
Verification of programs with arrays using Horn Clauses
Julien Braine

ENS de Lyon, France
Ph.D advisors: Laure Gonnord, David Monniaux

julien.braine@ens-lyon.fr

Verification of programs with arrays using Horn Clauses
Julien Braine

ENS de Lyon, France
Ph.D advisors: Laure Gonnord, David Monniaux

julien.braine@ens-lyon.fr

Our Team: CASH

Static Analyses in the team
•Design new low-cost analyses to allow compiler optimizations
•Design safe domain specific languages to avoid programmer bugs
•Design precise, non domain specific, static analysis to ensure correctness of code

Static analysis to ensure functional correctness of code
Goal: Ensure code correctness 6= finding as many bugs as possible
Setting: Programs have assertions describing the desired behavior
General problem: How to check all possible runs?
My focus: The case of programs with data-structures, especially arrays

Setting: Horn clauses as semantics of a program

Example: array copy program.

j = rand ()%N;
for(i=0; i<N; i++) {

a[i] = b[i];
}
assert (b[j] == a[j]);

a

b
Horn clauses: A logical formula expressing the assertion and the program’s semantics.
Shape of Horn clauses:
•Existentially quantified predicates, represent possible values at each program point
•Universally quantified variables to define the transition relation
Result of a Horn clauses solver:
• SAT ⇒ Found instanciation for predicate ⇒ Program correct
•UNSAT ⇒ No possible predicate instantiation ⇒ Program is buggy
•Unknown or timeout ⇒ Unable to find instanciation or disprove its existence
Translation from programs: Abstracts memory, and specifics of the language

Example:
True ∧ j < N −→ Start(a, b, N, i, j)
Start(a, b, N, i, j) −→ Loop(a, b, N, 0, j)
Loop(a, b, N, i, j) ∧ a′ = a[i← b[i]] ∧ i < N −→Loop(a′, b, N, i + 1, j)
Loop(a, b, N, i, j) ∧ i ≥ N −→ Assert(a, b, N, i, j)
Assert(a, b, N, i, j) ∧ a[j] 6= b[j] −→ False

Horn Clauses

• can express the semantics of programs with no information loss
•have clear and easily defined semantics (its a logical formula!)
•have a very simple unified syntax ⇒ very good intermediate representation
• tools (such as SeaHorn1) can generate Horn clauses from programs (LLVM
bytecode)

•have efficient solvers such as Z32

1 https://seahorn.github.io/
2 https://github.com/Z3Prover/z3/
3 https://hal.archives-ouvertes.fr/hal-01162795/document3 https://hal.archives-ouvertes.fr/hal-01206882v3/document
4 https://github.com/vaphor

1 2 3 3 4

Related work: Interpolants and Abstract
Interpretation to solve Horn Clauses

Interpolants

Try to find a con-
tradiction of length
k (SMT problem).

Yes

No

The program is
buggy!

From proof, generalize "why no counterexample".
Does the generalization prove correctness?

Yes

Nok = k + 1

The program is
correct!

k = 0

Abstract Interpretation Abstract Interpretation consists in over-approximating the
set of possible values at each program (the predicates) using an abstract domain.

=⇒
Polyhedral
abstraction

Comparison of these techniques
Abstract Interpretation Interpolants

Requires Abstract domain and abstraction
of program’s operations

Interpolation technique for the
given theory

Soundness
Precision Fixed by abstract domain Fixed by underlying logic

Uses assertion

Termination

Predictable failures
Horn Solver ? Z3

Handles well arrays

PhD intro: Handling arrays in Horn clauses

Problem: Arrays ⇒ quantified invariants ⇒ no good enough interpolation technique.
Solution: Create a new Horn problem without arrays by using abstract interpretation
and solve it with a state of the art solver.
Example:
•Program: array copy.
•Technique: SAS15-16, Monniaux & Alberti & Gonnord3
•Abstract domain: Cell abstraction.
An array a is abstracted by its cells, that is {(k, a[k]), k ∈ N}.

•Using the abstract domain in Horn clauses (simple version)
Replace P (a, v) by P #(k, a[k], v) in the Horn clauses

•Fully removing arrays: no array type in predicates⇒ Apply array axioms⇒ no arrays
•Solving the abstracted problem: Launch Z3. Answer: SAT in <1s.

Tool: Vaphor by Braine & Monniaux & Gonnord4

My PhD

In the context of Horn clauses, my goal is:
Improve existing array abstractions −→ Extend to other data-structures
Function summaries for scaling −→ Implement and test these techniques in a tool (FramaC?)
Implement a verified equivalent of STL (but in C) −→ Use this "STL" in verified algorithms

http://perso.ens-lyon.fr/julien.braine/

http://www.inria.fr/ http://www.ens-lyon.eu/ http://www.ens-lyon.fr/LIP/ https://www.universite-lyon.fr/ http://www.cnrs.fr/


