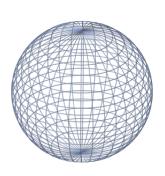
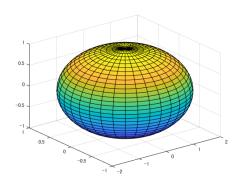
## Théorème de Gauss-Bonnet

Julien Allasia

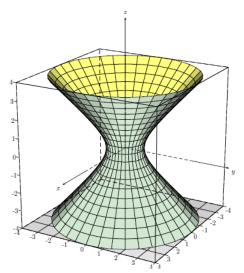
5 septembre 2018

## Introduction





## Introduction



- Rappels de géométrie différentielle
- Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

## Surface régulière $S \subseteq \mathbb{R}^3$

 $\forall p \in S$ , il existe un voisinage V de p dans  $\mathbb{R}^3$ , un ouvert  $U \subseteq \mathbb{R}^2$  et une fonction  $X: U \to V \cap S$  tels que :

## Surface régulière $S \subseteq \mathbb{R}^3$

 $\forall p \in S$ , il existe un voisinage V de p dans  $\mathbb{R}^3$ , un ouvert  $U \subseteq \mathbb{R}^2$  et une fonction  $X: U \to V \cap S$  tels que :

 $\bullet$  X est  $\mathcal{C}^{\infty}$ .

### Surface régulière $S \subseteq \mathbb{R}^3$

 $\forall p \in S$ , il existe un voisinage V de p dans  $\mathbb{R}^3$ , un ouvert  $U \subseteq \mathbb{R}^2$  et une fonction  $X: U \to V \cap S$  tels que :

- $\bullet$  X est  $\mathcal{C}^{\infty}$ .
- 2 X est un homéomorphisme.

## Surface régulière $S \subseteq \mathbb{R}^3$

 $\forall p \in S$ , il existe un voisinage V de p dans  $\mathbb{R}^3$ , un ouvert  $U \subseteq \mathbb{R}^2$  et une fonction  $X: U \to V \cap S$  tels que :

- lacksquare X est  $\mathcal{C}^{\infty}$ .
- 2 X est un homéomorphisme.
- **3** Pour tout  $q \in U$ ,  $dX_q : \mathbb{R}^2 \to \mathbb{R}^3$  est injective.

### Orientation d'une surface

• S est dite orientable s'il existe une application continue  $N:S\to\mathbb{R}^3$  qui à  $p\in S$  associe un vecteur normal unitaire.

### Orientation d'une surface

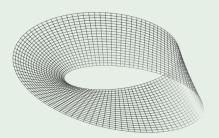
- S est dite orientable s'il existe une application continue  $N:S\to\mathbb{R}^3$  qui à  $p\in S$  associe un vecteur normal unitaire.
- Dans ce cas, N est  $C^{\infty}$ .

#### Orientation d'une surface

- S est dite orientable s'il existe une application continue  $N:S\to\mathbb{R}^3$  qui à  $p\in S$  associe un vecteur normal unitaire.
- Dans ce cas, N est  $C^{\infty}$ .

### Exemple

Ruban de Möbius



### Formes quadratiques fondamentales

• Première forme fondamentale :

$$I_p: \left| \begin{array}{ccc} T_p S & \longrightarrow & \mathbb{R} \\ w & \longmapsto & \langle w, w \rangle = ||w||^2 \end{array} \right|$$

### Formes quadratiques fondamentales

• Première forme fondamentale :

$$I_p: \left| \begin{array}{ccc} T_pS & \longrightarrow & \mathbb{R} \\ w & \longmapsto & \langle w,w \rangle = ||w||^2 \end{array} \right|$$

Seconde forme fondamentale :

$$II_{p}: \left| \begin{array}{ccc} T_{p}S & \longrightarrow & \mathbb{R} \\ w & \longmapsto & -\langle dN_{p}(w), w \rangle \end{array} \right.$$

## Expressions dans la base $(X_{\mu}, X_{\nu})$

• 
$$I_p(w) = E w_1^2 + 2F w_1 w_2 + G w_2^2$$
, où :

$$\begin{vmatrix}
E = \langle X_u, X_u \rangle, \\
F = \langle X_u, X_v \rangle, \\
G = \langle X_v, X_v \rangle.
\end{vmatrix}$$

## Expressions dans la base $(X_u, X_v)$

• 
$$I_p(w) = E w_1^2 + 2F w_1 w_2 + G w_2^2$$
, où :

$$\begin{vmatrix}
E = \langle X_u, X_u \rangle, \\
F = \langle X_u, X_v \rangle, \\
G = \langle X_v, X_v \rangle.
\end{vmatrix}$$

