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Abstract. — Fresnel and de Mathan proved that the p-adic Fourier transform is surjective.
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Introduction

The p-adic Fourier transform. — Let C, be the completion of an algebraic closure
of Qp, and let I' = {y € C, such that 47" = 1 for some n > 0} be the set of roots of unity
of p-power order. Let ¢*(T", C,) be the set of sequences {z, },er with z, € C, and such
that 2z, — 0 (namely: for every € > 0, the set of v such that |z,| > ¢ is finite) and let
C%(Z,,C,) be the space of continuous functions Z, — C,. For every v € T', the function
a — v* belongs to C°(Z,, C,).

Definition. — The Fourier transform of z € ¢°(T', C,) is the function F(z) : Z, — C,

given by a = > cp 2y - Y.
Fresnel and de Mathan proved (see [FAMT74, FAM75, FAM78|) the following result.

Theorem. — The Fourier transform F : &(I',C,) — C%Z,,C,) is surjective, and
moreover F : *(T, C,)/ ker F — C°(Z,, C,) is an isometry.

Because of the appearance of roots of unity, the p-adic Fourier transform can be seen as
a cyclotomic construction. In this paper, we generalize the definition of the Fourier trans-
form as well as Fresnel and de Mathan’s theorem beyond the cyclotomic case. We then
give a mostly independent application of their theorem to Schneider and Teitelbaum’s
p-adic Fourier theory [STO1].

Analytic boundaries. — For the first generalization, consider the dual of the p-adic
Fourier transform. The dual of ¢°(T', C,) is £°(T", C,), the set of bounded sequences. The
dual of C°(Z,, C,) is isomorphic to €5 = C, ®oe, Oc,[X] (via the Amice transform
that sends a measure p to A, (X) = >,50 n(a — (Z)) - XM,

The dual of the Fourier transform is hence a map F' : €5 — (T, C,). It is easy
to see that this map is given by f(X) — {f(y — 1)},er. Fresnel and de Mathan’s
theorem is then equivalent to the claim that F’ is an isometry on its image, namely that

| fllp = sup,er | f(y — 1) where D = mg, is the p-adic open unit disk.

Definition. — A subset A = {a,}n>1 C D is an analytic boundary if |a,| — 1 as
n — +00 and if for every f € E5, we have || fllp = || f]la := sup,-, |f(an)].

Fresnel and de Mathan’s theorem is then equivalent to the claim that {y—1,v € I'} is
an analytic boundary. We prove that the same holds if A is the set of torsion points of a
Lubin-Tate formal group attached to a finite extension of Q,, and even more generally if
A is the set of iterated roots of a certain class of power series, that we call Lubin-Tate-like

(LT-like) power series. Let ¢ be a power of p.
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Definition. — An LT-like power series (of Weierstrass deg q) is a power series P(X) =
Ynz1 X" € O, [X] with 0 < val,(p1) < 1, p; € OF, and P(X) = p,X? mod p;.

If P(X) is as above, let A(P) = {z € D such that P°"(z) = 0 for some n > 0}. The

following result is theorem 1.2.2.
Theorem A. — If P is LT-like, then A(P) is an analytic boundary.

If P(X) = (14 X)?—1, then A(P) = {v — 1,7 € T'}, and theorem A implies the
result of Fresnel and de Mathan. The proof of theorem A is very similar to Fresnel and

de Mathan’s proof of their result.

p-adic Fourier theory. — For the second generalization, let F' be a finite extension
of Q, of degree d, with ring of integers Op. Let X, denote the set of finite order
characters (Op,+) — (C),x). Given z € ®(Xior, Cp), its Fourier transform is the
function F(z) : Op — C,, defined by a — > cx,., 2 - 9(a). It is easy to see (theorem
2.1.1) that Fresnel and de Mathan’s theorem implies that F : *(Xior, C,) = C°(OF, C,)
is surjective. We give an application of this observation to p-adic Fourier theory.

Let e be the ramification index of F', let m be a uniformizer of Op, and let ¢ =
card Op/m. Let LT be the Lubin-Tate formal Op-module attached to m, let X be a
coordinate on LT, and let log; (X)) be the logarithm of LT. For n > 0, let P,(Y) € F[Y]
be the polynomial defined by exp(Y - logi (X)) = X150 Pu(Y)X™.

