Miinster J. of Math. — (—), 999-999 Miinster Journal of Mathematics
DOI (© Minster J. of Math. —

Bounded functions on the character variety

Konstantin Ardakov and Laurent Berger
With an appendiz by Dragos Crisan and Jingjie Yang

Abstract. This paper is motivated by an open question in p-adic Fourier theory, that seems
to be more difficult than it appears at first glance. Let L be a finite extension of Q, with
ring of integers oy, and let Cp, denote the completion of an algebraic closure of Qp. In their
work on p-adic Fourier theory, Schneider and Teitelbaum defined and studied the character
variety X. This character variety is a rigid analytic curve over L that parameterizes the set
of locally L-analytic characters A : (or,,+) — ((C;f,(7 %x). One of the main results of Schneider
and Teitelbaum is that over Cp, the curve X becomes isomorphic to the open unit disk. Let
A (X) denote the ring of bounded-by-one functions on X. If 4 € or[or] is a measure on oy,
then X — p(XA) gives rise to an element of A (X). The resulting map orJor] — AL(X) is
injective. The question is: do we have A (X) = or[oL]?

In this paper, we prove various results that were obtained while studying this question. In
particular, we give several criteria for a positive answer to the above question. We also recall
and prove the “Katz isomorphism” that describes the dual of a certain space of continuous
functions on or,. An important part of our paper is devoted to providing a proof of this
theorem which was stated in 1977 by Katz. We then show how it applies to the question.
Besides p-adic Fourier theory, the above question is related to the theory of formal groups,
the theory of integer valued polynomials on oy, p-adic Hodge theory, and Iwasawa theory.
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1. INTRODUCTION

1.1. Motivation. Let L be a finite extension of @, and let C, denote the
completion of an algebraic closure of Q. In their work on p-adic Fourier theory
[28], Schneider and Teitelbaum defined and studied the character variety X.
This character variety is a rigid analytic curve over L that parameterizes the
set of locally L-analytic characters A : (or,+) — (C,, x). One of the main
results of Schneider and Teitelbaum is that over C,, the curve X becomes
isomorphic to the open unit disk.

The ring Or(X) of holomorphic functions on X is a Priifer domain, with
an action of oy coming from the natural action of oy on the set of locally
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L-analytic characters. One can then localize and complete O (X) in order to
obtain the Robba ring %7 (X), and define (¢, 0 )-modules over that ring and
some of its subrings. These objects are defined and studied in [5], with the
hope that they will be useful for a generalization of the p-adic local Langlands
correspondence from GL2(Q,) to GLa(L).

In this paper, we instead consider a natural subring of O (X), the ring
Ar(X) of functions whose norms are bounded above by 1. If u € orfor] is
a measure on oy, then A — p(X) gives rise to such a function X — C,. The
resulting map opfor] — Ap(X) is injective. We do not know of any example
of an element of Az (X) that is not in the image of the above map.

Question 1.1.1. Do we have Ar(X) = or[or]?

This question seems to be more difficult than it appears at first glance, and
so far we have not been able to answer it (except of course for L = Q). The
results of this paper were obtained while we were studying this problem. A
related question is raised in remark 2.5 of [11]. We now give more details about
the character variety X, and then explain our main results.

1.2. The character variety. Let B denote the open unit disk, seen as a
rigid analytic variety. This space naturally parameterizes the set of locally
Qp-analytic characters \ : (Zy, +) — (C), x). Indeed, if K is a closed subfield
of C, and z € mg = B(K), then the map A, : a — (14 2)* is a K-valued
locally @Qp-analytic character on Z,, and every such character arises in this
way. Note that A,(0) = log(1 +2). If d = [L : @], then oy ~ Z% and
hence B¢ parameterizes the set of locally Q,-analytic characters \ : (or, +) —
(C), x). Such a character is locally L-analytic if and only if \'(0) is L-linear. In
coordinates z = (21, ..., 24), there exists as, . .., g € L such that the character
corresponding to z is locally L-analytic if and only if log(1+2;) = «;-log(1+21)
for all i = 2,...,d. These d — 1 Cauchy—Riemann equations cut out the
character variety X inside B¢. Schneider and Teitelbaum showed [28] that X
is a smooth rigid analytic group curve over L.

The ring of Q,-analytic distributions D% ~2"(o;, L) on o, is isomorphic to
the ring of power series in d variables that converge on the open unit polydisk.
Every distribution g € D%~ (oy, L) gives rise to an element of Or(X), de-
fined by the map A — u(X). This gives rise to a surjective (but not injective if
L # Q,) map D% 2% (o L) — Op(X), whose restriction to oy [or] is injective
and has image contained in A (X).

1.3. Schneider and Teitelbaum’s uniformization. We now explain why
over C,, the curve X becomes isomorphic to the open unit disk. Let G =
Gal(Q,/L). Choose a uniformizer 7 of oy, and let G denote the Lubin-Tate
formal group attached to . This gives us a Lubin-Tate character x. : G —
oz and, once we have chosen a coordinate Z on G, a formal addition law
X ®Y € o,[X,Y], endomorphisms [a](Z) € or[Z] for all a € o, and a
logarithm log;p(Z) € L[Z].
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By the work of Tate on p-divisible groups, there is a non-trivial homomor-
phism G — Gy, defined over oc,. Concretely, there exists a power series
G(Z) € oc,[Z] (where G(Z) is a generator of Hom,, (G,Gm)) such that
1+GXeY) = (1+GX)) - 1+GY)). If z € mg,, then the map
Az a— 14+ G([a](2)) is a locally L-analytic character on oy, and every such
character arises in this way. This explains the main idea behind the proof of
the statement that over C,, the curve X becomes isomorphic to the open unit
disk.

In particular, Oc, (X) is isomorphic to the ring of power series ) ;- YA
with a; € C, that converge on the open unit disk. Let )y denote the cy-
clotomic character, and let 7 : G, — o] denote the character 7 = xqyc
Xx'- The Galois group Gy, acts on Og,(X) by the formula g(},.,a;Z") =
im0 9(ai)[T(9)71](Z)". This action is called the twisted Galois action, and we
write G, * to recall the twist. It follows from the Ax-Sen-Tate theorem that
(CEL = L and then, by unravelling the definitions, that O (%) = Oc, (X)%=*.
At the level of bounded functions, this tells us that Az (X) = o, [Z]“=*. The
natural map orJor] — AL(X) sends, for instance, the Dirac measure d, with
a€op tol+G([a(2)) € oc, [2]9%.

1.4. The operators ¢,, ¥,. The monoid (or, X) acts on oy, by multiplica-
tion, and hence on the set of locally L-analytic characters, on X, and on the
ring Oc,(X). If a € og, this action is given by f(Z) — f([a](Z)). Let ¢
denote the cardinality of the residue field &k, of or and let ¢, denote the ac-
tion of 7 on Oc, (X). The map ¢, is injective and the ring Oc, (X) is a free
©q(Oc, (X))-module of rank ¢. Let ¢, : Oc,(X) — Oc, (X) be the map defined
by ©q(¥q(f(Z2))) =1/q- Trog, () /440, (x))(f(Z)). The action of oy, and the
operator 1, commute with the twisted action of G, and therefore preserve
Op(X). If we consider the image of the map D@ ~2%(op, L) — O (X), we have
a-0y = dap and Yy (0p) = 0if b € of and 1py(dy) = 0 if b € mor. In particular,
or[or]¥+=° coincides with oy [0} ], those measures that are supported in oj .
We use later on the fact (Lemma 5.1.9) that Ap(X) = opfor] if and only if
Ap(X)¥=% = oL[o}]. Note that if L # Q,, then 1p4(Ac, (X)) is not contained
in Ac,(X) as Trocp(x)/wq(ogp(x))(f(Z)) is divisible by 7, but not always by gq.
Our first result is the following.