• 
$$II_p(w) = e w_1^2 + 2f w_1 w_2 + g w_2^2$$
, où :

$$\begin{cases}
e = \langle N, X_{uu} \rangle, \\
f = \langle N, X_{uv} \rangle, \\
g = \langle N, X_{vv} \rangle.
\end{cases}$$

### Théorème

Il existe une base orthonormée  $(e_1, e_2)$  de  $T_pS$  et  $k_1 \geq k_2$  tels que :

#### Théorème

Il existe une base orthonormée  $(e_1, e_2)$  de  $T_pS$  et  $k_1 \geq k_2$  tels que :

- $dN_p(e_1) = -k_1e_1$ ,
- $dN_p(e_2) = -k_2e_2$ ,

#### Théorème

Il existe une base orthonormée  $(e_1, e_2)$  de  $T_pS$  et  $k_1 \geq k_2$  tels que :

- $dN_p(e_1) = -k_1e_1$ ,
- $dN_p(e_2) = -k_2e_2$ ,
- $\forall w \in T_p S$ ,  $||w|| = 1 \Rightarrow k_2 \leq \text{II}_p(w) \leq k_1$ .

#### Théorème

Il existe une base orthonormée  $(e_1, e_2)$  de  $T_pS$  et  $k_1 \geq k_2$  tels que :

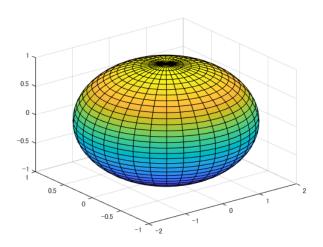
- $dN_p(e_1) = -k_1e_1$ ,
- $dN_p(e_2) = -k_2e_2$ ,
- $\forall w \in T_p S$ ,  $||w|| = 1 \Rightarrow k_2 \leq \text{II}_p(w) \leq k_1$ .

#### Définition

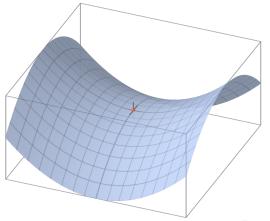
La courbure de Gauss de S en p est :

$$K = det(dN_p) = k_1k_2$$
.

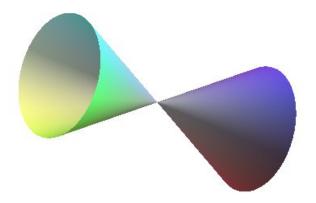
## Point elliptique: K>0



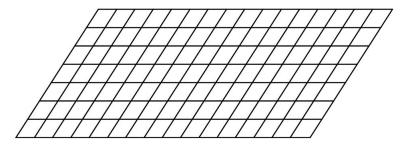
## Point hyperbolique : K < 0



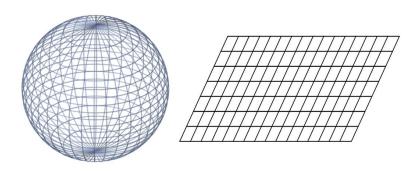
**Point parabolique** : K = 0 et  $dN_p \neq 0$ 



Point planaire :  $dN_p = 0$ 



Point ombilical :  $k_1 = k_2$ 



## Formule d'intérêt pratique

$$K = \frac{eg - f^2}{EG - F^2}.$$

### Formule d'intérêt pratique

$$K = \frac{eg - f^2}{EG - F^2}.$$

### Formule d'intérêt théorique

Dans le cas F = 0:

$$K = -\frac{1}{\sqrt{EG}} \left( \partial_u \left( \frac{G_u}{2\sqrt{EG}} \right) + \partial_v \left( \frac{E_v}{2\sqrt{EG}} \right) \right).$$

### Formule d'intérêt pratique

$$K = \frac{eg - f^2}{EG - F^2}.$$

### Formule d'intérêt théorique

Dans le cas F = 0:

$$K = -\frac{1}{\sqrt{EG}} \left( \partial_u \left( \frac{G_u}{2\sqrt{EG}} \right) + \partial_v \left( \frac{E_v}{2\sqrt{EG}} \right) \right).$$

- Theorema egregium
- Preuve du théorème de Gauss-Bonnet
- Applications du théorème de Gauss-Bonnet



# Courbure géodésique

Courbe paramétrée par longueur d'arc :  $\alpha:I\to S$ Composante tangentielle de l'accélération :

$$\alpha_T''(s) = k_g(s) \left( N(\alpha(s)) \wedge \alpha'(s) \right)$$

# Courbure géodésique

Courbe paramétrée par longueur d'arc :  $\alpha: I \to S$ Composante tangentielle de l'accélération :

$$\alpha_T''(s) = k_g(s) \left( N(\alpha(s)) \wedge \alpha'(s) \right)$$

#### Définition

 $k_g$  est appelée courbure géodésique de  $\alpha$ .

