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1 Introduction

Random walks in random environments (RWREs) are a quite recent area of research in applied

probability theory and mathematical physics, born in the 1970s. Random walks have been a

useful tool to model transport processes, for example the movements of particles in a media or the

di�usion of heat. However, the relevant characteristics of the media to study the random walk are

often highly inhomogeneous. This is why it is relevant to use a random environment, chosen from

a space of environments with a certain probability measure.

The choice of assumptions on this probability measure can help us get results and are natural

hypotheses in the physical world. One of them, which will be essential, is ellipticity (meaning

the random walk has a positive probability of moving to every direction). Another assumption

that is often useful is that environments are constructed in an i.i.d. fashion, meaning that the

spacial inhomogeneities of the media are i.i.d. However, general results can be obtained in even

more general settings where inhomogeneities in points that are far away from each other are almost

independent, and the most general assumption for that matter is ergodicity.

One of the most prominent issue in the study of RWREs has been their asymptotic behaviour

when rescaling space and time. In lots of quite general cases, the random walks converge to a

deterministic Brownian motion for almost every environment. This is a very strong generalization

of Donsker's invariance principle. Since RWREs emerged in mathematical research, assumptions

to get this convergence have got weaker and weaker, so that it is now known that this convergence

holds even in quite surprising cases.

Another major interest of this area of research is that it is closely linked to stochastic homoge-

nization, a subject in partial di�erential equations which is also very active at the moment.

In this internship, I worked with Paul Melloni (ENS de Lyon) under the supervision of Jessica

Lin (McGill University, Montreal). Our goal was to generalize the invariance principle for RWREs

to a weaker case that has been studied on the PDE side. This report presents the important results

on invariance principles that have been shown for the past decades, sometimes using arguments

inspired by other papers. Then we introduce another proof of those results, which will also give a

proof for the weaker case we have studied.

2 The invariance principle for RWREs

The setup of this theorem mostly follows the notations and arguments of Guo & Zeitouni in [3],

but most ideas were already present in a seminal paper by Lawler [1], which was itself a rewriting
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of a paper by Papanicolaou & Varadhan [2].

2.1 De�nitions

Let's now de�ne properly what a random walk in a random environment is. In order to do this,

we have to de�ne two levels of randomness. The �rst one is that of the environments, the second

one is that of the random walk in a �xed environment.

2.1.1 First level of randomness

De�nition. Let d ≥ 1. Let S = {(p1, ..., pd, p−1, ..., p−d) ∈ R2d, ∀i, pi ≥ 0,
∑d
i=1(pi + p−i) = 1}.

We de�ne the set of environments on Zd to be Ω = SZd . Take the topology induced from Rd on S,
and take the product topology on Ω. Let F be the Borel σ-algebra on Ω. Let P be a probability

measure on (Ω,F).

S can also be seen as the set of probability measures on the set of the nearest neighbors of

the origin in the lattice Zd. Therefore, choosing ω ∈ Ω is simply assigning to each x ∈ Zd a

probability distribution on its nearest neighbors. In other words, if ω(x) = (p1, ..., pd, p−1, ..., p−d),

and if 1 ≤ i ≤ d, pi is the probability of moving from x to x + ei, and p−i is the probability of

moving from x to x − ei. That is why, we will also note, for 1 ≤ i ≤ d, ω(x, ei) = ωi(x) and

ω(x,−ei) = ωd+i(x) (and we will often consider ω as the vector (ωi)i∈{1,...,d} ∈ Rd).

Assumptions. De�ne θ to be the shift operator on the environments, that is

∀x0 ∈ Zd, ∀ω ∈ Ω, ∀x ∈ Zd, θx0ω(x) = ω(x+ x0).

We make the following assumptions on the environments for the rest of this section :

1. Balancedness: for P-a.e. ω ∈ Ω, ∀x ∈ Zd, ∀i ∈ {1, ..., d}, ω(x, ei) = ω(x,−ei).

2. Ellipticity: for P-a.e. ω ∈ Ω, ∀x ∈ Zd, ∀i ∈ {1, ..., d}, ω(x,±ei) > 0.

3. Stationarity: ∀x0 ∈ Zd, ∀F ∈ F , P(θx0F ) = P(F ).

4. Ergodicity: ∀F ∈ F , (∀x0 ∈ Zd, θx0F = F )⇒ P(F ) ∈ {0, 1}.

N.B. In the rest of this report, we will often skip the ω subscript for the sake of simplicity, but

bear in mind that in what follows, everything is de�ned after �xing an environment ω.

2.1.2 Second level of randomness

Now let us �x an environment ω ∈ Ω and a point x ∈ Zd. We take a random walk in ω to be an

element of the following probability space.

De�nition. Consider the space (Zd)N, equipped with the product σ-algebra G. Take Xn to be the

nth projection from (Zd)N to Zd. De�ne the probability Pxω on ((Zd)N,G) recursively by{
Pxω(X0 = x) = 1

Pxω(Xn+1 = y ± ei |Xn = y) = ω(y,±ei).

Under Pxω, a sequence (Xn)n ∈ (Zd)N is called a random walk in the environment ω, starting at x.

Remark. The previous formulas are su�cient to de�ne a unique probability measure on ((Zd)N,G)

thanks to Carathéodory's extension theorem.
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Proposition. Let Qω be the transition kernel on Zd de�ned by

∀y, z ∈ Zd, Qω(y, z) =

{
ω(y,±ei) if z = y ± ei

0 otherwise

Then, for P-a.e. ω ∈ Ω and under ((Zd)N,G,Pxω),

• (Xn)n is an irreducible Qω-Markov chain starting at x.

• (Xn)n is a martingale with respect to the canonical �ltration Gn = σ(X0, ..., Xn).

Proof. The fact that it is a Markov chain is a direct consequence of the de�nition. If ω is elliptic

(assumption 2.), then (Xn)n is clearly irreducible. If ω is taken to be balanced (assumption 1.),

then for each n ≥ 0, Xn+1 −Xn takes values in {±ei, 1 ≤ i ≤ d} and

Pxω(Xn+1 −Xn = ei | Gn) = Pxω(Xn+1 −Xn = −ei | Gn) = ωi(Xn).

Therefore Exω[Xn+1 −Xn | Gn] = 0, and (Xn)n is a martingale.

In the following, we will denote by Lω = Qω − I the generator of the random walk, de�ned by

∀f : Zd → R, ∀x ∈ Zd, Lωf(x) = Exω
[
f(X1)

]
− f(x).

2.2 Invariance principle

We now state the invariance principle we are after under two di�erent assumptions, a weaker one

and a stronger one. Before that, we need a de�nition of a new space in which we will work.

De�nition. Let C = C0(R+,Rd). Equip C with the coarsest σ-algebra for which the following

projections are continuous for t ≥ 0 :

evt : C −→ (Rd,B(Rd))
f 7−→ f(t)

(C, C) is often referred to as the Wiener space.

Notation. If b ∈ (R∗+)d, let Bb be the d-dimensional Brownian motion started at 0 with covariance

matrix diag(b). In other words,
(
B(1)
√
b1
, ..., B

(d)
√
bd

)
is a standard Brownian motion in Rd.

