VERIFICATION OF PROGRAMS WITH ARRAYS USING HORN CLAUSES

Julien Braine
ENS de Lyon, France

Ph.D advisors: Laure Gonnord, David Monniaux
julien.braine@ens-lyon.fr

Our Team: CASH

Related work: Interpolants and Abstract
Interpretation to solve Horn Clauses

Static Analyses in the team

@ Design new low-cost analyses to allow compiler optimizations
e Design safe domain specific languages to avoid programmer bugs Interpolants
Design precise, non domain specific, static analysis to ensure correctness of code ‘ L — 0O | # The program is & The program is
Yes — buggy! Yes = correct!
Static analysis to ensure functional correctness of code

Goal: Ensure code correctness = finding as many bugs as possible
Setting: Programs have assertions describing the desired behavior
General problem: How to check all possible runs?

My focus: The case of programs with data-structures, especially arrays

Try to find a con-
— tradiction of length — No —

k (SMT problem).

From proof, generalize "why no counterexample”.
Does the generalization prove correctness?

T ‘

k=k+1- No

R 4 \ §

Setting: Horn clauses as semantics of a program Abstract Interpretation Abstract Interpretation consists in over-approximating the

set of possible values at each program (the predicates) using an abstract domain.

Example: array copy program.

m—
Polyhedral
abstraction

j = rand ()%N; -
for(i=0; i<N; i++) {
ali] = bl[il];

by b_,

assert (b[j] == aljl);

Comparison of these techniques

Horn clauses: A logical formula expressing the assertion and the program’s semantics. Abstract Interpretation Interpolants

Shape of Horn clauses: Requires Abstract domain and abstraction | Interpolation technique for the
e Existentially quantified predicates, represent possible values at each program point of program’s operations given theory

e Universally quantified variables to define the transition relation Soundness ‘ ‘

Result of a Horn clauses solver:

e SAT = Found instanciation for predicate = Program correct

e UNSAT = No possible predicate instantiation = Program is buggy

e Unknown or timeout = Unable to find instanciation or disprove its existence
Translation from programs: Abstracts memory, and specifics of the language

Precision Fixed by abstract domain Fixed by underlying logic

Uses assertion

Termination

Predictable failures

Example: Horn Solver
True ANj<N— Start(a,b,N,i,j) Handles well arrays
Start(a,b, N,i,j) — Loop(a,b, N, 0, j)
Loop(a,b,N,i,j) ANa =ali <+ blij]]Ni <N —Loop(a’,b,N,i+1,7) — : -
Loop(a, b, N, i, j) Ni>N-— Assert(a,b,N,i, j) PhD intro: Handling arrays in Horn clauses
Assert(a,b, N, 1, 7) A alj] # blj] — False

Problem: Arrays = quantified invariants = no good enough interpolation technique.

‘ Horn Clauses

@ can express the semantics of programs with no information loss

Solution: Create a new Horn problem without arrays by using abstract interpretation
and solve it with a state of the art solver.

/

Example:
e Program: array copy.
e Technique: SAS15-16, Monniaux & Alberti & Gonnord?
e Abstract domain: Cell abstraction.
An array a is abstracted by its cells, that is {(k, alk]), k € N}.
¢ Using the abstract domain in Horn clauses (simple version)
Replace P(a,v) by P¥(k, alk],v) in the Horn clauses
¢ Fully removing arrays: no array type in predicates =- Apply array axioms =- no arrays
¢ Solving the abstracted problem: Launch Z3. Answer: SAT in <ls. &

e have clear and easily defined semantics (its a logical formula!)

e have a very simple unified syntax = very good intermediate representation

e tools (such as SeaHorn') can generate Horn clauses from programs (LLVM
bytecode)
e have efficient solvers such as 732

I /| Y 4

' https://seahorn.github.io/
> https://github.com/Z3Prover/z3/

> https://hal.archives-ouvertes.fr/hal-01162795/document
https://hal.archives-ouvertes.fr/hal-01206882v3/document

4 https://github.com/vaphor

e ilm
.H
=

Tool: Vaphor by Braine & Monniaux & Gonnord*

My PhD

In the context of Horn clauses, my goal IS: http://perso.ens-lyon.fr/julien.braine/
mprove existing array abstractions Extend to other data-structures

~unction summaries for scaling Implement and test these techniques in a tool (FramaC?)
mplement a verified equivalent of STL (but in C) Use this "STL" in verified algorithms

L1

R

bretn . == Ao T et

inventors for the digital world ENS DE LYON

http://www.inria.fr/ http://www.ens-1lyon.eu/ http://www.ens-1lyon.fr/LIP/ https://www.universite-lyon.fr/ http://www.cnrs.fr/