When F' = Q, and LT = G,,, we have P,(Y) = (};) The family {(Z) bnso forms a
Mabhler basis of Z,. In addition, by a theorem of Amice [Ami64], every locally analytic
function Z, — C, can be written as  — Y, ¢, (i) where {c¢,,}n>0 is a sequence of C,
such that there exists r > 1 satisfying |c,| - ™ — 0.

In their work [STO01] on p-adic Fourier theory, Schneider and Teitelbaum generalized
this last result to /' # Q,. They proved the existence of an element ) € Oc,, with
val,(Q) = 1/(p — 1) — 1/e(q — 1), such that P,(af)) € Oc, for all a € Op. The power
series G(X) = exp(§ - log;p(X)) — 1 therefore belongs to Homeg (LT, Gy). One of the
main results of p-adic Fourier theory is the following (prop 4.5 and theo 4.7 of [ST01)).

Theorem. — If {c}m>0 is a sequence of C, such that there exists r > 1 satisfying
|Cm| - 7™ = 0, then a — 3,50 cm P (af) is a locally F-analytic function Op — C,.

Conversely, every locally F-analytic function Op — C, has a unique such expansion.

If we only ask that c,, — 0, then a — 3,50 ¢ P (af?) is a continuous function Op —
C,. We therefore get a map °(N, C,) — C°(Op, C,), whose image contains all locally
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F-analytic functions. If F' = Q,, this map is an isomorphism. In general, Fresnel and de
Mathan’s theorem and some computations in p-adic Fourier theory imply that the map
is surjective, and noninjective if F' # Q,. Using the fact that every element of C°(Z,, C,)
can be written in one and only one way as z +— >_,50 A\, (i) where A € *(N,C,), we

reformulate this result using the following definition.
Definition. — The Peano map T : C°(Z,,C,) — C°(Op, C,) is the map given by

T : —

xr—>z>\n<z> .

n=0

ar> > A Pn(af)

n=0

Theorem B. — The Peano map T : C°(Z,,C,) — C°(OF, C,) is surjective, and non-
injective if ' # Q,.

This is coro 2.2.1. By Schneider and Teitelbaum’s theorem recalled above,
T:C%Z,C, — CF*Op,C,) is an isomorphism. So one can think of 7" as some
Peano-like map: a surjective noninjective limit of isomorphisms, from a 1-dimensional

object to a d-dimensional object.

The character variety. — The rigid analytic p-adic open unit disk ‘B is a parameter
space for characters (Z,, +) — (C), x): if K is a closed subfield of C,,, a point z € B(K)
corresponds to the character 7, : a — (1 + 2)* and all K-valued continuous characters
are of this form. In particular, all continuous characters are locally analytic.

If F'is a finite extension of Q, of degree d, then Op ~ Zg and B? is then a parameter
space for characters (Op,+) — (C), x). Schneider and Teitelbaum have constructed
in [STO01] a 1-dimensional rigid analytic group variety X C B? over F, called the char-
acter variety, whose closed points in an extension K/F parameterize locally F-analytic
characters Op — K*. They show that over C,, the variety X becomes isomorphic to B.

Let Obcp ("B%) denote the ring of bounded functions on B¢ defined over C,, and likewise
for Og, (X). We have Og (X) ~ & and Og (B9) is likewise isomorphic to the ring of
bounded functions in d variables. The restriction-to-X map resy : Obcp(‘Bd) — Obcp (%)
is injective by [BSX20]. By p-adic Fourier theory, O%p(%) is the dual of C°(Z,,C,),
O%p(%d) is the dual of C°(Op, C,), and resy is the dual of the Peano map 7.

Theorem B now implies the following result (theorem 2.3.1).

Theorem C. — The map resy : O%p(%d) — (’)lép (X) is an isometry on its image.
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In the isomorphism between X and ‘B, we have Obcp (X) ~ Sérp, and the set X, of
torsion characters (Op,+) — (C), x) corresponds to LT[7>°]. Theorem A applied to
P(X) = [r](X) implies the following result (theorem 2.3.3).

Theorem D. — If f € O%p(}:), then || f|lx = sup.ex,..

f(R)I-

Theorem A is proved in §1 and theorems B, C and D are proved in §2.

1. Construction of analytic boundaries

The goal of this section is to state and prove theorem A.