Theorem 1.4.1. We have Ar(X) = or[or] if and only if (AL (X)) C AL(%).
This is proved at the end of §3.1.

1.5. The polynomials P,. Recall that G(Z) is a generator of Hom, (G, Gm)
and that 7 = xeye X5 - In fact, we have G(Z) = exp(Q-log r(2))—1=Q-Z+
O(Z?), where Q is a certain special element of m¢, such that g(€2) = 7(g) - Q.
In particular, for all n > 0, there exists a polynomial P,(Y) € L[Y] such
that 1 + G(Z) = 3,50 Pa(Q) - Z". For n > 0, the polynomial P,(Y) is of
degree n, and its leading coefficient is 1 /nl. For example, assume that the
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coordinate Z is chosen in a way that log;p(2) =3, 74" /x*. Then we have
(see Proposition 4.3.1 for more details) -
Ynot:tna
P(Y) = Z ngl---ng! - wlmitZnat - fdng’
no+qni+--+qing=n

If a € or, then G([a](2)) = 3,51 Pu(Q) - [a](Z2)" = >,,>1 Pn(af) - Z™. This
implies for instance that P, (af) € oc, for all a € or. For n >0 and i > n, let
0n,i(Y) € L[Y] denote the polynomials such that [a|(Z)" = >, on,i(a)Z*
for all a € or,. The 0, ;(Y) are all elements of Int, the or-submodule of L[Y]
of integer valued polynomials on or. The fact that Y -, P,() - [a](Z2)" =
S50 Pn(aQ) - Z™ implies that P, (aQ) = 321" 04.(a) Py ().

If p € DY=20(op, L), its image in O (X) is therefore f,(Z) = Y, 50 Z" -
oo w(oin)Pi(2). Let Pol denote the or-span of the o, ;(Y) inside L[Y], so
that Pol C Int. The following gives a relation between our question and the
theory of integer valued polynomials ([30], [31]):

Theorem 1.5.1. If Ap(X) = or[oL], then Pol = Int.

The proof can be found at the end of §4.2. The converse statement is not
true, but “Pol = Int” is equivalent to U[Z]%** = o [or], where U is the of-
submodule of oc, generated by {P,(€2)},>0. We have not been able to prove
that Pol = Int, although we can show that Pol is p-adically dense in Int. Some
numerical evidence indicates that Pol = Int seems to hold: the details can be
found in the Appendix by D. Crisan and J. Yang at the end of our paper.

We now explain how to compute the valuation of P, () for certain n. The
elements z € mc, such that G(z) = 0 correspond to those locally L-analytic
characters A, such that A,(1) = 1. Being locally L-analytic, they are necessar-
ily trivial on an open subgroup of oy, and correspond to certain torsion points
of G. We know the valuations of these torsion points, and this way we can deter-
mine the Newton polygon of G(Z). Using this idea, we can prove the following.
Let e be the ramification index of L/Q,. If m > 0, let k,, = [(m — 1)/e], so
that m = ek,, + r with 1 < r <e. For m > 0, let xz,, = qm/p’chrl (so that
xg =1 and 21 = ¢/p). Write m = en + r and let

e 1 q _ e r 1
p—1 -1 I T 1) T T (g
Theorem 1.5.2. For all m > 0, we have val, (P, (Q)) = ym.

For example, if L = Qy2, then val,(P,.(Q)) = 1/p" (¢ — 1) for all k > 0.

Yo =

1.6. Galois-continuous functions and the Katz map. Following Katz
[19], we let C&, (oL, oc,) denote the o-module of Galois-continuous functions,
namely those continuous functions f : or, — oc, such that g(f(a)) = f(7(g)-a)
foralla € o and g € G. If P(T) € L[T], then a — P(a-Q) is such a function.
Let K be a closed subfield of C,, containing L. The dual Katz map is the map
K* : Hom,, (C& (0L, 0c,), 0x) — ok [Z] given by p— > oo u(Py) - Z™. Let
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ok [Z]%+™ denote the set of f(Z) € ok [Z] such that ¢} (f(Z)) € ox[Z] for
all n > 1. Our main technical result is the following
Theorem 1.6.1. Suppose that L = Q2.

(1) The map K* : Hom,, (C&, (oL, 0c,), 0K ) — ok [Z] is injective.

(2) Its image is equal to ox [Z]¥a-mt.

An important part of our paper is devoted to providing a proof of this
theorem, which is completed at the end of §3.6. We note that Theorem 1.6.1
was stated by Katz at [19, p. 60], but he did not give a proof. The remarks
contained in the last paragraph of [19, §IV] seem to indicate that his proof is
different to ours.

The hardest part of the theorem is the claim concerning the image of K*.
Note that when L = Q,2, the dual of the p-divisible group attached to G
has dimension 1. Using this and Theorem 1.5.2 for L = Q,2, we can prove
(see Proposition 3.6.5) that every element of 0o = 0(152” can be written as
Y ns0 A Pn(Q2) where Ay, € or, and \,, — 0. This important ingredient of the
proof of Theorem 1.6.1 is not known to be available if L # Q2.

1.7. Applications of the Katz isomorphism. Throughout this section, we
assume that L = Q2 and m = p, so that £* : Hom,, (C(O}al(oL,ocp),oK) —
ok [Z]¥+™ is an isomorphism. Let Lo, = C5 7 and 0 = o%éi”. Since 7 = p,
Lo is also the completion of L(G[p>]).

Theorem 1.6.1 gives us an isomorphism K* : Hom,, (C&,, (0}, 0c,), 0K) —
ox[Z]¥+=°, and we have a natural isomorphism Cgal(oz ,0C,) =+ 0so. Applying
this to K = L, we get the following result (Theorem 5.1.4), where of =
Homy,, (000, 01):

Theorem 1.7.1. The map K* gives rise to an isomorphism o, ~ or[Z]%+=0.

Let I'T = Gal(L(G[p>])/L) and I'g, = Gal(Qy(pp=)/Qp). In the cyclo-
tomic setting, Perrin-Riou showed [25, Lemma 1.5] that Z,[Z]¥»=° is a free
Zp[[Fny:}]-module of rank 1. She also raised the question of what happens in
the present setting. Using Theorem 1.7.1, we show in Corollary 5.2.12 that
0r[Z]¥«=° is in fact not a free oy [['¥T]-module of rank 1.