In order to work in the Wiener space, the random walk has to be interpolated. If (xk)k∈N ∈
(Zd)N, we de�ne (

∼
xt)t≥0 to be the linear interpolation of the (xk)k∈N, that is, for t ≥ 0,

xt = xbtc + (t− btc) (xbt+1c − xbtc).

Assumptions. For the following theorem to hold, we need to control the transition probabilities

of our random walks properly. Ellipticity is actually not su�cient, we need one of the two following

additional assumptions. Note that the �rst one implies the second one, but the proof will be easier

in the �rst case.

4. Uniform ellipticity: ∃α > 0, for P-a.e. ω ∈ Ω, ∀x ∈ Zd, ∀i, ω(x, ei) ≥ α.

5. Moment condition: ∃ p > d, E
[
ε−p(0)

]
<∞, where ε(x) = εω(x) =

d∏
i=1

ω(x, ei)
1/d.
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Theorem 2.1. (invariance principle)

There exists b ∈ (R∗+)d such that
∑d
i=1 bi = 1 and

for P-a.e. ω ∈ Ω,

 ∼Xnt√
n


t≥0

−⇀
n→∞

Bb

In other words, by rescaling space and time properly, almost all our random walks converge in

distribution to the same Brownian motion, which has a deterministic covariance matrix diag(b).

Remark. In terms of weak convergence of measures, this means the following. Let Wb be the

Wiener measure on (C, C) associated to the Brownian motion Bb. For n ≥ 0, let

φn : ((Zd)N,G,P0
ω) −→ (C, C)

(xk)k∈N 7−→

(∼
xnt√
n

)
t≥0

Then if we denote Wω,n = φn ∗P0
ω the pushforward measure of P0

ω on the Wiener space, the

convergence in the theorem is in fact the weak convergence

for P-a.e. ω ∈ Ω, Wω,n −⇀
n→∞

Wb.

2.3 Ergodic theorems

The key idea to use here is that, although the random walks do not have i.i.d increments, almost

surely they are martingales. So we can use a generalization of Donsker's theorem using this. Such

a theorem can be found in [9] (theorem 4.1.). The idea is the same as in Donsker's theorem, except

that we have to take account of the fact that the increments are not i.i.d. by replacing the rescaling

variance factor
√
nσ2 by

(∑n
j=1 E0

ω

[
(Xj −Xj−1)2 | Gj−1

])1/2

.

Theorem 2.2. For j ≥ 1, let Zj = Xj−Xj−1 and for i ∈ {1, ..., d}, let V in =

n∑
j=1

E0
ω

[
(Zij)

2 | Gj−1

]
.

Then, if B is a standard Brownian motion on Rd, ∼
Xnt√
Vn


t≥0

−⇀
n→∞

B.

A simple computation gives that for P-a.e. ω, E0
ω

[
(Zij)

2 | Gj−1

]
= 2ωi(Xj−1), so that in fact

Vn = 2
∑n−1
j=0 ω(Xj). Therefore, in order to get the result we want, by Slutsky's theorem, it su�ces

to show the following theorem :

Theorem 2.3. There exists b ∈ (R∗+)d such that
∑d
i=1 bi = 1 and

for P-a.e. ω ∈ Ω,
1

n

n−1∑
j=0

ω(Xj)
P0
ω-a.s.−→ 1

2
b.

This theorem looks like an ergodic theorem because it is a result of convergence of the space

average of the w(x)'s along the random walk. But it is not quite a standard ergodic theorem yet,

because the function is ω itself. The idea is to change the point of view in order to write it as a

standard ergodic theorem.
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Studying the random walk in a �xed environment under P0
ω amounts to studying the move-

ment of a particle starting from 0. Now let's imagine the particle is �xed at location 0, and the

environments move around it ; in other words, let's study the environment viewed from the point

of view of the particle.

De�nition. Let ω ∈ Ω and (Xn)n∈N be a random walk in the environment ω. Let's de�ne the

dual random walk (ω̄n)n∈N by

∀n ∈ N, ω̄n = θXnω.

Remark. If we want to be thorough, we can see the dual random walk as being an element of a

dual probability space. Let

ψω : ((Zd)N,G,P0
ω) −→ ΩN

(xn)n∈N 7−→ (θxnω)n∈N

LetHω be the coarsest σ-algebra on ΩN that makes ψω measurable: Hω = {H ⊆ ΩN, ψ−1
ω (H) ∈ G}.

The dual random walk of (Xn)n is an element of the probability space (ΩN,Hω, ψω∗P0
ω). In the

rest of the proof, we still denote by P0
ω the pushforward measure for the sake of simplicity.

Proposition. For P-a.e. ω ∈ Ω and under (ΩN,Hω,P0
ω), (ω̄n)n is Markov chain starting at ω

whose transition kernel R is de�ned by

∀ω1, ω2 ∈ Ω, R (ω1, ω2) =

{
ω1(0,±ei) if ω2 = θ±eiω1

0 otherwise

Now let's rewrite the ergodic theorem we are after in terms of the dual random walk. Let

g0 : Ω −→ Rd

ω 7−→ (ω(0, ei))i∈{1,...,d}

Theorem 2.4. There exists b ∈ (R∗+)d such that
∑d
i=1 bi = 1 and

for P-a.e. ω ∈ Ω,
1

n

n−1∑
j=0

g0(ω̄n)
P0
ω-a.s.−→ 1

2
b.

Now this is a standard ergodic theorem for Markov chains. In order to prove it, it su�ces to

construct a probability measure Q on Ω that is invariant and ergodic with respect to (ω̄n)n, so that

Q-a.s.
1

n

n−1∑
j=0

g0(ω̄j)→
∫

Ω

g0 dQ.

Also, we need P to be absolutely continuous with respect to Q, so that having convergence Q-a.s.
gives the result P-a.s. This is actually possible under our assumptions :

Theorem 2.5. There exists a probability measure Q on Ω such that :

1. Q is mutually absolutely continuous with respect to P ;

2. Q is invariant and ergodic with respect to the Markov chain (ω̄n)n.

2.4 Proof of theorem 2.5

The proof presented here mixes arguments of [1], [3] and [5], completed where it needs to be.

We have to prove the ergodic theorem above. The idea is to construct Q as a limit of invariant
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measures in the case where the environments are periodic. This is motivated by two ideas which

will be developed in the proof :

• A stationary measure (assumption 3.) can be approximated by measures on �nite spaces.

• Periodicity will allow us to work on �nite state spaces, and an irreducible Markov chain on

a �nite state space always has a (unique) invariant probability measure.

Notation. Let N ≥ 1.

• Let ∆N = {x ∈ Zd, |x|∞ ≤ N} be the hypercube of size N . Note that |∆N | = (2N + 1)d.

• De�ne, for x ∈ Zd, x̂ = x+ (2N + 1)Zd ∈ Zd/(2N + 1)Zd. In the rest of this report, we'll do

the identi�cation Zd/(2N + 1)Zd = ∆N .

• De�ne the periodic environment associated to ω ∈ Ω by

ωN (x) =

{
ω(x) if x ∈ ∆N

ω(x̄) where x̄ ∈ ∆N and x̂ = ˆ̄x.

