291 2,394,385 2,394,385 5,021,410

SiO2 1367 155,331 155,331 11,283,503
Rail4284 1658 4,284 1,096,894 11,284,032
Bmw3_2 1219 227,362 227,362 11,288,630
Fcondp2 1260 201,822 201,822 11,294,316

Bundle_adj 2664 513,351 513,351 20,208,051
Emilia_923 2542 923,136 923,136 41,005,206
Geo_1438 2545 1,437,960 1,437,960 63,156,690

Mycielskian17 2773 98,303 98,303 100,245,742
Stokes 2845 11,449,533 11,449,533 349,321,980

Kmer_A2a 2805 170,728,175 170,728,175 360,585,172

Table 4: Characteristics of the matrices used during the experiments

21

https://gitlab.aliens-lyon.fr/jbertr02/internship-m1/-/tree/master

Name Radix sort construction time (s) algorithm sort construction time (s)
Vibrobox 0.41641 1.26151

Soc-Epinions1 0.62839 2.02824
Md2010 1.1426 2.594435

G_n_pin_pout 1.5429 4.281195
Analytics 1.945 8.7881
Wiki-Talk 7.6071 23.99595

SiO2 13.8522 53.7031
Bundle_adj 25.36 116.861
Emilia_923 52.271 195.553
Geo_1438 81.48 308.404

Mycielskian17 127.09 568.74
Stokes 485,26 1288,2

Table 5: Detailed results of the two sorting algorithms on matrices.

Name Construction time (s) Queries answer time
(s)ˆ106

Cells by
hyperedges of our

algorithm
Vibrobox 0.41641 0.572657 1.3878 0.93693 5.7337

Soc-Epinions1 0.62839 0.81272 1.9746 0.94278 5.773
Md2010 1.1426 1.3297 2.3883 0.96637 5.7879

G_n_pin_pout 1.5429 1.6094 2.525 1.0236 5.7791
Analytics 1.945 3.2871 2.7511 1.0744 5.6917
Wiki-Talk 7.6071 8.4037 3.3649 1.1139 5.7901

SiO2 13.8522 19.529 4.4104 1.1743 5.7226
Rail4284 15.864 19.074 4.2967 1.1835 5.8249
Bmw3_2 13.342 19.347 4.2853 1.0759 5.5819
Fcondp2 13.635 18.885 5.0753 1.1859 7.6235

Bundle_adj 25.36 33.557 4.5757 1.1569 5.7176
Emilia_923 52.271 70.486 5.407 1.196 5.6869
Geo_1438 81.48 110.03 5.7412 1.2176 5.7059

Mycielskian17 127.09 178.2 6.7846 1.238 5.7635
Stokes 485.26 665.68 7.0332 1.3328 5.7045

Kmer_A2a 1129.5 770.31 6.9702 1.3375 5.8101

Table 6: Detailed results of the differents algorithms on matrices. Each column contain
the results obtained by the radix sort and our algorithm

22

Name Order Dimensions Number of non-zeros
Chicago-crime-comm 4 6,186 ˆ 24 ˆ 77 ˆ 32 5,330,673
Chicago-crime-geo 5 6,186 ˆ 24 ˆ 380 ˆ 395 ˆ 32 5,330,673
Vast-2015-mc1-3d 3 165,427 ˆ 11,374 ˆ 2 26,021,945
Vast-2015-mc1-5d 5 165,427 ˆ 11,374 ˆ 2 ˆ 100 ˆ 89 26,021,945

Enron 4 6,066 ˆ 5,699 ˆ 244,268 ˆ 1,176 54,202,099
NELL-2 3 12,092 ˆ 9,184 ˆ 28,818 76,879,419
Flickr-4d 4 319,686 ˆ 28,153,045 ˆ 1,607,191 ˆ 731 112,890,310
Flickr-3d 3 319,686 ˆ 28,153,045 ˆ 1,607,191 112,890,310

Delicious-4d 4 32,924 ˆ 17,262,471 ˆ 2,480,308 ˆ 1,443 140,126,181
Delicious-3d 3 32,924 ˆ 17,262,471 ˆ 2,480,308 140,126,181
NELL-1 3 2,902,330 ˆ 2,143,368 ˆ 25,495,389 143,599,552

Table 7: Characteristics of the tensors used during the experiments

Name Construction time (s) Queries answer time
(s)ˆ106

Cells by hyperedges

Chicago-crime-comm 5.0469 10.997 5.8201 1.1963 4 6.196
Chicago-crime-geo 6.9872 11.405 4.7894 1.2478 5 6.405
Vast-2015-mc1-3d 22.471 47.5357 5.7498 1.2443 3 6.0196
Vast-2015-mc1-5d 37.017 53.834 6.4008 1.4113 5 6.587

Enron 48.19 123.77 5.5464 1.2343 4 6.318
NELL-2 67.147 170.64 7.3351 1.1918 3 6.0555
Flickr-4d 149.91 237.52 7.2881 1.4224 4 6.321
Flickr-3d 134.82 225.69 7.2831 1.3613 3 6.0565

Delicious-4d 196.5 289.32 6.3093 1.387 4 6.321
Delicious-3d 168.44 276.06 6.2923 1.3292 3 6.0568
NELL-1 214.8 283.4 5.9065 1.3287 3 6.057

Table 8: Detailed results of the differents algorithms on tensors. Each column contain the
results obtained by the radix sort and our algorithm.

23

	Introduction
	Background and notation
	Algorithms and data structures
	Usual sparse matrix storage and extensions to hypergraphs
	Hashing hyperedges

	A data structure with a O(D) time for query response
	Preliminary results
	Algorithm and example
	Time and space complexity

	Experiments
	Construction time
	Query answer time
	Size of data structure

	Conclusion