We can also apply the isomorphism Hom,, (0s0,05) =~ 0x[Z]¥*=° to K =
Lo, and we get Hom,,, (0co, 00o) = 000[Z]¥7=C. The natural action of G, on
the left is the twisted Galois action on the right. Since Az (X) = oc, [Z2]“+* =
000[Z] €1, we get the following result (Theorem 5.1.6):

Theorem 1.7.2. We have EndOGLL (000) == Ap(X)¥a=0,

Recall that or,[o;] C Ar(X)¥=C. If a € o), then d, € op[o}] acts on 0s
by an element g € G, such that 7(g) = a. Since Ar(X) = or[or] if and only
if Ar(X)¥+=% =0 ]o}], we get the following criterion (Theorem 5.1.8):
Theorem 1.7.3. We have AL(X) = or[or] if and only if every continuous L-

linear and G -equivariant map f : Loo — Loy comes from the Twasawa algebra
L ®0L oy, IIF%TH .
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In the cyclotomic case, Tate’s normalized trace maps T}, : Q¢ — Qp(ppn)
are examples of continuous Qp-linear and Gq,-equivariant maps f : QY —
Q;¥¢ that do not come from the Iwasawa algebra L ®,, or[I'g ]. The lack
of normalized trace maps in the Lubin—Tate setting is a source of many com-
plications. In his PhD thesis, Fourquaux considered continuous L-linear and
G p-equivariant maps f : Lo, — Lo. We generalize some of Fourquaux’s re-
sults: we prove in Proposition 5.1.13 that if f # 0 is such a map, then there
exists n > 0 such that (L) contains a basis of the L,,-vector space L,[log ],
where L,, = L(G[p"]). In particular, f necessarily has a very large image, so
there can be no analogue of the equivariant trace maps T5,.

The Katz isomorphism also allows us to prove several results about the
span of the polynomials P, in C&,,(or,C,). Recall that by [28, Theorem 4.7],
every Galois-continuous locally analytic function on oy, can be expanded as an
overconvergent series in the P,. One may then wonder about the existence of
such an expansion for Galois-continuous functions. Let C°(L) denote the set
of sequences {\, }n>0 with A\, € L and A, — 0. The Katz isomorphism, and
computations involving v, imply the following (Proposition 5.3.1, Corollary
5.3.4, and Corollary 5.3.9):

Theorem 1.7.4. The map C°(L) — C&,,(or,C,), given by

{Antnz0 — la = i An - Po(af)

n=0

is injective, has dense image, but is not surjective.

The same methods imply the following precise estimates for those elements
of C2,,(or,C,) that are given by a polynomial function a +— Q(af2) with
Q(T) € L[T]. See Proposition 5.3.6 and Corollary 5.3.12.

Theorem 1.7.5. Assume that Z is a coordinate on G such that [p|(Z) =
Z9+pZ. Let Q(T) € L[T] be a polynomial such that Q(af)) € oc, for all

a € op, and write Q(T) = Zie:gOQ An - Po(T).

(1) We have \, € p~or if n < ¢".

(2) For all k, there exists such a polynomial Q for which \x_; = pk.

1.8. Other criteria. The following two criteria for our main question may be
of interest.

Let 0 : C,[Z] — C,[Z] denote the invariant derivative & = logj(Z)™!
d/dZ. Tt does not commute with the twisted action of G, but D = Q=1 .9
does. We get a map D : Oc,(X) — Oc,(X) that does not preserve Ac,(X) if
L # Q, since val,(Q271) < 0. Note that D(6,) = a -, if a € or, so that D
does preserve orJor]. We have the following result.

Theorem 1.8.1. If L = Q2, then Ar(X) = or[or] if and only if we have
Dq—l(AL(%)) C AL(:f)
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This Theorem follows from Theorem 1.4.1 and the following result, which is
inspired by computations of Katz: assume that L = Q,> and that 7 = p. Let
A=0Q9 1 /p(g-1)e og . If f(Z) € oc,[Z], then

pq(f) =X DI7H(f) € og, [Z].

Here is another result concerning our main question. It says that if the
answer is yes for a finite extension L/K, then the answer is also yes for K.

Theorem 1.8.2. If L/K is finite and if A, (X1) = orfor], then Ax(Xk) =
ok [ok]-

1.9. Acknowledgements. This paper grew out of a project started with Pe-
ter Schneider. The authors are very grateful to him for numerous discussions,
interesting insights (in particular, considering the Katz isomorphism), and sev-
eral invitations to Miinster. Several results in this paper were obtained in
collaboration with him. L.B. also thanks Pierre Colmez for some discussions
about the main problem of this paper.

2. THE CHARACTER VARIETY

2.1. Notation. Let Q, C L C C, be a field of finite degree d over Q,, or,
the ring of integers of L, m € o, a fixed prime element, k;, = or /7oL the
residue field, ¢ := |kr| and e the absolute ramification index of L. We always
use the absolute value | | on C, which is normalized by |p| = p~!. We let
G = Gal(L/L) denote the absolute Galois group of L. Throughout our
coefficient field K is a complete intermediate extension L C K C C,,.

2.2. The p-adic Fourier transform. We are interested in the character va-
riety X of the L-analytic commutative group (or,+). We refer to [28, §2] for
a precise definition, but recall that X is a rigid analytic variety defined over L,
whose set of K-points (for K a field extension of L complete with respect to a
non-archimedean absolute value extending the one on L) is the group X(K) of
K-valued characters x : (or,+) — (K*, X) that are also L-analytic functions:

X(K):={feCl™(or,K): f(a+b) = fla)f(b) forall a,b€cor}.
Here CF—2"(o, K) is the space of locally L-analytic K-valued functions on
or. Let DX~ (or, K) be the K-algebra of locally L-analytic distributions on
or, defined in [29, §2]. One of the main results of p-adic Fourier Theory —
[28, Theorem 2.3] — tells us that there is a canonical isomorphism

F:DF (0, K) = O(X x1 K)
called the p-adic Fourier Transform. This isomorphism is determined by
FN)(x) = Ax) forall \e DF(or,K),x € X(K).

Since X is a rigid L-analytic variety, we have at our disposal the subalgebra
0°(X) of O(%X) counsisting of globally-defined, rigid analytic functions on X%
that are power-bounded — see [7, §1.2.5].
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Definition 2.2.1. Write A(X) := O°(X).

The functorial definition of the character variety does not shed much light on
its internal structure. It turns out that the base change X x , K is isomorphic to
the rigid analytic open unit disc over K, provided the field K is large enough.
This isomorphism is obtained with the help of Lubin-Tate formal groups and
their associated p-divisible groups.

2.3. Lubin-Tate formal groups. Let Z be an indeterminate and let
Fr = (nZ+ Z%0L[Z]) N (Z?+ 7oL [Z])

be the set of possible Frobenius power series. Recall [21, Theorem 8.1.1]* that
for every Frobenius power series ¢(Z) € %, there is a unique formal group
law Fyzy = Z1 © Z> € op[Z1,Z5] such that p(Z) is an endomorphism of
F,(z). Since we have fixed a coordinate Z on the power series ring oy [Z], this
formal group law defines a formal group® (G, @) on the underlying formal affine
scheme Spf o1, [Z], where we give o, [Z] the Z-adic topology. This formal group
is called a Lubin-Tate formal group. Up to isomorphism of formal groups, it
does not depend on the choice of the Frobenius power series ¢(Z), however it
does depend on the choice of w. The base change of G to the completion Lur
of the maximal unramified extension L"" of L does not even depend on the
choice of 7.