Let ΩN = {ωN , ω ∈ Ω} be the set of periodic environments.

• Let (XN
n )n∈N be a random walk under ωN , (ω̄Nn ) = (θX

N
n ωN ) be the associated random walk

on ΩN . Note that the transition kernel of (XN
n )n is QωN and that of (ω̄Nn )n is still R.

2.4.1 Constructing invariant measures on the ΩN spaces

For a �xed environment ω ∈ Ω, consider the random walk (X̂N
n )n∈N on ∆N . Denote by Q̂ωN its

transition kernel. It is, just as in the previous cases, an irreducible Markov chain. Since ∆N is a

�nite state space, the Markov chain has an invariant probability measure that we shall denote µN .

Let ΦN be the density of µN with respect to the uniform measure on ∆N , so that

µN =
1

|∆N |
∑
x∈∆N

ΦN (x) δx.

We naturally de�ne a probability measure on ΩN by

QN = Qω,N =
1

|∆N |
∑
x∈∆N

ΦN (x) δθxωN .

Then QN is an invariant probability measure for the Markov chain (ω̄Nn )n, because ∀x ∈ ∆N ,

QN R (θxωN ) =
∑
y∈∆N

QN (θyωN )R(θyωN , θxωN )

=
∑
y∈∆N

ΦN (y)

|∆N |
Q̂ωN (y, x)

=
∑
y∈∆N

µN (y) Q̂ωN (y, x)

= µN (x)

= QN (θxωN ).

6



2.4.2 Compactness arguments for N →∞

The QN measures can be trivially extended to probability measures on Ω. Now, Ω is a compact

space (by Tykhonov's theorem). It is also metrizable, and the product metric gives the same

topology as the product topology we put on Ω. It is therefore separable, and by a corollary of the

algebraic Stone-Weierstrass theorem, C0(Ω,R) = C0
b (Ω,R) is separable too.

According to Banach Alaoglu's theorem, the unit ball of C0(Ω,R)∗ is weakly-* compact, and because

of separability it is also weakly-* metrizable. Therefore it is sequentially compact. Now the

probability measures on Ω can be seen as elements of this unit ball, through

φ : {probability measures on Ω} −→ C0(Ω,R)∗

µ 7−→ φµ : f 7→
∫
fdµ

Therefore we can extract a subsequence of (φQN )N≥1 that converges weakly-* to a certain element

of C0(Ω,R)∗. Now, by applying Riesz-Markov-Kakutani's representation theorem, this limit is itself

a φQ. Moreover, the weak-* convergence is equivalent to the weak convergence of the associated

measures. Therefore, there exists a subsequence of (QN )N which converges weakly to a probability

measure Q.

2.4.3 The limit measure has the good properties

We make the following statement, which we will prove later (there will be a simpler proof in the

uniformly elliptic case but we will also show it in the �nite moment case).

Lemma 2.6. There exists q > 1 and C > 0 (depending only on d and P) such that for every

continuous bounded function g on Ω,

P-a.s.
∣∣∣∣∫

Ω

g dQ
∣∣∣∣ ≤ C (∫

Ω

|g|q
′
dP
)1/q′

.

Using this, let us show the properties that we need for Q.

• Q� P.
This is not the absolute continuity that we need, but it is useful to show the reciprocal. Note

that if the lemma was true for indicator functions, we would directly deduce that Q� P almost

surely. Let A ∈ F be an event such that P(A) = 0. We have to show that Q(A) = 0. Because

Ω is a Polish space, it is a Radon space and it su�ces to check that for all closed subset F ⊆ A,
Q(F ) = 0. For δ > 0, let us de�ne gδF =

(
1− d(·,F )

δ

)+

where d(·, F ) is the distance to F . This is

a continuous bounded function on Ω, whose support is contained in Fδ = {π ∈ Ω, d(π, F ) < δ}.
Because 1F ≤ gδF ≤ 1Fδ , we have

Q(F ) ≤
∫

Ω

gδF dQ ≤ C
(∫

Ω

(gδF )q
′
dP
)1/q′

≤ C (P(Fδ))
1/q′

and letting δ → 0 we get Q(F ) ≤ C P(F )1/q′ ≤ C P(A)1/q′ = 0.

• Invariance. The invariance of Q is a consequence of the invariance of the QN 's, but the proof

remains to be written.

• P� Q.
Because Q� P, all we need to show is that the set E = {ω ∈ Ω, dQ

dP (ω) = 0} satis�es P(E) = 0.

� First let's prove that P-a.s. R1E ≤ 1E (recall R denotes the transition kernel of our Markov
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chain). Because Q is invariant with respect to R, using the Fubini theorem,

EQ[R1E ] = Q(E) = 0.

As a result Q-a.s. R1E = 0, and

EP[(R1E)1Ec ] = EQ

[
(R1E)

dP
dQ

1Ec

]
= 0

where dQ
dP can be inverted on Ec. Therefore, for P-a.e. ω ∈ Ec, R1E ≤ 1E . Of course, the

inequality also holds on E, since R1E(·) = R (·, E) ≤ 1.

� From this, let's show that E is invariant under shifts. For every i ∈ {1, ..., d}, we have

P-a.s. 1E(ω) ≥ R1E(ω) =

d∑
i=1

ω(0,±ei) (1E(θeiω) + 1E(θ−eiω)) ≥ ε(ω)1E(θ±eiω)

where ε(ω) > 0 by ellipticity. Therefore 1E ≥ 1E ◦ θ±ei , which means that P-a.s. θ∓eiE ⊆
E, and by stationarity, P(E ⊆ θ∓eiE) = P(θ±eiE ⊆ E) = 1, so P-a.s. θ±eiE = E, which

yields that P-a.s. E is invariant under shifts.

� Let A = ∩x∈ZdθxE. By construction A is invariant under shifts, so by ergodicity, P(A) ∈
{0, 1}. Now P(A) = P(E), so, because Q(E) = 0 and Q � P, necessarily P (A) = 0, so

P (E) = 0.

• Ergodicity. Note that since P is ergodic and Q� P, Q is also ergodic (with respect to the shifts).

Now, ergodicity with respect to the shifts gives ergodicity with respect to the Markov chain R,

that is

∀A ∈ F , (∀ω ∈ A, R(ω,Ac) = 0)⇒ Q(A) ∈ {0, 1}.

Indeed, take A ∈ F such that ∀ω ∈ A, R(ω,Ac) = 0. Then, consider the event F = [θeiA * A].

If ω0 ∈ F , write ω0 = θeiω1 with ω1 ∈ A. Because ω0 /∈ A, we get R (ω1, ω0) = 0. But, by

ellipticity, P-a.s. R (ω1, ω0) 6= 0. So P(F ) = 0, and because of stationarity, P(∀x ∈ Zd, θxA =

A) = 1. Because Q � P, Q(∀x ∈ Zd, θxA = A) = 1. Letting G = ∩x∈ZdθxA, by ergodicitiy

Q(G) ∈ {0, 1}, so Q(A) ∈ {0, 1}.