1.1. p-adic holomorphic functions and analytic boundaries. — We recall some
standard facts about holomorphic functions on the p-adic open unit disk (for which see
[Laz62] or [Rob00]), and define analytic boundaries. Let D = mc, be the p-adic open
unit disk. Let £& = C, ®0c, Oc,[X] be the ring of bounded holomorphic functions on
D, and let Rép be the ring of holomorphic functions on D. If f € Rép and p > 0, we let

V(f,p) = infpo valy(fn) +pn. If 4 € Qso, then V(f, 1) = inf.ep vai, (2)=p valp(f(2)). The
function p — V' (f, ) is continuous, increasing and piecewise affine. We have V' (fg, u) =
V(f,i) +V(g,p). It f €&, then V(£,0) is also defined, and V(f,0) = —log, || fllp-
We say that u > 0 is a critical valuation if there exists @ # j such that V(f,u) =
val,(fi) + pi = val,(fj) + pj. Recall that f has a zero of valuation p if and only if u is
a critical valuation, and that the critical valuations of f, as well as the number of zeroes
of f having that valuation, can be read on the Newton polygon of f.

Divisors are defined in §4 of [Laz62|. In this paper, we only consider divisors that
are an infinite formal product [[;>; Di(X) where for each k, D(X) is a polynomial
such that Dy(0) = 1 and all the roots of Dy are of valuation py, where {ug}r=1 is a
strictly decreasing sequence converging to 0. We then have V(Dy, u) = 0 if g > py and

V(Dy, p) = deg Dy - (10— px) i po < puye.

Proposition 1.1.1. — Let [[>, Dp(X) be a divisor and take n > 0.
There exists f(X) € RT such that f(0) =1, f is divisible by Dy, for all k > 1, and for
all 1> 0, we have 3oy V(D ) 2 V(f, 1) 2 Zgor V(Di, 1) — 1.

Proof. — This is theorem 1 of [FAMT74]. See theorem 25.5 of [Esc95] for a full proof,
noting that A,(d(0,r)) should be A(d(0,r~)) in the statement of ibid. O
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We now define analytic boundaries. Since D is a separable topological space, there are
plenty of countable sets A = {a,}n>1 C D such that || f||p = || f|la := sup,>, | f(a,)| for
all f € £ . We are interested in those sets A such that |a,| — 1 as n — +oo.

Definition 1.1.2. — We say that A = {a,,},>1 C D is an analytic boundary if |a,| — 1
as n — +oo and if for every f € £ we have || f|[p = || f] a-

Lemma 1.1.3. — If A is an analytic boundary and h # 0 € Sép, then A’ = A\ {a € A

such that h(a) = 0} is also an analytic boundary.

Proof. — Since A’ C A, it is clear that |a,,| — 1 asn — 400. Moreover, ||fh||4 = || fh] 4
Hence if f € G, then ||f|lp - [|hllo = [fhllp = [[fhlla = [fPllar < 1flla - [IBllp. - O

In particular, if A is an analytic boundary, then A,, = {a, },>m is an analytic boundary
for all m > 1. Our definition of analytic boundary is therefore consistent with the
definition of analytic boundary for Sa“p given in §2 of [Boul0], except that we require in
addition that |a,| — 1 as n — +00. The following result (theorem 8 of [Boul0]) can be

used to construct many examples of analytic boundaries.

Theorem 1.1.4. — If A C D\ {0} is such that -, val,(a,) = 400 and |a,| — 1 as

n — +0o and |a, — an| = max(|an, |a,|) for all m # n, then A is an analytic boundary.
We finish with a simple result that allows us to construct more analytic boundaries.

Lemma 1.1.5. — If A C D is an analytic boundary and h(X) = S hiX" € X -
Oc,[X] is such that inf;>y |hs] = 0 and |h(a,)] — 1 as n — 400, then h(A) is an

analytic boundary.

Proof. — The condition on h(X) implies that h gives rise to a surjective function D — D
(if y € D, consider the Newton polygon of h(X) — y).
Hence || f[[p = [|f o hl[p. Now [|f o hl[p = sup,-, | f o h(an)]. O

1.2. LT-like power series. — We define Lubin-Tate-like (LT-like) power series. Recall
that the Weierstrass degree wideg(f) of f(X) = 3,50 fuX" € Oc¢,[X] is the min of the
n such that f, € Oép (or +oo if there is no such n). Let g be a power of p.