# Courbure géodésique

Courbe paramétrée par longueur d'arc :  $\alpha: I \to S$ Composante tangentielle de l'accélération :

$$\alpha_T''(s) = k_g(s) \left( N(\alpha(s)) \wedge \alpha'(s) \right)$$

#### Définition

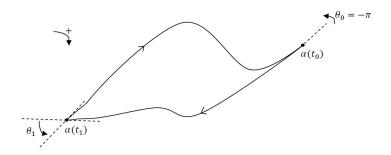
 $k_g$  est appelée courbure géodésique de  $\alpha$ .

### **Proposition**

 $\alpha$  est une géodésique  $\iff k_g = 0$ .

- Rappels de géométrie différentielle
- 2 Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

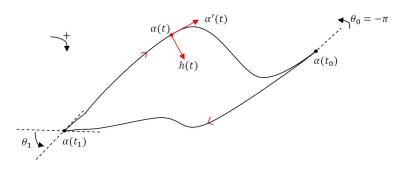
# Courbes fermées simples régulières par morceaux



- Sommets de  $\alpha$  :  $\alpha(t_0)$ , ...,  $\alpha(t_k)$
- Angles aux sommets :  $\theta_i \in [-\pi, \pi]$



# Courbes fermées simples régulières par morceaux



Courbe **positivement orientée** : dans la base orthogonale directe  $(\alpha', h)$ , h pointe vers R.

# Régions

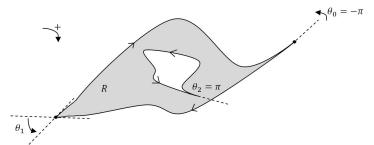
• **Région** de S : ouvert connexe borné  $\cup$  sa frontière.

# Régions

- **Région** de S: ouvert connexe borné  $\cup$  sa frontière.
- Région simple :
  - R homéomorphe au disque
  - $\partial R =$  courbe fermée simple régulière par morceaux

# Régions

- **Région** de S : ouvert connexe borné  $\cup$  sa frontière.
- Région simple :
  - R homéomorphe au disque
  - $\partial R$  = courbe fermée simple régulière par morceaux
- Région régulière :
  - R compacte
  - ∂R = union finie de courbes fermées simples régulières par morceaux qui ne s'intersectent pas



- Rappels de géométrie différentielle
- Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

• Triangle : sous-région simple de *R* à 3 sommets

- Triangle : sous-région simple de R à 3 sommets
- Triangulation de  $R: T_1, ..., T_n$  avec :
  - $R = \cup T_i$
  - $T_i \cap T_j \neq \emptyset \Rightarrow$  sommet commun ou arête commune

- Triangle : sous-région simple de R à 3 sommets
- Triangulation de  $R: T_1, ..., T_n$  avec :
  - $R = \cup T_i$
  - $T_i \cap T_j \neq \emptyset \Rightarrow$  sommet commun ou arête commune
- $\bullet$  E = nombre d'arêtes
- $\bullet$  F = nombre de triangles
- V = nombre de sommets

- Triangle : sous-région simple de R à 3 sommets
- Triangulation de  $R: T_1, ..., T_n$  avec :
  - $R = \cup T_i$
  - $T_i \cap T_j \neq \emptyset \Rightarrow$  sommet commun ou arête commune
- E = nombre d'arêtes
- $\bullet$  F = nombre de triangles
- V = nombre de sommets

### Caractéristique d'Euler-Poincaré

$$\chi = F - E + V$$

- Triangle : sous-région simple de R à 3 sommets
- Triangulation de  $R: T_1, ..., T_n$  avec :
  - $R = \cup T_i$
  - $T_i \cap T_j \neq \emptyset \Rightarrow$  sommet commun ou arête commune
- E = nombre d'arêtes
- $\bullet$  F = nombre de triangles
- $\bullet$  V = nombre de sommets

### Caractéristique d'Euler-Poincaré

$$\chi = F - E + V$$

#### Théorème

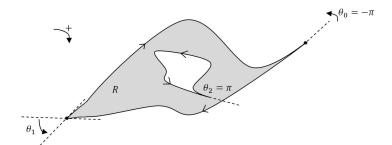
 $\chi$  ne dépend pas du choix de la triangulation.