Remark. • It appears that the limit Q depends on ω and that what we have truly shown is

that P-a.s. Q� P. But in fact, the ergodicity of Q, together with the fact that Q and P are

mutually absolutely continuous, ensures that there exists a unique possible limit Q (because

two distinct ergodic measures are always mutually singular).

• An interesting thing to notice is that actually QN ⇀ Q is true without having to extract a

subsequence. Indeed, in a metric space, a sequence (un)n converges to l if and only if from

every subsequence of (un)n we can extract a subsubsequence converging to l. This property

together with the fact that the only possible limit for a subsequence of QN is Q ensures that

QN ⇀ Q.

2.5 Proof of lemma 2.6

The proof of this lemma relies on a discrete version of the maximum principle for PDEs, widely

known as the Aleksandrov-Bakelman-Pucci estimate (ABP). This maximum principle uses our

assumptions, so we will state in a di�erent way in the two setups. A proof of this theorem can be

found in [5], p.274.
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Remember QωN denotes the transition kernel of the random walk (XN
n )n in the environment

ωN , and LωN = QωN − I is the generator of this Markov chain, that is

LωN f(x) =

d∑
i=1

ωN (x, ei) [f(x+ ei) + f(x− ei)− 2f(x)].

Note that this is a discrete analog of an elliptic operator of the form Lf(x) = Tr(A(x, ω)D2f)

where A(x, ω) = diag(ω(x, e1), ..., ω(x, ed)), which is why we use a PDE-type argument here.

For g : ∆N → R, we de�ne the q-norms to be ||g||Lq(∆N ) =

 1

|∆N |
∑
x∈∆N

|g(x)|q
1/q

.

Lemma 2.7. (ABP maximum principle)

Let E ⊆ Zd be a bounded set. Let's de�ne ∂E = {y ∈ Ec, ∃x ∈ E, |x − y|∞ = 1}, Ē = E ∪ ∂E,
and diam Ē = max{|x− y|∞, x, y ∈ Ē}. Let u : Ē → R and g : E → R.
Let ω ∈ Ω be such that the assumptions on the environments are true for ω.

Suppose that Lωu ≥ −g in E.

• (Uniformly elliptic case) There exists Cα > 0 (depending on d and α) such that

max
E

u ≤ max
∂E

u+ Cα (diam Ē) |E|1/d ‖g‖Ld(E)

• (General case) There exists C0 > 0 (depending only on d) such that

max
E

u ≤ max
∂E

u+ C0 (diam Ē) |E|1/d
∥∥∥∥gε
∥∥∥∥
Ld(E)

2.5.1 The uniformly elliptic case

This part of the proof is inspired by the Lawler paper [1]. However, here it is presented using the

maximum principle rather than elementary but unpleasant lemmas.

De�nition. De�ne the resolvent RN of the Markov chain to be the following operator :

∀g : ∆N → R, RNg(x) =

∞∑
j=0

(
1− 1

N2

)j
Exω
[
g(X̂N

j )
]
.

Lemma 2.8. De�ne the scalar product 〈·, ·〉 by 〈f, g〉 =
1

|∆N |
∑
x∈∆N

f(x) g(x) for f, g : ∆N → R.

Then the adjoint of the resolvent and the density ΦN satisfy

R∗N ΦN = N2 ΦN .
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Proof. Let g : ∆N → R. Remember Q̂ωN is the transition kernel of (X̂N
n )n∈N.

〈R∗NΦN , g〉 = 〈ΦN , RNg〉

=
1

|∆N |
∑
x∈∆N

ΦN (x)

∞∑
j=0

(
1− 1

N2

)j
Q̂j
ωN

g(x)

=

∞∑
j=0

(
1− 1

N2

)j ∑
x∈∆N

ΦN (x)

|∆N |
Q̂j
ωN

g(x)

=

∞∑
j=0

(
1− 1

N2

)j ∑
x∈∆N

µN (x) Q̂j
ωN

g(x)

=

∞∑
j=0

(
1− 1

N2

)j ∑
x∈∆N

∑
x1,...,xj∈∆N

µN (x) Q̂ωN (x, x1) ... Q̂ωN (xj−1, xj) g(xj)

=

∞∑
j=0

(
1− 1

N2

)j ∑
x∈∆N

µN (x) g(x)

= N2 〈ΦN , g〉.

Lemma 2.9. There exists a constant C > 0 (depending only on d and α) such that for every

ω ∈ Ω and f : ∆N → R+,

‖RωN f‖∞ ≤ C N2 ‖f‖Ld(∆N ).

Proof. We want to use the ABP estimate, so we compute, for all x ∈ ∆N ,

LωN (Rf)(x) = LωN (RωN f)(x) = ExωN
[
Rf(X̂N

1 )
]
−Rf(x)

= ExωN EX̂
N
1

ωN

 ∞∑
j=0

(
1− 1

N2

)j
f(X̂N

j )

−Rf(x)

= ExωN ExωN

 ∞∑
j=0

(
1− 1

N2

)j
f(X̂N

j+1) | G1

−Rf(x)

= ExωN

 ∞∑
j=1

(
1− 1

N2

)j−1

f(X̂N
j )

−Rf(x)

= ExωN

 ∞∑
j=1

(
1− 1

N2

)j [
1

1− 1/N2
− 1

]
f(X̂N

j )

− f(x)

=
1

N2 − 1
Rf(x)− N2

N2 − 1
f(x)

≥ − 2 f(x).

Therefore, applying the maximum principle, we get that max∆N
RωN f ≤ 2CαN

2 ‖f‖Ld(∆N ).

Let PN = Pω,N be the uniform probability measure on the {θxωN , x ∈ ∆N}, that is

PN =
1

|∆N |
∑
x∈∆N

δθxωN .
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To compute the density ofQN with respect to PN , let us write {θxωN , x ∈ ∆N} = {ωNi }i∈{1,...,m}
where the ωNi are distinct. For each i, let CNi = {x ∈ ∆N , θ

xωN = ωNi }. Then we have

PN =
1

|∆N |

m∑
i=1

|CNi | δωNi

QN =
1

|∆N |

m∑
i=1

 ∑
x∈CNi

ΦN (x)

 δωNi

dQN
dPN

=

m∑
i=1

 1

|CNi |
∑
x∈CNi

ΦN (x)

 δωNi .

Let q be de�ned as in the lemma, and let q′ be its conjugate exponent (1/q + 1/q′ = 1).

Therefore we have, using Hölder's inequality twice, for every continuous bounded function g on Ω,

∣∣∣∣∫
Ω

g dQN
∣∣∣∣ ≤

(∫
Ω

(
dQN
dPN

)q
dPN

)1/q (∫
Ω

|g|q
′
dPN

)1/q′

≤

 1

|∆N |
∑
x∈∆N

ΦN (x)q

1/q (∫
Ω

|g|q
′
dPN

)1/q′

= ||ΦN ||Lq(∆N )

(∫
Ω

|g|q
′
dPN

)1/q′

(1)

Now, up to some extraction, the left term converges to

∣∣∣∣∫
Ω

g dQ
∣∣∣∣. We also have that almost

surely PN ⇀ P : because P is assumed to be invariant and ergodic, the multidimensional Birho�

ergodic theorem ensures that for every continuous bounded function g on Ω,∫
Ω

g dPN =
∑
x∈∆N

g(θxωN )PN (θxωN )

=
1

|∆N |
∑
x∈∆N

g(θxωN )

−→
N→∞

∫
Ω

g dP for P-a.e. ω ∈ Ω.