Definition 1.2.1. — An LT-like power series (of wideg ¢) is a power series P(X) =
Ynz1 X" € Og, [X] with 0 < val,(p1) < 1 and p, € Og, and P(X) = p, X mod p;.

Note that if P is a LT-like power series, then P’(X) is a unit of Eép. In particular, for
every z € D, all the roots of P(X) — z in D are simple. If P(X) is a LT-like power series
and n > 0, let A,, = {z € D such that P°"(z) = 0}, and let A(P) = U,>o/,.
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The following theorem (theorem A) is proved at the end of §1.3.
Theorem 1.2.2. — If P is LT-like, then A(P) is an analytic boundary.

Remark 1.2.3. — Let 7 be a uniformizer of a finite extension F' of Q,, of degree d, and
let LT be the Lubin-Tate formal Op-module attached to 7.
1. The power series P(X) = [7](X) is an LT-like power series, and A(P) = LT[7*] is
therefore an analytic boundary by theorem 1.2.2.
2. The Z,-module LT[7>] is isomorphic to (Q,/Z,)*. If M C LT[r>] is isomorphic
to (Qp/Zy)*~", then there is a nonzero bounded function f(X) € £ such that
f(z) =0 for all z € M. In particular, M is not an analytic boundary.

Let P be a LT-like power series, and write P(X) = X - Q(X). Forn > 1, let Q,(X) =
QP 1(X)), 50 that P(X) = X -Qu(X) -+ Qu(X). Let g = ¢ (g — 1) = wideg @,
and vy = val,(p1) and p, = v1/¢,. The g, roots of @Q,, are all of valuation p,,.

Let Hy = {0} and let H, be the set of roots of Q),,, so that A,, = HyU Hy U ...U H,.

Lemma 1.2.4. — Take z,2' € D.
1. If P(z) = P(%'), then val,(z — ') > 1.
2. If P(z) =y and P(%') =y with val,(y —y') > pn, then val,(z — 2') = pin41.

Proof. — We prove both statements at the same time (for item (1), take y = ¢/). Recall
that P(X) = PO(X)/i! € Oc,[X] is the i-th Hasse derivative. We have

P(X+2)—P(Z)=(y—y)+P()X+PH2)X2+... 4 Pld(2) X7 4 O(XH).
The valuation of P’(z) is vy, the valuation of Pl9(z) is 0, and the valuation of Pl(z) is
> v forall 1 <i<q— 1. Indeed, Pl(2) = (3)pqzq_i mod p; and since ¢ is a power of

D, (3) is divisible by p for all 1 < i < g — 1 and hence by p;.

The lemma now follows from the theory of Newton polygons. O]
Corollary 1.2.5. — Ifk > 1 and P°*(z) = P°*(2'), then val,(z — 2') > .

We now define a map . Let ¢ : RE — R¢, be the map defined by ¢(f) = foP. Note
that R¢ is a free p(R¢,)-module of rank ¢, generated for example by 1, X, ..., X1
Let ¢ : RJC’p — Rép be the map defined by pou(f) = TrRép/go(Rép) f. Note that we have
@(Eép) C Eép and @/J(é’ép) - Sa“p. Beware that in the literature, 1) sometimes denotes the
map that we have defined, but divided by p; or by ¢.

Lemma 1.2.6. — We have ¢¥(Oc,[X]) C p1 - Oc,[X].
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Proof. — The ¢(Oc, [X])-module Oc, [ X] is free of rank ¢, generated by 1, X,..., X9 1.
A simple computation shows that mod p;, the trace of X* is zero for 1 <i < g — 1. For
1 = 0, it is ¢ which is divisible by p; since P is LT-like. O

Lemma 1.2.7. — If f € R*, then ¥"(f)(0) = X.en, f(2).

Proof. — We have @™ o )" (f) = Trr+ jon(r+) f. If I is the ideal of p"(R™) generated by
Por(X), then ¢"(RT)/I = C, and RT/I = RT/P°"(X) = ILep, RT/(X — 2). O

Proposition 1.2.8. — If f € R™ then val,(¢¥"(f)(0)) = V(f, ttnt1) + (n — 1) - v1.