The Lubin-Tate formal group G is in fact a formal or,-module. This means
that there is a ring homomorphism o, — End(G), a — [a](Z) € or[Z], such
that [a](Z) = aZ mod Z?0.[Z] for all a € or. In other words, the formal
group G admits an action of oy, by endomorphisms of formal groups, in such
a way that the differential of this action at the identity element 1 of G agrees
with the natural op-action on the cotangent space of G at 1. The action of
7 € or, is given by the power series [7](Z) = ¢(Z).

2.4. A review of p-divisible groups. In his seminal paper [32], Tate intro-
duced p-divisible groups and considered their relation to formal groups. Here
we review some of his fundamental theorems.

Let R be a commutative base ring and let ' = (Spf A, ) be a commutative
formal group over R where A = R[X1,---,X4] is a power series ring in d
variables over R. Then we can associate with I' the p-divisible group I'(p) =
(T(p)n,in) over R where T'(p), := T'[p"] is the subgroup of elements of T'
killed by p™. More precisely, let ¢ : A — A be the continuous R-algebra
homomorphism which corresponds to multiplication by p on I' and let J,, be the
ideal AY™(X1)+-- -+ AY™(Xy4) of A; then A/ J, is a Hopf algebra over R free of
finite rank over R, and I'(p),, = Spec(.A/J,) is the corresponding commutative
finite flat group scheme over R. The closed immersions iy, : I'(p)rn, = I'(p)n+1
are obtained from the R-algebra surjections A/J,4+1 — A/ J,.

INote that what Lang calls a formal group should really be called a formal group law.
2a group object in the category of formal schemes over Spf oy,
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1008 LAURENT BERGER AND KONSTANTIN ARDAKOV

Theorem 2.4.1 (§2.2, Proposition 1 [32]). Let R be a complete Noetherian
local ring whose residue field k is of characteristic p > 0. Then T' — I'(p) is an
equivalence between the category of divisible commutative formal groups over
R and the category of connected p-divisible groups over R.

Recall that the formal group T is said to be diwisible if A/J; is finitely gen-
erated as an R-module, and a p-divisble group (I',,,4,) is said to be connected
if every finite flat group scheme I',, is a connected scheme.

Remark 2.4.2. The fact that the functor I' — T'(p) is fully faithful holds in
greater generality: if R is any commutative ring and G, H are divisible formal
groups defined over R such that O(G) and O(H) are power series rings in
finitely many variables over R, then the natural map

HOHIR_fgp(G, H) - Homp—div(G(p)a H(p))
is a bijection.

Now we specialise to the case where R is our complete discrete valuation
ring or,. The Tate module associated to a p-divisible group T' = (T'y,,4,) is by
definition

T(I) := lim I, (L)

where L is the algebraic closure of L, T',(L) = Hom,, —a1(O(T',), L) is the set
of L-points of I',,, and the connecting maps in the inverse limit are induced by
the multiplication-by-p-maps j, : I',+1 — 'y, By functoriality, the Tate mod-
ule T'(T) carries a natural action of the absolute Galois group G, = Gal(L/L),
making T'(I') into a continuous Z,-linear representation of G, of rank equal
to the height h of T'. Remarkably, it turns out that this Galois representation
completely determines the p-divisible group I'. More precisely, we have the
following

Theorem 2.4.3 (§4.2, Corollary 1 [32]). The functor T' — T(T) is a fully
faithful embedding of the category of p-divisible groups over oy, into the category
of finite rank Z,-linear continuous representations of G .

2.5. Cartier duality for p-divisible groups. The category of commutative
finite flat group R-schemes admits a duality called Cartier duality: if G is a
commutative finite flat group scheme over R, then its Cartier dual is defined
by GV = Spec(O(G)*) where O(G)* := Hompg(O(G), R) is the R-linear dual of
the coordinate ring O(G). The group structure on GV is obtained by dualising
the multiplication map on O(G) and the scheme structure on GV is obtained
by dualising the comultiplication map on O(G) encoding the group structure
on G.

Tate shows in [32, §2.3] that Cartier duality extends naturally to a duality
I +— TV on the category of p-divisible groups. He also shows in [32, §4] that
when R = or, the Tate-module functor to Galois representations converts
Cartier duality into what is now called Tate duality on Galois representations,

Miinster Journal of Mathematics VoL. — (—), 999-999



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 1009

namely V — Hom(V,Z,(1)). In other words, there is a natural isomorphism
of continuous G r-representations on finite rank Z,-modules

T(TY) = Homgz, (T'(T"), Zy(1))

where Z,(1) := T(G,,(p)) is the Tate module associated to the formal multi-

plicative group @m, the formal completion at the identity of the group scheme
Gy, := Specor [T, T71].

2.6. The character 7 : G, — o] and the period Q. We return to the
Lubin-Tate formal group G as in §2.3, which is easily seen to be divisible.
Because G is a formal op-module, the functoriality of T'(—) implies that the
Tate module T'(G(p)) of the p-divisible group G(p) associated with G is actually
an or-module. It is a fundamental fact due to Lubin and Tate — see [23,
Theorem 2] — that T(G(p)) is a free or-module of rank one. Since oy, is itself
a free Z,-module of rank d = [L : Q,], it follows that the underlying Z,-module
of T(G(p)¥) = Homg, (T(G(p)),Zy) is free of rank d as a Zy,-module as well.
Since it is also an or-module by the functoriality of Homgz, (—,Z,), we see that
T(G(p)V) is also a free or-module of rank 1.

On the way to his proof of Theorem 2.4.3, Tate explains how to compute
T(G(p)Y): using Cartier duality, on [32, p. 177] he obtains a natural isomor-
phism of abelian groups

(1) T(g(p)\/) = Hompfdiv /OCP (g(p) XOL OCW@m(p) ><()L O(Cp)'

On the other hand, applying Remark 2.4.2 with R = oc,, we see that the
natural map

(2) HOmfgp/on (G %o, oc,, @m Xop O@p)

~

— Homp—div /oc, (g(P) Xor O(vaGm(p) Xor O(Cp)

is a bijection. As a consequence, we see that Homygg, Joc, (Gxoy0c,,GmXo,0c,)
is free of rank 1 as an or-module.

Definition 2.6.1.

(1) We fix a generator ¢/ for T(G(p)") as an or-module.
(2) We let Fy; be the generator for the or-module

HOmfgp /OCp (g XOL O(Cp7Gm XOL O(Cp)a

which corresponds to ¢/ along the isomorphism

T(g(p)v) E) I—Iornfgp/ocz7 (g Xor, Opr(@m Xor, O(CP)

obtained by combining (1) and (2).
(3) We let 7 : G, — of be the character afforded by the free rank 1
or-module T(G(p)Y):

o)) =71(o)t, forall oeGy.

o o
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The morphism of formal groups Fy o G X, 0C, = @m Xo,, OC, i an element
of

th(Z) S O(g Xop OCP) = Ocp[[Z]].
Then 1 + Fy, (Z) is “grouplike” in the topological Hopf algebra oc,[Z]: it
satisfies the relation

L+ Fy(Z1© Z2) = (1 + Fy (Z1))(1 + Fy (Z2)).

When we further base change the formal group G x,, oc, to C,, it becomes
isomorphic to the additive formal group. It follows from this that log Fy, (Z) is
necessarily “primitive” in the topological Hopf algebra C,[Z]: it satisfies the
relation

(3) log(1+ Fy (Z1 & Z3)) = log(1 + Fy, (Z1)) + log(1 + Fyy (Z2)).