Therefore we only need to get an estimate on ||ΦN ||Lq(∆N ). Now we showed thatR∗NΦN = N2 ΦN .

Besides, lemma 2.9 ensures that the operator RN : Ld(∆N ) → L∞(∆N ) is bounded by C N2, so

the adjoint operator R∗N : L1(∆N )→ Ld/d−1(∆N ) is also bounded by C N2. So

N2 ‖ΦN‖Ld/d−1(∆N ) ≤ C N2 ‖ΦN‖L1(∆N ) = C N2

so that ‖ΦN‖Ld/d−1(∆N ) ≤ C. Taking q = d/d − 1, and using this in equation (1), we get that for

every continuous bounded function on Ω,

P-a.s.
∣∣∣∣∫

Ω

g dQ
∣∣∣∣ ≤ C (∫

Ω

|g|q
′
dP
)1/q′

.
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2.5.2 The �nite moment case

This more general case was studied by Guo & Zeitouni in [3] and rephrased in [5]. The proof

presented here hopefully clears up some issues in both papers using arguments from [6].

Let τ0 = 0, and τ = τ1 = inf{j ≥ 1, |XN
j − XN

0 |∞ > N} be the �rst hitting time of the

boundary of the discrete ball of radius N around the starting point. For m ≥ 1, let

τm+1 = inf{j > τm, |XN
j −XN

τm |∞ > N}.

Lemma 2.10. There exists C ∈ ]0, 1[ such that for every ω ∈ Ω and x ∈ Zd,

ExωN

[(
1− 1

N2

)τ]
≤ C.

Proof. First, let's prove that we have E0
θxωN

[
XN
k (i)2

]
≤ k for all k ≥ 1 and i ∈ {1, ..., d}.

Denote ZNj = XN
j −XN

j−1 for j ≥ 1. Then the (ZNj (i))j are uncorrelated, because for all x and ω,

∀j1 < j2, Exω
[
ZNj1 (i)ZNj2 (i)

]
= Exω

[
Exω
[
ZNj1 (i)ZNj2 (i) | Gj1

]]
= Exω

[
ZNj1 (i)Exω

[
ZNj2 (i) | Gj1

]]
= 0.

So we get

E0
θxωN

[
XN
k (i)2

]
=

k∑
j=1

E0
θxωN

[
ZNj (i)2

]
+
∑
j1 6=j2

E0
θxωN

[
ZNj1 (i)ZNj2 (i)

]
≤ k.

Now (XN
n )n∈N is a martingale, so, if k ≥ 1, by Doob's inequality and Schwarz's inequality,

P0
θxωN (τ ≤ k) ≤ 2

d∑
i=1

P0
θxωN

(
sup
n≤k

XN
n (i) ≥ N + 1

)

≤ 2

N + 1

d∑
i=1

E0
θxωN

[
XN
k (i)+

]
≤ 2

N + 1

d∑
i=1

√
E0
θxωN

[XN
k (i)2]

≤ 2d

N + 1

√
k.

Therefore we get E0
θxωN

[(
1− 1

N2

)τ] ≤ (1− 1
N2

)k
+ 2d

N+1

√
k.

Taking k = bN
2

8d2 c, we get the result for E
0
θxωN

[(
1− 1

N2

)τ]
, which by the de�nition of τ , is equal

to ExωN
[(

1− 1
N2

)τ]
.

End of the proof

Fix ω ∈ Ω. Just like in the uniformly elliptic case, the idea is to use the resolvent, but here we'll

work with the random walk on the environments.

Let g be a continuous bounded non-negative function on Ω. Note that because QN is invariant

for ω̄Nn , using the same computation as in the adjoint equation for the resolvent, we have for all

j ≥ 0, ∫
ΩN

g dQN =

∫
ΩN

Rjg dQN .
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To simplify notations, if π ∈ ΩN , let gπ be the function on Zd de�ned by gπ(x) = g(θxπ). Also,

denote by ΩNω = {θxωN , x ∈ ∆N} (it is the support of the measure QN ). Then we get, using the

resolvent,

N2

∫
ΩN

g dQN =

∞∑
j=0

(
1− 1

N2

)j ∫
ΩN

Rjg dQN

=

∞∑
j=0

(
1− 1

N2

)j ∑
π∈ΩNω

E0
π

[
gπ(XN

j )
]
QN (π)

≤ sup
π∈ΩNω

E0
π

 ∞∑
j=0

(
1− 1

N2

)j
gπ(XN

j )


≤ sup
π∈ΩNω

∞∑
m=0

E0
π

 ∑
τm≤j<τm+1

(
1− 1

N2

)j
gπ(XN

j )


≤ sup
π∈ΩNω

∞∑
m=0

E0
π

(1− 1

N2

)τm
EX

N
τm

π

τ−1∑
j=0

gπ(XN
j )




≤ sup
π∈ΩNω

sup
y∈Zd

Eyπ

τ−1∑
j=0

gπ(XN
j )

 ∞∑
m=0

E0
π

[(
1− 1

N2

)τm]

≤ sup
π∈ΩNω

sup
y∈Zd

Eyπ

τ−1∑
j=0

gπ(XN
j )

 ∞∑
m=0

 sup
y∈Zd

Eyπ

[(
1− 1

N2

)τ]m

≤ 1

1− C
sup
π∈ΩNω

sup
y∈Zd

Eyπ

τ−1∑
j=0

gπ(XN
j )


=

1

1− C
sup
π∈ΩNω

E0
π

τ−1∑
j=0

gπ(XN
j )


Note that because of the de�nition of τ , we have for any function ψ,

Exπ[ψ(τ)] = E0
θxπ[ψ(τ)] = E0

θxπ[ψ(T )].

where T = inf{j ≥ 0, |XN
j |∞ > N}.

Now we want to use the maximum principle. Suppose ω satis�es the assumptions made on the

environments (the statements will therefore be for P-a.e. ω). Now de�ne, for x ∈ Zd and π ∈ ΩNω ,

fπ(x) = Exπ

T−1∑
j=0

gπ(XN
j )

 .
Let (GNn )n∈N denote the canonical �ltration associated with the random walk (XN

n )n∈N. Observe

that under Pxπ with x ∈ ∆N , T ≥ 1 and so T ((XN
n )n≥0) = T ((XN

n )n≥1) + 1. We can therefore

13



apply the strong Markov property : for every x ∈ ∆N ,

Lπfπ(x) = Exπ[fπ(XN
1 )]− fπ(x)

= Exπ E
XN1
π

T−1∑
j=0

gπ(XN
j )

− fπ(x)

= Exπ Exπ

T−1∑
j=1

gπ(XN
j ) | GN1

− fπ(x)

= Exπ

T−1∑
j=1

gπ(XN
j )

− fπ(x)

= −gπ(x).