Proof. — Since V(50 fiX", pn1) = infi=0 V(f; X7, fny1), it is enough to prove the claim
for f(X) = X". Write Q,11(X) = i1 (X + p1 R, 1 (X)) for some 41 € Oép and
R, € Oc, [X] and write i = s@n41 + 7 with 0 <7 < gny1 — 1. We have
X' = X0 = (o) - Qnia(X) = prRe1 (X)) X" =3 Quia (X) i FF(X),
k=0

for some F(X) € Oc,[X], 0 < k < s. Since Qi1 = ¢™(Q1) and " (F)(0) € pfOc, by
lemma 1.2.6, we have (¢"X")(0) € p™"Oc,. Hence

Valp(¢n(Xi)(O)) Z Sqn+1fn1tNV1 = Z‘,UTLJrl_71,Un+1+n'vl > V(Xialun+1)+(n_1>'vl' u
1.3. Construction of auxilliary functions. — The proof of theorem 1.2.2 rests on

the construction of certain elements of R ™ satisying precise growth conditions. The proofs

in this § are very similar to those of Fresnel and de Mathan.

Definition 1.3.1. — We say that f € RT is of P-order 17 if V/(f, pn) + n - vy — 400

as n — +oo.

Remark 1.3.2. — The infinite product X - [],>; @.(X)/p1 converges to a function
logp(X) € RT that satisfies: {V(f, pn) + n - v1}n>1 is bounded below. Hence a func-
tion of P-order 1~ grows just slightly less fast than logp(X).

Proposition 1.3.3. — If f is of P-order 17, then Y. .cp, f(2) = 0 as n — 4o0.
Proof. — This follows from lemma 1.2.7 and prop 1.2.8. O]

Corollary 1.3.4. — If [ is of P-order 1= and if f(z) — 0 for z € A(P), then for all
i >0, we have - ,cppy 2 f(2) = 0.

Proof. — 1fi > 0, then X' f(X) is also of P-order 17. The result then follows from prop
1.3.3 applied to X" f(X) since 3,ep(py 2'f(2) = limp o0 Xen, 2 f(2). O
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Proposition 1.3.5. — Taken >1 and 0 < A < 1.
There exists B,, C H, such that card B,, = |\q,], and such that for all z € H, and
1 <k <n—1, we have card{2’ € B,, such that P°*(z) = P°*(2")} > |\¢*].

Proof. — For every y € H,,_1, there are ¢ elements z € H,, such that P(z) = y. For each
y € H, 1, choose |\q| of those z, and let B) C H,, denote all the z chosen this way.
Suppose that 2 < k < n — 1 and that we have constructed a set B*~1) ¢ H,,. For each
y € H,_y, there are ¢* elements 2 € H,, such that P°*(z) = y. For each y € H,_, choose
| A\¢®] of them, including all those of B*~1. This is possible as ¢|A\¢"* '] < [A\¢*]. There
are ¢ — 1 elements in H, so that card B®Y = (¢ — 1)|A\¢" ] < [Agn]. We can now add
some elements of H, to BV to get a set B, satisfying the conditions of the prop. [

Let A and B, be as in prop 1.3.5 and let D,,(X) = [L,ep, (1 — X/w).
Lemma 1.3.6. — Forn >1 and z € H,, \ B, we have val,(D,(2)) > (n — 1)\vy — p.

Proof. — Let W), = {2’ € B, such that P°*(z) = P°*(2')} and let wy, = card Wj. Note
that wy = 0 since 2z ¢ B,,. If P°*(z) = P°*(2), then val,(z — z’) > px by coro 1.2.5. Since
B, =W \Wy)U...u (W, \ W,_1), we have

n n—1
val,( Z wy, — We—1) (e — fin) = Zwk(ﬂk — fg1) > (= D)Avy — p,
k=1 k=1
since wy > A¢¥ — 1 for 0 < k <n —1 and ,uk—ukﬂzvl/qk. O

Theorem 1.3.7. — For alle >0 and m > 1, there exists f.,, € R" such that

L. fem(0) = =1 and f.m(2) =0 for all z € Ay, \ {0};
2. fem is of P-order 1~ ;

3. fem(z) = 0 for z € A(P);

4. val,(fem(2)) = —¢ for all z € A(P).