Since the logarithm log;(Z) of the formal group G spans the space of primitive
elements in C,[Z], it follows that there exists a unique element Q € C,, such
that

1+ Fy (Z) = exp(Qlogp(Z)).

Definition 2.6.2. The element 2 is called the period of the dual p-divisible
group G(p)".

Let I, C G denote the inertia subgroup.
Lemma 2.6.3. If L # Q,, then the character T : I, — o} has an open image.

Proof. Let x, be the character describing the G p-action on the Tate module
T of G. By local class field theory we know that on I1,, Normp g, oXx = Xeyes
the cyclotomic character. From Definition 2.6.1(2), we have 7 = x7' - Xcye-
Hence 7 : I, — of is the composition of the surjective map xr : I, — oy and
of the map given by = — HU:L_)@W o1 0 (2)-

On the Lie algebra L of o}, the derivative of the above map is given by
U = Trp g, —1d. We prove that U : L — L is injective, hence surjective,
which implies the lemma. If U(x) = 0, then x = (U + Id)z = Trp g, (z) € Q,
and hence U(z) = ([L : Q,] — 1)z so that z = 0. O

For future use, we record here the more precise result (pointed out to us by
B. Xie) which gives a sufficient criterion for 7 to be surjective.

Lemma 2.6.4. Ifd—1 and (p—1)p are coprime, then T : I, — o is surjective.
Proof. Since 7 = ;! - Xeye and Xcye = Normyp /g, oxx, we have

T(g9) = X,T(g)*1 Normy q, (x«(g)) for any g € I.

Note also that the restriction to Iy, of the totally ramified surjective character
Xr — 0F is still surjective. Let now u € o be any fixed element.

We first show that there is an a € Z such that a®~! = Normy, /g, (u). Let
v := Normp, g, (u) and let ¥ denote its image in ). By our assumption the
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polynomial Z9~! — 4 is separable over F,, and has a root in ). Hence Hensel’s
Lemma implies that the polynomial Z¢~! — v has a root a € Z;.
Choosing now a g € Iy, such that x.(g) = au™! we deduce that

7(g9) = (au™1)7? NormL/Qp(au_l) = ua"ta? NormL/Qp(u_l) = u. O

2.7. The Amice-Katz transform. With the period 2 € C, in hand, we now
recall some constructions from p-adic Fourier Theory [28]. For each a € oy,
define

Ag =1+ Fay, (Z) = exp(aQtlogpr(2)) € Cp[Z] ™.
The map (or,+) — (C,[Z]*, x) which sends a € or, to A, is a group ho-

momorphism. The fundamental property of these power series is that their
coefficients all lie in oc,:

A, € oc, [Z]* forall ac€or.

This follows from the fact that for each a € o, Fayr : G X, 0c, — @m Xop, 0C,
is a homomorphism of formal groups defined over oc,; see also [28, Lemma
4.2(5)].

Definition 2.7.1.

(1) Let Lo be the closure in C, of the subfield L(2) of C, generated by
L and .

(2) Let L, := Lo, N L.

(3) Let 0o := Lo Nog,-

(4) Let o, := L, Noc,.

Lemma 2.7.2. We have Lo, = (CI;E” and 0o = o}éi”,

Proof. From the relation appearing in Definition 2.6.1(3), we deduce
o(Q)=71(0)2 forall oe€Gyp.

This immediately implies that Lo, € Cx*". Let H := Gal(L/L,), a closed
subgroup of G, and let g € H. Then g extends to a unique continuous L.-
linear automorphism g of C,. Now L, is the closure of L, in C,, so g fixes
Q € L. Hence 7(g) = 1 by the above relation. Hence H < ker 7 which implies

that (Cl;e” < (Cf . But " is dense in (Cf by the Ax-Sen-Tate theorem, [9,
Proposition 2.1.2], and ZH = L, by infinite Galois theory. Hence L, is dense

in Cf, SO (Cf is contained in the closure of L, in C,, namely L. Hence
Cher™ < L.

The second statement follows from the first by intersecting Lo, = (Clzje”
with O(C:n' (Il

It is clear from the definition of A, that in fact A, € 0,[Z]* for all a € of,.
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Definition 2.7.3. We write oy, [or] for the completed group ring of the abelian
group oy, with coefficients in o;,. The Amice-Katz transform is the unique
extension to a continuous oy-algebra homomorphism

p:opfor] = O(G X0, 006) = 0s0[Z]

of the group homomorphism oy, — oc,[Z]* which sends a € o to A, €
000 [Z] .

2.8. The Schneider-Teitelbaum uniformisation. At this point, rigid an-
alytic geometry enters the picture. Let B be the rigid L..-analytic open disc
of radius one, with local coordinate Z. By definition, B is the colimit of the
rigid Loo-analytic closed discs B(r) of radius r < 1, as r € |LX | approaches 1
from below:

B = colim,«1 B(r), B(r) =Sp Lo {Z/7)

where 7 is any choice of an element of LY such that || = r. Choosing,
for convenience, any strictly increasing sequence r; < 19 < r3 < --- of real
numbers in | Lo|N(0, 1) approaching 1 from below, we have a descending chain
of L..-algebras, each one containing o, [Z]:

o0

LOO<Z/7;1> 2 LOO<Z/7'"2> 2 L0<><Z/7'"3> 2 2 ﬂ LOO<Z/fn>

—O(B) 2 0u]Z] ®0, L.

With this notation in place, it follows from one of Schneider-Teitelbaum’s main
results, [28, Theorem 3.6], that the op-algebra homomorphism p : orJor] —
000[Z] extends to a continuous isomorphism of L-Fréchet algebras

[irig : D* (01, Loo) — O(B)

which makes the following diagram commutative:

OL[[OL]] ®0L L 4“) OOO[[Z]] ®OL L

DE=an(or L) ;:g—> O(B)
The vertical arrow on the left is the natural restriction map orpfor] ®., L
into DL=2%(oy,, L), witnessing the fact that every locally L-analytic function
on oy, is continuous, and hence that every continuous distribution on oy, re-
stricts to a locally L-analytic distribution on oy,; see [29] for more details. The
vertical arrow on the right is the inclusion 0x[Z] ®,, L C O(B) from the
above discussion. Combining the isomorphism piz with the Fourier transform
F: D= (0p, Lo) — O(X X1, Ls), we obtain an isomorphism of L., -Fréchet
algebras

fig © F 1 O(X x1, Ley) — O(B).
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Since X Xy Lo and B are both Stein rigid analytic varieties over L., this
isomorphism determines, and is completely determined by, an isomorphism

K = SP(frig oF H:B Sx X1, Losg-

This is a version of [28, Theorem 3.6]: the base-change of the character variety
X to Ly is isomorphic to the rigid Lo,-analytic open disc of radius one, so
Kk can be viewed as giving a uniformisation of X X L by B. Schneider
and Teitelbaum also show that the morphism « is given on C,-points by the
following rule: for each z € B(C,) we can evaluate the power series A, €
0] Z] at Z = z to obtain an element A,(z) € oép, and the locally L-analytic
character k(z) : o, = C, is given by

k(z)(a) = Ag(2) forall ae€or.