Observe now that T = 0 so fπ = 0 on ∂∆N . So, by applying the discrete maximum principle to

fπ on E = ∆N , we get fπ(0) ≤ cstN2

∥∥∥∥gπεπ
∥∥∥∥
Ld(∆N )

. Now, we have

∥∥∥∥gπεπ
∥∥∥∥
Ld(∆N )

=

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN,π)

and this right-hand side is in fact the same for all π ∈ ΩNω and is equal to

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN,ωN )

.

Therefore,

sup
y∈Z

Eyπ

τ−1∑
j=0

gπ(Xn
j )

 = sup
y∈∆N

E0
θyπ

T−1∑
j=0

gπ(Xn
j )

 = sup
y∈∆N

fθyπ(0) ≤ cstN2

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN,ωN )

and so we get ∫
ΩN

g dQN ≤ cst

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN,ωN )

Now, because p > d, using the Hölder inequality, we have, for a certain q > 1,∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN )

≤ ‖g‖Lq(PN ) ‖ε
−1(0)‖Lp(PN ).

Because QN ⇀ Q along some subsequence and P-a.s. PN ⇀ P, we get

P-a.s.
∫

Ω

g dQ ≤ cst ‖g‖Lq(P) ‖ε−1(0)‖Lp(P) = C ‖g‖Lq(P),

which yields lemma 2.6.

3 Another proof using stopping times

The arguments presented here are inspired by ideas given to us by J. Lin and J.D. Deuschel. We

rephrase the proof of Lawler [1] and Guo & Zeitouni [3] using stopping times instead of periodiza-

tion. We still assume we have balancedness, stationarity and ergodicity of P, as well as one of the
following conditions :

1. Uniform ellipticity : ∃α > 0, for P-a.e. ω ∈ Ω, ∀x ∈ Zd, ∀i, ω(x, ei) ≥ α.

2. Finite pth-moment (p > d) : E
[
ε−p(0)

]
<∞.
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We use the same notations as above. Fix ω ∈ Ω and N ≥ 1. Again de�ne

T = TN = inf{j ≥ 0, |Xn|∞ > N}.

Now we de�ne a probability measure on (Ω,F) by

QN = Qω,N =
1

E0
ω[T ]

E0
ω

T−1∑
j=0

δθXjω

 .
Note that we now use the notation Q instead of Q (be careful not to mistake it with the transition

kernel Qω).

For the exact same reasons as previously, we can extract a subsequence of QN converging to a

probability measure Q on (Ω,F).

Now we need to show that Q � P. Here we can actually show that we have an inequality

directly on the measures. We show the following lemma :

Lemma 3.1. There exists a constant C > 0 (depending only on d and P) such that,

for P-a.e. ω ∈ Ω, Q ≤ C P1/q.

where

{
q = d in case 1.
1
q = 1

d −
1
p in case 2.

Proof. Let N ≥ 1. Note that the support of QN is still the set {θxω, x ∈ ∆N} because for k < T ,

Xk ∈ ∆N . Again we de�ne PN as the uniform probability measure on this set.

We use the same notations and computations as in 2.5.1: {θxω, x ∈ ∆N} = {ωNi }i∈{1,...,m}
where the ωNi are distinct. For each i, let CNi = {x ∈ ∆N , θ

xω = ωNi } = {x(i)
k , k ∈ {1, ..., |CNi |}}

and lNi = |CNi |. Fix i from now on. We have

QN

P1/q
N

(ωNi ) =
|∆N |1/q

(lNi )1/q E0
ω [T ]

E0
ω

T−1∑
j=0

lNi∑
k=1

1
Xj=x

(i)
k


Just as in the end of the proof in 2.5.2, this can be estimated applying the maximum principle 2.7

in ∆N to the function

fi(x) = Exω

T−1∑
j=0

gi(Xj)

 where gi(y) =

lNi∑
k=1

1
y=x

(k)
i

= 1CNi
(y).

Because ‖gi‖Lq(∆N ) =
(lNi )1/q

|∆N |1/q
, we get (using the Hölder inequality in case 2.),

max
∆N

fi ≤


CαN

2 (lNi )1/d

|∆N |1/d
in case 1.

C0 E[ε−p(0)]1/p N2 (lNi )1/q

|∆N |1/q
in case 2.

Therefore we get
QN

P1/d
N

(ωNi ) ≤ C N2

E0
ω [T ]

.
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In order to end the proof, let us show that we have E0
ω [T ] ≥ N2 (this actually requires no

ellipticity or moment condition whatsoever). Let's de�ne for n ≥ 0, Mn = |Xn|2 − n (where | · |
denotes the Euclidian norm). Then under P0

ω (for P-a.e. ω), (Mn)n≥0 is a martingale for the

canonical �ltration (Gn)n. Indeed, let's de�ne for j ≥ 1 the increments Zj = Xj −Xj−1.

E0
ω

[
Mn+1 −Mn | Gn

]
= E0

ω

 n+1∑
k,l=1

〈Zk, Zl〉 −
n∑

k,l=1

〈Zk, Zl〉 − 1 | Gn


= E0

ω

2

n∑
k=1

〈Zk, Zn+1〉+ 〈Zn+1, Zn+1〉 − 1 | Gn


= 2

n∑
k=1

〈Zk, E0
ω[Zn+1 | Gn]〉

= 0

because of the balanced condition and the fact that ‖Zn+1‖2 = 1. By Doob's stopping theorem,

(Mn∧T )n∈N is also a martingale, and we have E0
ω [Mn∧T ] = E0

ω[X0] = 0, so that

E0
ω

[
|Xn∧T |2

]
= E0

ω[n ∧ T ].

Now, by the monotone convergence theorem, E0
ω[n∧T ] −→

n→∞
E0
ω[T ], and by the dominated conver-

gence theorem E0
ω

[
|Xn∧T |2

]
−→
n→∞

E0
ω

[
|XT |2

]
(because |Xn∧T |2 ≤ dN2). So we get

E0
ω[T ] = E0

ω

[
|XT |2

]
≥ N2.

The next step is to prove the invariance of Q with respect to the Markov chain (ω̄n)n∈N.

Afterwards, using the same arguments as above, we can derive from Q� P and the invariance of

Q that P� Q and that Q is ergodic for the Markov chain (ω̄n)n∈N, which ends the proof.

Remark. Note that using the same arguments of uniqueness as before, we actually have that Q

does not depend on ω and that Q = Q. This could be used to show the invariance of Q directly,

but it would mean using periodicity and the assumption with p > d to have a complete proof.

4 Generalization to p = d

The case studied here has actually been studied on the PDE side by Armstrong & Smart [8], but

there has been no written literature about it in the RWRE �eld yet. The arguments presented

here are inspired by ideas given to us by J. Lin and J.D. Deuschel.

We now relax the assumption made by Guo & Zeitouni [3] to the case when p = d, that is

ε(x) :=

d∏
i=1

ω(x, ei)
1/d, E

[
ε(0)−d

]
<∞.