Proof. — Let 6, = --- = 4,, = 0 and for n > m + 1, take &, = ¢~ where £(n) is the
smallest integer > 1 such that ¢~ < ¢/2n. We assume that £ < 1, so that §, < 1 for
all n. We can also replace m by a larger value, so that £(n) < n—1 for all n > m + 1.
In particular, |§,q,]| = 0,¢, for all n.

Let Ay = 1—0;. Take By, as in prop 1.3.5 with A = A and let Dy (X) = [ ep, (1-X/w).
Let f € R* be —1 times the function provided by prop 1.1.1 with n = £/2. Since By = Hy,

for 1 < k < m, this function satisfies (1).
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We have V(Dg, p,) = 0 if k > n, so that V(f, un) = > 5y V(Dg, tn) — /2. Since
V (D, pon) = br(ptn — px) where by, = card By, we have

n

V(f,pn) +n-vy =0y Z (bt b)) — /2> 010 > 0 — /2.

Since Yp_; 0 — +00 as n — 400, f satisfies (2). Write f(X) = D,,(X) f(X). If z € B,
then f(z) = 0, while if z € H,, \ B, then val,(f(2)) = val,(f.(2)) + val,(D,(z)), and
Valp(fn(z)) 2 V(fna,un) = V(fa ,un) since V(Dmﬂn) = 0. We have bk = (1 - 5k)Qk7 S0

V(f pn) = il_éka — Hr) —€/2

n—1

> iy — pin — (n = D)or + > 0(v1 — qptn) — /2
k=1

By lemma 1.3.6, we have val,(D,(z)) = (n — 1)(1 — ,,)v1 — 1, so that

n—1

Valp(f(z)) 2 —fip + 0pU1 — NOUL + Z 5k(U1 — qkun) — 8/2.
k=1

We have vy —qgpin, = v1-(1—1/q) and né, v, < /2 and —p,+0,v1 = 0and Y5 0 — +00
as n — 400, so that f satisfies (3) and (4). O

We can now prove theorem 1.2.2.

Proof of theorem 1.2.2. — Let Al = A(P)\ A,,. We prove that A/ is an analytic bound-
ary for all m > 1. By coro 1.3.4, the function provided by theorem 1.3.7 has the property

that 3.epr 2'fom(z) =0 forall i > 1and X,cnr fom(z) = 1.
Take h(X) = S0 hi X" € & . We have

S fem(D(2) =3 ki Y fem(2)z' = ho.

zeA, 20 zeAl,
Hence val,(hg) > inf.cps valy(h(z)) —e. This holds for all ¢ > 0, so that val,(ho) >
inf,epr val,(h(2)).
Applying the same reasoning to (h(X) — hg)/X and to m; > m gives us
val,(hy) = inf val,(h(2)) — pm, = inf val,(h(2)) — tim,-
/ c ’

eml m

This holds for all m; > m, so that val,(h;) > inf.cp; val,(h(z)). We repeat this, and we
get that val,(h;) > inf.enr, val,(h(2)) for all i > 0, so that [|h][p < sup,cp, [(2)]. O
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2. Applications to p-adic Fourier theory

In this section, we give an application of the surjectivity of the p-adic Fourier transform

to p-adic Fourier theory and the geometry of the character variety.

2.1. p-adic Fourier theory. — Let F' be a finite extension of Q, of degree d, with
ring of integers Op. We first extend the Fourier transform to Op. Let X, denote the
set of finite order characters (Op,+) — (CJ, x). Given z € ®(Xior, Cp), its Fourier
transform is the function F(z) : Op — C, defined by a — 3 cx, . 24 - 9(a).

Theorem 2.1.1. — The map F : °(Xior, C,) = C°(OF, C,) is surjective.

Proof. — If we choose a basis aj,...,aq of Op over Z,, then there are linear forms
c1,...,¢4: Op = Z, (the dual basis of the a;’s) such that every a € Op can be written
as a = Z?Zl ci(a) - a;. Every finite order character Op — C; is then of the form

ci(a) cq(a

a7y Yy ) with Y, ---,va € ['. We therefore have
P (Xior, Cp) = P (1,Cp)@ - - - (T, C,).
Likewise, the decomposition Op = Z,-a; ® --- ® Z, - a4 gives us an isomorphism
C"(Or, Cy) = C"(Z,,C,)& - - BC"(Z,,C,).