2.9. AL(X) and the twisted G-action on C,[Z]. It is natural to enquire,
in the light of the Schneider-Teitelbaum isomorphism

kB —s X xy Lo

how far the character variety X is itself from being isomorphic to an open rigid
L-analytic unit disc. For general reasons, X x Lo, carries a natural action of
the Galois group G, acting on the second factor, giving an isomorphism of
L-Fréchet algebras

O(X) =2 O(X x1 Loo)Cr.
Definition 2.9.1. The twisted G-action on O(B) is given as follows:
ox F(Z):= (°F)([r(0)"'(Z)) forall F(Z)ec OB),ocCy.
Here F +— 7F is the “coefficient-wise” Gp-action on C,[Z] D O(B), given
explicitly by “( io anZ™) = i o(ap)Z" for all o € Gp.

n= n=0
Schneider and Teitelbaum showed that this twisted Gp-action on O(B) in
fact comes from the following twisted G -action on the set of C,-points B(C,):

oxz=r "(00k(2)) forall zeB(Cp),o¢€Gy.
From the proof of [28, Corollary 3.8], we can also deduce the following
Proposition 2.9.2. The algebra isomorphism

K* = lyig o F 11 O(X X1, Log) — O(B)

is equivariant with respect to the natural Gp-action on the source, and the
twisted G',-action on the target.

Corollary 2.9.3. The map pu.ig restricts to give an isomorphism of or,-algebras
(Mrig o]_——l)o . Oo(x> i) Ooo[[Z]]GL7*.
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Proof. Applying the functor O° to the isomorphism of rigid L..-analytic va-
rieties Kk : B — X X, Lo, we see that pyig o F~1 restricts to an o..-algebra
isomorphism

O(% x1 Loo)° — O(B)°.
It is well known that O(B)° = 0,[Z] and that Ap(X) = O(X)° = (O(X %1,
L+)°)%%. The result follows by passing to G-invariants and applying Propo-
sition 2.9.2. 0

Consequently, the image of the Amice-Katz transform p : op[or] = 0s0[Z]
lands in the subring of twisted Gp-invariants. One of our main goals in this
paper is to study the following

Question 2.9.4. Is the Amice-Katz transform p : orJor] — 000[Z]%%* an
isomorphism?

2.10. Some properties of Ay (X). In this section, we identify (through the
LT-isomorphism) the ring Az (X) = O(X)° with the ring 0., [Z]“%"*. From [5]
we know that Ar(X) is an integral domain and that the norm || ||x = || |1 on
A (%) is multiplicative. Let ki denote the residue field of K.

Lemma 2.10.1. If L # Q, and if K is a finite extension of L, then k[Z]Cx* =
k.

Proof. If g € I, then g acts trivially on k, so that the G, . action of g € I
on k[Z] is given by g : D0 2™ = Y50 an([7(9)~11Z)"™. The character
7 : Ix — of has an open image by Lemma 2.6.3. This image therefore contains
X (Im) where M C Lo is some finite extension of L, and k[Z]'x* = k[ Z]1M
where Ip; acts on k[Z] via g: 37, SganZ™ = 32, 5o an([xx(9)]Z2)". We know
from the theory of the field of norms that k[Z] with that action of I; embeds
into Et ~ ££n (—ya %C» in an Ips-equivariant way. Let P := (CZI,M . We have
(ET)m ~ @(_)q op = k since P/Q, is finitely ramified. Hence k[Z]' =k
and k[Z]'%* = k. The Lemma then follows from the fact that on k, the twisted

. .. . . —G K%
G r-action coincides with the usual G-action, so that k BT = k. O

Let xriv denote the character oy, — (C; given by Xtriv(a) = 1 for all a € of,.
Note that xtiv = #(0). We have a surjective map Ar(X) — k given by
f = f(Xtriv) mod mp. Tts kernel m(X) := {f € AL(X) : f(Xtriv) € mp} is a
maximal ideal of A (X), with residue field k. Lemma 2.10.1 above implies that
m(X) = mg, [Z]“+*

Lemma 2.10.2. The ring Ar(X) is a local ring.

Proof. We have to show that m(X) is the unique maximal ideal, i.e., that f is
a unit in Az (X) if and only if f(Xtriv) € 0f . The direct implication is obvious.
We therefore assume that f(xiriv) € o7 . The image F(Z) € oc,[Z] of f under
the LT-isomorphism then satisfies F(0) € o; and hence is a unit in oc, [Z].
We deduce that f is a unit in Oc,(X). Since the twisted G'-action must fix
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with f also its inverse we obtain that f is a unit in O,(X) and hence in O% (X)
by [5] Cor. 1.24. The multiplicativity of the norm | ||x finally implies that

L=fllx=1F""lx O

The op-algebra Ar(X) carries two natural topologies. One is the p-adic
topology which is induced by the norm || ||x. The other is the topology induced
by the Fréchet topology of O (X). We will call the latter the weak topology
on Ap(%).

Remark 2.10.3. The weak topology on Ap(X) is coarser than the p-adic
topology.

Proof. Let X = J,,~, X, be a Stein covering by affinoid subdomains X,, (cf.
[5] §1.3). The Fréchet topology of O (X) is the projective limit of the Banach
topologies on the affinoid algebras O (X,,). Since X is reduced these Banach
topologies are defined by the respective supremum norm (cf. [7, Thm. 6.2.4/1] ).
Therefore the Banach topology on Op,(%,,) induces on its unit ball with respect
to the supremum norm the p-adic topology. It follows that the natural maps
AL (X) — Op(%,) are continuous for the p-adic topology on the source and
the Banach topology on the target. Therefore the inclusion Ay (X) C OL(X)
is continuous for the p-adic topology on the source and the Fréchet topology
on the target. O

Lemma 2.10.4. The or,-module Ap(X) is p-adically separated and complete.

Proof. We show that, for any reduced rigid analytic variety %) over L, the ring
Ofl(@) of holomorphic functions bounded by 1 is p-adically separated and
complete. Let 9 = (J,c;Y: be an admissible covering by affinoid subdomains.
Since 9) is assumed to be reduced, the supremum seminorm on each Or(2);) is
a norm and defines its affinoid Banach topology (cf. [5, §1.3] ). Hence || ||y is a
norm on 0% (%)) and defines the p-adic topology on Ofl(ﬁj). In particular, the
p-adic topology on Ofl(@) is separated. Now let (f,,), be a Cauchy sequence
for || ||y in Ofl(Q)). It restricts to a Cauchy sequence in O%l(@i) for each
i € I which converges to a function g; € O%l(gji). Obviously the g; glue to a
function g € 051@). We have to show that the sequence (f,), converges to
g with respect to || ||g. Let € > 0 be arbitrary. First we find an integer N > 0
such that || fp, — fnlly < € for all m,n > N. Secondly, for any i € I, we have
llg = fmlly. < € for all sufficiently large (depending on i) m. It follows that

Hg*fﬂHQJz < maX(”gffm”@m ”fm*fﬂHQJq) < maX(Hg*fm”iDiv Hfmffn”fy) <
e for any n > N and any ¢ € I. Hence ||g — fn||y < € for any n > N. O

Proposition 2.10.5. The or-module A, (%) is compact in the weak topology.