We de�ne our measures QN in the same way as in the previous section, so that

QN =
1

E0
ω[T ]

m∑
i=1

E0
ω

T−1∑
j=0

1CNi
(Xj)

 δωNi .
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Recall that along some subsequence we have QN ⇀ Q, and again, what we want to show is that

Q � P. If we let p → d in lemma 3.1, we get q → ∞, so it seems impossible to get an inequality

directly on the measures. This is why we want to have an inequality as in lemma 2.6. In order to

do so, we compute, for g bounded continuous function on Ω,

∫
Ω

g dQN =
1

E0
ω[T ]

m∑
i=1

g(ωNi )E0
ω

T−1∑
j=0

1CNi
(Xj)


=

1

E0
ω[T ]

E0
ω

T−1∑
j=0

 m∑
i=1

g(ωNi )1CNi (Xj)




=
1

E0
ω[T ]

E0
ω

T−1∑
j=0

h(Xj)

 ,
where, if x ∈ Zd, h(x) =

∑m
i=1 g(ωNi )1CNi (x). Now, using the maximum principle, we get that

E0
ω

T−1∑
j=0

h(Xj)

 ≤ C0N
2

∥∥∥∥hε
∥∥∥∥
Ld(∆N )

= C0N
2

 1

|∆N |
∑
x∈∆N

ε−d(x)

 m∑
i=1

g(ωNi )1CNi (x)

d


1/d

= C0N
2

 1

|∆N |
∑
x∈∆N

ε−d(x)

m∑
i=1

g(ωNi )d 1CNi (x)

1/d

= C0N
2

 1

|∆N |

m∑
i=1

∑
x∈CNi

ε−d(x) g(ωNi )d


1/d

= C0N
2

 1

|∆N |
∑
x∈∆N

ε−dθxω(0) g(θxω)d

1/d

= C0N
2

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN )

.

Now, because E0
ω[T ] ≥ N2, we get that∫

Ω

g dQN ≤ C0

∥∥∥∥ g

ε(0)

∥∥∥∥
Ld(PN )

.

Now, because g is bounded and ε−d(0) is in L1(P), we can apply Birkho�'s ergodic theorem to

conclude that ∫
Ω

g dQ ≤ C0

∫
Ω

gd ε−d(0) dP.

Now, we can end the proof as we did in the proof of lemma 2.6. The only thing to say is that

if we have an event A such that P(A) = 0, then
∫
A
ε−d(0) dP = 0.
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5 Quantitative results

This section is based on a recent paper by Guo, Peterson & Tran [7]. We want to get rates of

convergence in the invariance principle. In order to have quantitative results, quite strong assump-

tions have to be made. In the following, we still assume that we have balancedness, stationarity

and ergodicity of P, as well as :

• Uniform ellipticity : ∃α > 0, for P-a.e. ω ∈ Ω, ∀x ∈ Zd, ∀i, ω(x, ei) ≥ α.

• I.i.d. environments : {ω(x), x ∈ Zd} are i.i.d. random variables under P.

Remark. Be careful that the last assumption does not actually mean that when �xing an envi-

ronment ω, a random walk in ω has i.i.d. increments. Physically speaking, the i.i.d. assumption

simply means that we have i.i.d. causes of inhomogeneity in the media.

5.1 Quantifying the ergodicity of Q
Remember that the only information we have on the covariance matrix diag(b) is given by the

ergodic theorem 2.4. It is therefore useful to know the rate of this convergence to approximate b

properly. More generally, we can use Birkho�'s ergodic theorem to approximate the measure Q :

for any measurable function ψ : Ω→ R,

P-a.s.
1

n

n−1∑
j=0

ψ(ω̄j)
P0
ω-a.s.−→ EQ[ψ] =

∫
Ω

ψ dQ.

This convergence is almost sure, so, if ψ is bounded, we also have convergence in L1(P0
ω) :

P-a.s.
1

n

n−1∑
j=0

[
E0
ω[ψ(ω̄j)]− EQ[ψ]

]
−→ 0.

In the following, we will restrict to ψ being a bounded function depending only on ω(0), as is

the case in theorem 2.4.

We need a PDE lemma shown in [7], whose proof uses geometrical tools that we won't present

here. Let E ⊂ Zd be a bounded domain. Consider the discrete Dirichlet problem

(S)

{
Lωf = ψω − EQ[ψ] in E

f = 0 on ∂E

where we denote ψω(x) = ψ(θxω). Note that, by the ABP, there exists a unique solution to this

problem and it is given by

∀x ∈ Ē, f(x) = −Exω

T−1∑
j=0

(ψω(Xj)− EQ[ψ])

 = −Exω

T−1∑
j=0

(ψ(ω̄j)− EQ[ψ])

 .
where T denotes the �rst hitting time of ∂B.

Lemma 5.1. Let R > 0 and 0 < p < d. There exist c, C > 0 and a > 0 (depending on d, α and

p), such that for any E ⊆ {|x|∞ ≤ R}, the solution of (S) satis�es

P
(

sup
E
|u| ≥ C ‖ψ‖∞R2−a

)
≤ C exp(−cRp).

Now, using this lemma, we show the following rate of convergence in the ergodic theorem :
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Theorem 5.2. Let 0 < p < d. There exist c, C > 0 and a > 0 (depending on d, α and p), such

that for every τ stopping time of the random walk (Xk)k∈N,

P


∣∣∣∣∣∣ 1

n
E0
ω

τ∧n−1∑
j=0

(ψ(ω̄j)− EQ[ψ])

∣∣∣∣∣∣ ≥ C ‖ψ‖∞ n−a

 ≤ C exp(−c np/2).

Proof. Because the inequality we want to show only uses τ ∧ n, suppose that τ ≤ n. For now,

suppose also that EQ[ψ] = 0, and without loss of generality, that ‖ψ‖∞ = 1.

Let n ≥ 1 and R =
√
n. Let BR(x) = BRd(x,R) ∩ Zd and BR = BR(0). Let

T (x) = inf{j ≥ 0, Xj ∈ ∂BR(x)}.

Again, de�ne the stopping times τ0 = 0 and for all k ≥ 0,

τk+1 = inf{j > τk, Xj −Xτk ∈ ∂BR}.

Then, applying the lemma, for all x ∈ Zd,

P

 max
y∈BR(x)

∣∣∣∣∣∣Eyω
T (x)−1∑

j=0

ψ(ω̄j)

∣∣∣∣∣∣ < C n1−a/2

 ≥ 1− C e−c n
p/2

.

In fact, we actually have (up to changing C):

P

 ⋂
x∈Bn

max
y∈BR(x)

∣∣∣∣∣∣Eyω
T (x)−1∑

j=0

ψ(ω̄j)

∣∣∣∣∣∣ < C n1−a/2

 ≥ 1− C nd e−c n
p/2

.