The theorem now follows from the surjectivity (see [FdAM74, FAMT75, FAMT78]) of the
Fourier transform (T, C,) — C*(Z,,C,). O

We now turn to p-adic Fourier theory. Let e be the ramification index of F, let 7
be a uniformizer of Op, and let ¢ = card Op /7. Let LT be the Lubin-Tate formal Op-
module attached to m, let X be a coordinate on LT and let log;(X) be the logarithm
of LT. Recall (see §3 and §4 of [STO1] for what follows) that Homog (LT, Gw) # {0}
Choosing a generator of this group gives a power series G(X) € X - Oc,[X] such that
G(X)=Q-X+---, where Q € O¢, with val,(Q) = 1/(p—1) —1/e(q—1). In particular,
14+ G(X) = exp(Q - logpr(X)) = Y50 Pu(Q)X™ where P,(Y) € F[Y] is a polynomial of
degree n such that P,(Q- Op) C Oc,.

When F' = Q, and LT = G, we have Q =1 and P,(Y) = C;) The family {(Z) Fnso
forms a Mahler basis of Z,. In addition, by a theorem of Amice (see [Ami64]), every
locally analytic function Z, — C, can be written as x + 3,59 ¢y (Z) where {c, }n>0 is a
sequence of C,, such that there exists r > 1 satisfying |c,| - ™ — 0.

One of the main results of p-adic Fourier theory is the following generalization of
Amice’s theorem (prop 4.5 and theo 4.7 of [STO1]).
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Theorem 2.1.2. — If{cy}m>o0 is a sequence of C, such that there exists r > 1 satisfying
lCm| - 7™ = 0, then a — 3,50 cm P (af) is a locally F-analytic function Op — C,.

Conversely, every locally F-analytic function Op — C, has a unique such expansion.

If z € D, then (see §3 of [STO01]) the map «, : O — C, given by

ko(a) =1+ G([a =Y P,(aQ)z

n=0
is a locally F-analytic character (Op,+) — (C, ), and every such character is of this
form for a unique z € D. Furthermore, k. is of finite order if and only if z € LT[n>|
(hence the set X, of torsion characters (Op,+) — (C), x) corresponds to LT[7>]).

Definition 2.1.8. — Let F : O(LT[x*],C,) — C°(Op,C,) be the map given by
F(A)(a) = > el T[] Aw * Ku(a).

Proposition 2.1.4. — The map F : °(LT[7>],C,) = C°(OF, C,) is surjective.
Proof. — Since Xior = {kw,w € LT[7*°]}, this follows from theorem 2.1.1. O

Theorem 2.1.5. — The map °(N,C,) — C%Op,C,) given by ¢ +— 3,50 P (-Q)

18 surjective.

Proof. — Take f € C°(Op,C,). By prop 2.1.4, we can write [ = Y welm[re] Awhe. We
have r,(a) = 3,50 Pn(af2)w”. This implies the corollary, with ¢,, = > cpppree) dow™. O

Proposition 2.1.6. — If F # Q,, the map °(N,C,) = C°(OF, C,) is not injective.

Proof. — If the map was injective, it would be a topological isomorphism by the open

mapping theorem. For n > 0, we have

Idmog(a) =q¢ " Y kula) = cknPr(aQ)

] () =0 k>0

with ¢ = ¢ Xprn)w)=o w" (and no other choice if the map is injective).

Take P(X) = [n](X) and let ¢ be as in §1.2. By lemma 1.2.7, we have ¢, =
" p"(X*)(0). By lemma 2.1.7 below, we have sup,., [¢"(X*)(0)| = |7"|, so that
SUPyso |Chn| = |(/q)"] is unbounded as n — 400 if val,(q) > val, (). O

Lemma 2.1.7. — We have sup, [¢"(X*)(0)| = |7

Proof. — Since 1(Oc¢,[X]) C m- O¢,[X] by lemma 1.2.6, we have one inequality. Con-
versely, ¥"(f o P°~D) = zn=Ly)(f), and if f(X) = P(X)/X, then ¥(f)(0) = 7. O



LUBIN-TATE GENERALIZATIONS OF THE p-ADIC FOURIER TRANSFORM 13

2.2. The Peano map. — Recall that every element of C°(Z,, C,) can be written in
one and only one way as & — >_,50 A (Z) where )\, € C, and A\, — 0.
Let T : C°(Z,,C,) — C°(OF, C,) be the map given by

r S A, (2)] — {a = 3" AP, (af)

n=0 n>0

T :

We can now prove theorem B.