Proof. According to [13, Prop. 6.4.5] the space X is strictly quasi-Stein. This
means that a Stein covering X = (J,,~; X, can be chosen such that the inclusion
maps X,, C X,,41 are relatively compact. By loc. cit. Prop. 2.1.16 this implies
that the restriction maps Op(%X,4+1) — Op(X,), which we simply view as
inclusions, are compact maps between Banach spaces. Working over a locally
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compact field we deduce (cf. [27, Remark 16.3] and [24, Cor. 6.1.14] ) that the
closure C,, of OF'(X,,41) in OL(X,) is compact. We, of course, have Af,(X) C
Ofl(%nﬂ) C C,. Therefore, if £,, C O (X,,) is any open lattice, then the of-
modules A (X)/AL(X)NL,, C C,,/C,NL,, are finite. It is straightforward to see
that then Az (%X)/Ar(%)NL must be finite for any open lattice £ C Or(X). On
the other hand Ay (X) is weakly closed in O (%) and hence is weakly complete.
It follows [27, Cor. 7.6] that Ap(X) with its weak topology is the projective
limit of the finite groups Az (X)/Ar(X) N L and hence is compact. O

Lemma 2.10.6.

(1) Any open neighbourhood of zero for the weak topology on Ar(X) con-
tains a power of the mazimal ideal m(X).

(2) If the ideal m(X) is finitely generated then the weak topology on A (%)
coincides with the m(X)-adic topology.

Proof. We have m(X) = np A (X)+n, where n denotes the ideal of all functions
in Ar(X) which vanish in xiv. We consider the divisor A on X which maps
Xtriv t0 1 and all other points to zero. For any integer m > 1 we have the
ideal Iya € O (X) corresponding to the divisor mA. As a consequence of [5,
Prop. 1.4] these ideals are closed in O (X) and satisfy (,, I, = {0}. Hence
the ideals I, N AL(X) are closed in Ap(X) with zero intersection. Let now
U C AL(X) be any fixed open neighbourhood of zero for the weak topology.
Suppose that I,,, N Ap(X) € U for any m > 1. We then may pick, for any
m > 1, a function f,, € (I, N AL (X)) \ U. According to Proposition 2.10.5
the weak topology on Ap(X) is compact. Hence the sequence (f,)m, has a
convergent subsequence with a limit f € Ap(X). On the one hand we have
fn € I, N AL(X) for any n > m. Since I, N AL (X) is closed it follows that
feln,nNAL(X) for any m > 1. Therefore f = 0. But on the other hand all
the f,, and hence f lie in the closed complement of the open subset U. This is
a contradiction. We conclude that n™ C I, N A (X) C U for any sufficiently
large m. As a consequence of Remark 2.10.3 we also have n7"Ap(X) C U for
any sufficiently large m. Hence m(X)*™ C 7™AL(X) +n™ C U for large m.
This proves (1).

We have to show that the ideals m(X)™ are open for the weak topology.
Under our assumption all ideals m(X)™, for m > 1, are finitely generated.
Hence all m(X)™*!/m(X)™ are finite dimensional k-vector spaces. We see that
each quotient Az (X)/m(X)™, for m > 1, is a finite or-module. Hence it suffices
to show that the ideal m(X)™ is closed for the weak topology. Let fi,..., f, be
generators of m(X)™. Then m(X)™ is the image of the map AL (X)" — AL(X)
sending (hi,...,hy) to >, hif;, which is a continuous map between compact
spaces by Proposition 2.10.5. This proves (2). O

Remark 2.10.7. Any f € m(X) satisfies ||f|x, < 1 for all n.

Proof. If || f||x, = 1 then the maximum modulus principle for the affinoid X,
implies that there is a point z € X,, such that |f(z)| = 1. By considering f as
an element of oc, [T, we see that f(0) is a unit so that f is not in m(X). O
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Next we consider the injective map
Alor) = orfor] — AL(X) ,

which we treat as an inclusion. More explicitly, let aq,...aq be a basis of oy,
as a Zy-module. Then the image of the above map is the ring of formal power
series o [0q, — b0, - - -, 0a, — 0o] inside Ap(%). We immediately conclude from
Lemma 2.10.1 that

m(%) N OL[[OL]] = <7TL,5a1 — (50, . ’6%1 — (50> - OLHOL]] .
Lemma 2.10.8. We have O7*(X) Nogfor] = mrorfoL].

Proof. We have mpopfor] C P := Ofl(i“) Nogfor]. Tt follows that P :=
P/mropfor] is a “canonical” prime ideal in the formal power series ring kfoL]:
in particular, it is invariant for the o} action on the mod-p Iwasawa algebra
k[or]. Suppose for a contradiction that P is the (unique) maximal ideal of
kJor]. Then P would contain d,, — dp and we would have [|d,, — dol|x < 1.
For each n > 0, let (,n € oc, denote a primitive p"-root of unity, and let
Xn : or — CJ be the unique torsion (hence locally L-analytic) character of
or, that sends a; to (p» and a; to 1 for all ¢ > 1. Then x, € X(C,), and
[(8a, — 00)(Xn)| < || 0ay — dollx < 1 for all n > 0. However, |(da; — 00)(Xn)| =

|Gpn — 1] = [p|»" @1 tends to 1 from below, which is a contradiction. Hence
P is not the maximal ideal of k[or].

In this situation, [1, Corollary 8.1(b)] implies that P must be the zero ideal,
provided we can show that the open subgroup 1+ po;, C o} acts rationally
irreducibly on oy,.

We have to show that every non-trivial 1 + pop-stable subgroup of oy, is
open in or,. But such a subgroup contains (1 4+ por)a — a = paoy, for some
0 # a € or, and is therefore open in oy,. O

Corollary 2.10.9. The restriction of the norm || - ||x on AL(X) to or]oL]
coincides with the m-adic norm on opfor]: for any x € "o Jor]\7" toL[oL]
we have

]l = |"].
Proof. Since ||[7"y|lx = |7"| - |ly|lx for any y € orJor], we may assume that
n = 0. But now since = ¢ mwop[or], Lemma 2.10.8 tells us that ||z]|x =1. O

Corollary 2.10.10. The or-module Ar(X)/or[oL] is torsionfree.

Proof. Suppose that f € Ar(X) is such that 7" f € orfor] for some n >
0. Choose n least possible and suppose for a contradiction that n > 1.
Then 7" f € opJor]\mor[or], else otherwise we would be able to deduce that
7 1f € orfor]. Hence |7 f|| = 1 by Corollary 2.10.9, which implies that
|7|=™ = || f|| < 1. Hence n = 0. O

Corollary 2.10.11. We have AL (X) N (L ®,, orfoL]) = orfoL]-

Miinster Journal of Mathematics VoL. — (—), 999-999



1018 LAURENT BERGER AND KONSTANTIN ARDAKOV

3. THE KATZ ISOMORPHISM

3.1. The v4-operator. Recall that we denote by @ the formal group law of G.
Furthermore let G; denote the group of 7-torsion points of G. Its cardinality is
q. Tt coincides with the set of zeros of the Frobenius power series [7](Z) = ¢(Z).
We fix a m-adically complete and flat o-algebra S in what follows and define
an injective S-algebra endomorphism ¢ : S[Z] — S[Z] by setting
o(F)(Z) = F([n](Z)) forall F(Z)e S[Z].
Lemma 3.1.1.
(1) For any F € S[Z] there is a unique Fy € S[Z] and a unique polynomial
Fy € S[Z] of degree < q such that F = ¢(Z)Fy + Fy.
(2) {F € S[Z]: F(C) = 0 for any ¢ € G1} = #(2)S[Z].
Proof. (1). This is a form of Weierstrass division. Since ¢(Z) = Z9 mod
mwor[Z], the proof of [8, VIL.3.8 Prop. 5] goes through by replacing the maximal
ideal of S in the argument with the ideal 7S.
(2). Since ¢(Z) vanishes on Gi, the inclusion D is clear. If F € S[Z]
vanishes on G; then using (1) we may assume that F' € S[Z] with deg F' < q.
But then F' = 0, which gives the other inclusion. O