Therefore, using the Markov property, we get that with P-probability at least 1− C nd e−c np/2 ,

∣∣∣∣∣∣E0
ω

τ−1∑
j=0

ψ(ω̄j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
k=0

E0
ω

τk+1−1∑
j=τk

ψ(ω̄j)1τ>τk −
τk+1∑
j=τ

ψ(ω̄j)1τk<τ≤τk+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑
k=0

E0
ω

1τ>τk EXτkω

T (Xτk )−1∑
j=0

ψ(ω̄j)−
T (Xτk )−1∑

j=τ

ψ(ω̄j)1T (Xτk )≥τ



∣∣∣∣∣∣∣∣

≤ 2C n1−a/2
∞∑
k=0

P0
ω(τ > τk).

where we used that the last sum can be estimated in the same way because

EXτkω

T (Xτk )−1∑
j=τ

ψ(ω̄j)1T (Xτk )≥τ

 = EXτkω

1T (Xτk )≥τ EXτω

T (Xτk )−1∑
j=0

ψ(ω̄j)


 .
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Now, using lemma 2.10, there exists a constant c0 < 1 such that for every R and every ω,

E0
ω

[(
1− 1

R2

)τ1]
≤ c0 and actually ∀ k ≥ 1, E0

ω

[(
1− 1

R2

)τk]
≤ ck0 .

Therefore, using the Markov inequality, we get

P0
ω(τk < τ) ≤ P0

ω(τk < n) ≤ P0
ω

(1− 1

R2

)τk
>

(
1− 1

R2

)R2
 ≤ cst ck0 .

Up to changing the constants c, C and a, we get that the probability in the theorem is bounded

by C e−c n
p/2

, which ends the proof if EQ[ψ] = 0.

In general, apply the previous result to ψ−EQ[ψ]. Then with probability at most C e−cR
p

, we

get that ∣∣∣∣∣∣ 1

n
E0
ω

τ∧n−1∑
j=0

(ψ(ω̄j)− EQ[ψ])

∣∣∣∣∣∣ ≥ C ‖ψ − EQ[ψ]‖∞ n−a.

Now ‖ψ − EQ[ψ]‖∞ ≤ 2 ‖ψ‖∞, so the event above contains the event∣∣∣∣∣∣ 1

n
E0
ω

τ∧n−1∑
j=0

(ψ(ω̄j)− EQ[ψ])

∣∣∣∣∣∣ ≥ 2C ‖ψ‖∞ n−a,

which, up to changing C, yields the result.

5.2 Rate of convergence for the projected invariance principle

Now let's go back to the invariance principle. Looking at t = 1, we have that Xn√
n
⇀ Bb(1) =

N (0,diag(b)), and so, if l ∈ Rd, Xn√
n
·l ⇀ N (0, tl diag(b) l), which gives that Xn·l√

n
√
tl diag(b) l

converges

weakly to a standard normal distribution. As a consequence of the previous theorem, we can now

state the following theorem.

Theorem 5.3. Let 0 < p < d. There exist γ > 0 (depending on d, α and p), such that for every

l ∈ Rd, there exists C0 > 0 such that

P

sup
r∈R

∣∣∣∣∣P0
ω

(
Xn · l√

n
≤ r

√
tl diag(b) l

)
− φ(r)

∣∣∣∣∣ ≤ C0 n
−γ

 ≥ 1 − C0 e
−np/2 .

where φ is the CDF of a standard normal distribution, i.e. φ(r) = 1√
2π

∫ r
−∞ e−x

2/2 dx.

Proof. Again, let ψ be a bounded function of ω(0) such that EQ[ψ] = 0 and ‖ψ‖∞ = 1. By theorem

5.2, we have, for all 0 ≤ m ≤ n, with P-probability at least 1− C e−c np/2 ,∣∣∣∣∣∣ 1n E0
ω

m−1∑
j=0

ψ(ω̄j)

∣∣∣∣∣∣ ≤ C n−a.
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By stationarity of P, we therefore have that for all x ∈ Zd, with P-probability at least 1−C e−c np/2 ,∣∣∣∣∣∣Exω
m−1∑
j=0

ψ(ω̄j)

∣∣∣∣∣∣ ≤ C n1−a.

Therefore, with P-probability at least 1− C e−c np/2 ,

E0
ω


n−1∑
k=0

ψ(ω̄k)

2
 ≤ 2

n−1∑
i=0

E0
ω

ψ(ω̄i)

n−i−1∑
j=0

ψ(ω̄i+j)



= 2

n−1∑
i=0

E0
ω

ψ(ω̄i) EXiω

n−i−1∑
j=0

ψ(ω̄j)




≤ 2C

n−1∑
i=0

n1−a = 2C n2−a.

and so, up to changing C,

E0
ω


 1

n

n−1∑
k=0

ψ(ω̄k)

2
 ≤ C n−a. (2)

Now, let

ψ(ω) = E0
ω

[
(X1 · l)2

]
= 2 tl ω(0) l.

ψ is indeed a bounded function of ω(0), and EQ[ψ] = tl b l (because by the ergodic theorem,∫
Ω
ω(0) dQ(ω) = 1

2b). Then, using the Markov property,

n−1∑
k=0

ψ(ω̄k) =

n−1∑
k=0

E0
θXkω

[
(X1 · l)2

]
=
n−1∑
k=0

EXkω
[
((X1 −X0) · l)2

]
=

n−1∑
k=0

E0
ω

[
((Xk+1 −Xk) · l)2 | Gk

]
.

And so, using (2), with P-probability at least 1− C e−c np/2 ,

E0
ω


 1

n

n−1∑
k=0

E0
ω

[
((Xk+1 −Xk) · l)2 | Gk

]
− tl b l

2
 ≤ C n−a.

We want to use a quantitative result on the one-dimensional martingale central limit theorem,

as can be found in [10, theorem 1.1.]. In order to do so, we need to have an estimate on

E0
ω


 1

S2
n

n−1∑
k=0

E0
ω

[
((Xk+1 −Xk) · l)2 | Gk

]
− 1

2
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where S2
n = E0

ω

[
(Xn · l)2

]
. Now, by a similar computation as before, using that the (Xk+1−Xk)k

are uncorrelated, we get that S2
n = 2 tlMn l where Mn = E0

ω

[∑n−1
j=0 ω̄j(0)

]
. This, using theorem

5.2 with the function ψ(ω) = ω(0), gives that with P-probability at least 1− C e−c np/2 ,∣∣∣∣ 1n S2
n − tl b l

∣∣∣∣ ≤ C n−a,
and so, up to changing C,

E0
ω


 1

n tl b l

n−1∑
k=0

E0
ω

[
(Xk+1 −Xk) · l)2 | Gk

]
− 1

2
 ≤ C n−a and

∣∣∣∣ 1

n tl b l
S2
n − 1

∣∣∣∣ ≤ C n−a.
Now, note that, because the (Xk+1 −Xk)k are uncorrelated,

E0
ω

n−1∑
k=0

E0
ω

[
((Xk+1 −Xk) · l)2 | Gk

] = E0
ω

[
(Xn · l)2

]
= S2

n,

and so with P-probability at least 1− C e−c np/2 ,

E0
ω


 1

S2
n

n−1∑
k=0

E0
ω

[
((Xk+1 −Xk) · l)2 | Gk

]
− 1

2
 ≤ Cn−β

for a certain β > 0. Now, using [10], we get that with P-probability at least 1− C e−c np/2 ,

sup
r∈R

∣∣∣∣∣P0
ω

(
Xn · l√

n
≤ r
√
tl b l

)
− φ(r)

∣∣∣∣∣ ≤ C (n−β + n−1)1/5 ≤ C n−γ .

Wheter we can generalize these quantitative results to the non-uniformly elliptic case with p ≥ d
remains an open problem.
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