Corollary 2.2.1. — The map T : C°(Z,,C,) — C°(OF, C,) is surjective, and nonin-
jective if F' # Q.

Proof. — This follows from theorem 2.1.5 and prop 2.1.6. O]

We identify the dual of the C,-Banach space C°(Z,, C,) with Sgp via the Amice trans-
form. Let A(Op) denote the space C, ®oc, Oc, [OF] of C,-valued measures on Op, so
that A(Op) is the dual of C°(Op,C,) (and note that A(Z,) ~ £ ). If ay,...,aq4 is a
basis of Op over Z,, the ring A(Op) is isomorphic to C, R0, Oc,[ X1, ..., Xa] where
X; = 04, — 0o (note that §y = 1). There is an algebra homomorphism A(Op) — Sé“p that
sends 0, — 1 to G([b](X)), and by lemma 1.15 of [BSX20], this map is injective.

Proposition 2.2.2. — The dual map T : AN(Op) — £ is the above inclusion.

Proof. — Take b € Op. We have T"(6)(z +— (i)) = 0p(a — P,(aR2)) = P,(b2) so that
the image of 8, in £& is 3,50 Pu(02)X™ = 1+ G([b](X)). O

Proposition 2.2.3. — The image of T' : A(Op) — E¢, is closed in £ .

Proof. — Since T is surjective, and C°(Op, C,) is a C,-Banach space of countable type,
T’ has closed image by prop 2.2.4 below (the closed range theorem). ]

Proposition 2.2.4. — If T : X =Y is a continuous map of C,-Banach spaces, and if
Y is of countable type and im(T') is closed in Y, then im(T") is closed in X'.

Proof. — The result follows from theorem 3.1, (ii) and (i), of [HINAO5], given the re-
marks on page 202 of ibid. O

Corollary 2.2.5. — The map T" : A(Of) — Sérp is an isometry on its image.

Proof. — The map T" is injective, it is an algebra homomorphism, and ||T(f)|| < || f]l-
If 77 is not an isometry, there is some f € A(Op) such that ||T7(f)|| = C - || f]| with
C < 1. We then have ||[T"(f™)|| < C™- || f™]|. This contradicts the continuity of the map
(T")~! - im(T") — A(Op) provided by prop 2.2.3 and the open mapping theorem. O
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Note that 7" is not surjective if F' # Q, as T' is not injective by prop 2.1.6. Indeed,

ker(T) = +im(T”) as the dual of a space of countable type separates its points.

2.3. The character variety. — Schneider and Teitelbaum have constructed in [ST01]
a l-dimensional rigid analytic group variety X C B¢ over F, called the character vari-
ety, whose closed points in an extension K/F parameterize locally F-analytic characters
Orp — K*. They show that over C,, the variety X becomes isomorphic to 6. On the
level of points, the isomorphism B — X is given by the map z — k. recalled in §2.1.
The ring O (B?) of bounded functions on B¢ defined over C,, is isomorphic to A(OF)
and the ring O%p (X) of bounded functions on X defined over C, is isomorphic to €$p.
The restriction-to-X-map resy : O%p(‘Bd) — Obcp (X) then corresponds to the inclusion
T' : MOp) — &, considered in §2.2. In particular, coro 2.2.5 implies the following

result, which is theorem C.
Theorem 2.3.1. — The map vesy : Og (BY) — Og (X) is an isometry on its image.

It is possible to characterize the image of resy, see prop 3.1.8 of [AB24] for a proof of

the following result.

Proposition 2.3.2. — The image of resy is the set of power series f(X) € 5;5? such
that {q~" - ¢™(G([a](X)) - £(X))}an is bounded in ES as a € op and n > 0.

We finish by stating and proving theorem D (the only result of this section on p-adic

Fourier theory that uses theorem A beyond the cyclotomic case).

Theorem 2.3.3. — If f € Og (X), then || f|x = sup,ex,,, |f(%)]-
Proof. — In the isomorphism between X and B, the set X, of torsion characters
(Or,+) = (C), x) corresponds to LT[7>], and Og (X) is isomorphic to £ .

Theorem A applied to P(X) = [7](X) then implies the result. O
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