- Rappels de géométrie différentielle
- Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

### Théorème de Gauss-Bonnet

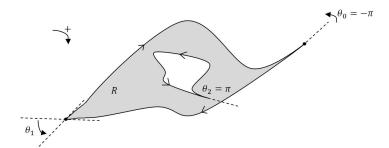
- R une région régulière de S
- $\partial R = \bigcup_{i=1}^{n} C_i$  orientées positivement
- Angles aux sommets :  $\theta_0$ , ...,  $\theta_p$



#### Théorème de Gauss-Bonnet

- R une région régulière de S
- $\partial R = \bigcup_{i=1}^{n} C_i$  orientées positivement
- Angles aux sommets :  $\theta_0$ , ...,  $\theta_p$

$$\sum_{i=1}^n \int_{C_i} k_g(s) ds + \iint_R K d\sigma + \sum_{i=0}^p \theta_i = 2\pi \chi(R).$$



Version locale

- Version locale
  - Cadre : région simple assez petite

Version locale

• Cadre : région simple assez petite

• Outils : calcul différentiel

Version locale

• Cadre : région simple assez petite

• Outils : calcul différentiel

Passage du local au global

Version locale

• Cadre : région simple assez petite

• Outils : calcul différentiel

Passage du local au global

• Cadre : région régulière

- Version locale
  - Cadre : région simple assez petite
  - Outils : calcul différentiel
- Passage du local au global
  - Cadre : région régulière
  - Méthode : triangulation assez fine

Version locale

• Cadre : région simple assez petite

• Outils : calcul différentiel

Passage du local au global

• Cadre : région régulière

• Méthode : triangulation assez fine

Outils : topologiques

#### Théorème de Gauss-Bonnet pour les surfaces compactes

S : surface régulière orientable compacte

$$\iint_{S} K d\sigma = 2\pi \chi(S).$$

- Rappels de géométrie différentielle
- 2 Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

## Théorème de classification des surfaces compactes

## Théorème de classification des surfaces compactes

#### Théorème

- S et S' sont homéomorphes  $\iff \chi(S) = \chi(S')$ .
- $\chi(S) \in \{2, 0, -2, -4, ...\}.$
- $\chi(S) = -2(g-1) \Rightarrow S$  est homéomorphe à un tore à g trous.

## Théorème de classification des surfaces compactes

#### Théorème

- S et S' sont homéomorphes  $\iff \chi(S) = \chi(S')$ .
- $\chi(S) \in \{2, 0, -2, -4, ...\}.$
- $\chi(S) = -2(g-1) \Rightarrow S$  est homéomorphe à un tore à g trous.



### Proposition

**1** Il existe un point  $p \in S$  tel que K(p) > 0.

### Proposition

- Il existe un point  $p \in S$  tel que K(p) > 0.
- ② Si  $K \ge 0$ , alors S est homéomorphe à la sphère.

### **Proposition**

- **1** Il existe un point  $p \in S$  tel que K(p) > 0.
- ② Si  $K \ge 0$ , alors S est homéomorphe à la sphère.
- 3 Si S n'est pas homéomorphe à la sphère, il existe des points où K > 0, K < 0 et K = 0.

### **Proposition**

- **1** Il existe un point  $p \in S$  tel que K(p) > 0.
- ② Si  $K \ge 0$ , alors S est homéomorphe à la sphère.
- 3 Si S n'est pas homéomorphe à la sphère, il existe des points où K > 0, K < 0 et K = 0.
- **3** Si K est constante, alors S est une sphère de rayon  $\frac{1}{\sqrt{K}}$ .

- 1 Rappels de géométrie différentielle
- Théorème de Gauss-Bonnet
  - Cadre de travail
  - Préliminaires topologiques
  - Théorème de Gauss-Bonnet
- 3 Applications
  - Etude des surfaces compactes
  - Résultats sur les géodésiques

# Triangles géodésiques

#### Théorème

 ${\cal T}$  un triangle géodésique de  ${\cal S}$ 

Angles internes :  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ 

# Triangles géodésiques

#### Théorème

T un triangle géodésique de S

Angles internes :  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ 

$$\phi_1 + \phi_2 + \phi_3 = \pi + \iint_T \mathsf{K} \, \mathsf{d}\sigma.$$

# Une application non triviale

- S homéomorphe à un cylindre
- K < 0

Alors S admet au plus une géodésique fermée simple.