Using the above Lemma the proof of [10, Lemma 3] remains valid for S and

gives
o(S[Z]) ={F € S[Z] : F(Z) = F((® Z) for all ¢ € G, }.
Since the map ¢ is injective, this description of the image of ¢ implies the
existence of a unique S-linear endomorphism ¢ of S[Z] such that
e(ca(F)(Z)) = > F(C® Z) forany F € S[Z]
CeG1

Definition 3.1.2. Let S[Z]1 := S[Z] ®,, L. The 1p4-operator is defined by

= o s SIZ1 > Il

Note that ¥co1 (respectively, ¢,) preserves S'[Z] (respectively, S’[Z] ) for
any intermediate m-adically complete and flat or-subalgebra S’ of S. These
operators satisfy the following useful Projection Formula.

Lemma 3.1.3. For any F,G € S[Z] we have 4(Fp(G)) = ¢q(F)G

Proof. We may instead establish the analogous formula for t¢ce. Note that

[m(C® Z) = [7](¢) & [7](Z) = [7](Z) for any ¢ € Gu, since [7](¢) = ¢(¢) = 0.

Therefore

P(Yoa(Fe(@)) = > (Fo(G))(¢ @ Z) = ZFC@Z [F(C® 2))

fZFg@Z ZF(@Z G)
(1/Jcol( )p(G) = (¢Col( )G) -
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The result follows because ¢ is injective. O
Corollary 3.1.4. We have the fundamental equation g0 ¢ = lg[z], -

Proof. Note that ¢(1co1(1)) = g1, so ¢(14(1)) = 1 and hence ¢4(1) = 1. Now
set ' =1 in Lemma 3.1.3. g

Next, we remind the reader what the operators ¢ and 1, do to the special
power series A, = exp(aflog;r(Z2)) € 0x[Z] from §2.7.

Lemma 3.1.5. Assume that S is an o.-algebra and take a € or,.

(1) W(Aa) = Arq.
(2) ¢q(Aa) = 6aE7roLAa/7r'

Proof. (1) More generally, whenever a,b € oy, we have
Aq([b](Z)) = exp(afllogrr([b](Z))) = exp(abQlogir(Z)) = Aab(Z).

Hence p(A,) = Au([7](Z)) = Arq as claimed.
(2) Using the fact that log; is a formal homomorphism from G to the
formal additive group we compute

P(Pcol(Ba)) = Y Au(C® Z) =) exp(aQlog (¢ & 2))
¢eGy ¢

= Z exp (af(logy 1 (¢) + logrr(2)))

= (> Ad0)A

¢egy
Under the Schneider-Teitelbaum isomorphism &, the group G; corresponds to
the group of characters y of the finite group oy /7oy, and, if ¢ corresponds
to x, then A, (¢) = evg(x) = x(@), where @ := a + wor,. Hence

e(Yool(A <Z x(@ )

By column orthogonality of characters of the finite group or/7r, we have
22 X(@) = 455 = qdacro, - Hence using part (1): qp(1q(Aa)) = gdaero, Aa =
@Oucro, P(Aq/x). Since  is injective, we deduce that 1,(Aq) = dacror Aa/r
as required. O

Write m := (7, Z) and A := S[Z].
Lemma 3.1.6. The operators ¢ and cor on A are m-adically continuous.

Proof. Since p(Z) € (Z), we see that p(m™) C (7, ¢o(Z))™ C m" for all n > 0.
This implies the m-adic continuity of ¢.

Suppose first that Gy is contained in S. Then the S-linear maps A — A
sending F'(Z) to F(Z @ () are continuous with respect to m-adic topology for
each ¢ € Gi; hence ¢ o 9, is also m-adically continuous in this case. Let
Ly = L(G1), a finite extension of L and let Sy := or, ®,, S. Since or, is
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a free or-module of finite rank, S is still a m-adically complete and flat op-
algebra, so letting A; = S1[Z], we see that poce : A1 — Ap is mA;-adically
continuous. It follows that ¢ 0 9ce; 1 A — A is also m-adically continuous.

Let n > 0 be given. Since ¢(Z) = Z? mod wA, we have m?" = (7, Z)9" C
(m, Z)™ = (7, 0(Z))™ = Ap(m™). Therefore m? N p(A) C Ap(m™) Np(A4) =
©(m™) where this last equation follows from the fact that ¢(A) admits a direct
complement in A as a ¢(A)-module. However since ¢ o 1co) is continuous,
e (m™) C m?” for some m > 0. Hence

whcol(m™) Cm?" Np(A) C p(m™).

The m-adic continuity of 1o now follows from the injectivity of ¢. O

Lemma 3.1.7. We have ¢"(a,) — 0 in the m-adic topology on A, for any
sequence of elements (a,) contained in ZA.

Proof. Since ¢(Z) € G we see that ¢(Z) € Zm. Assume inductively that
©"(Z) € Zm™; then p"TH(Z) € p(Zm™) C p(Z)m"™ C Zm™ ! completing the
induction. Write a,, = Zb,, for some b, € A; then ¢"(a,) = ¢"(Z)p(by) €
Zm"™ Cm"* for all n > 0, so ¢"(a,) — 0. O

We specialize to the case S = 0, until the end of §3.1.

Proposition 3.1.8. Let f € DL=(oy, L) be such that F(f) € O(X)°. Sup-
pose that Py (tig(f)Aa) € 0x[Z] for all a € o, and n > 0. Then f € or[or].

Proof. We will show that |f(1s4rm0, )| <1 for all a € of, and n > 0.
By [28, Lemma 4.6(4)], we have

f(1a+7r”0L) = (f‘sfa)(lwn%)'

The orthogonality of columns in the character table of the finite group or, /7oL,

implies that
1
17\'"0[, = q7n E KRz.

[r7](2)=0
Hence by ibid., (f0_q)(Lrno,) = qi > f(2)A_4(z). We now observe that
[r"](2)=0
1 n
7 2 TEA(E) = ¥ (une(£)A-0)(0).

(7] (2)=0

Since ¥y (prig(f)A—a) € 05[Z] by assumption, we have |f(1447n0, )| < 1 for
all a € of, and n > 0, as claimed.

Therefore there exists g € opfor] such that f = g on all 1,4,n,,. The
function f — g is zero on all locally constant functions, and hence on all torsion
characters, so that it is divisible by log(1 + Z). Since f — g is bounded and
log(1 + Z) is unbounded, this implies that f = g. O

We can now prove Theorem 1.4.1 from the introduction.

Theorem 3.1.9. We have AL (X) = or[or] if and only if (AL (X)) C AL(%).
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Proof. The forward implication is clear in view of Lemma 3.1.5(1). For the
reverse implication, the given condition means that the image 0, [Z]%** of
A (X) = O(X)° under the bijection (g0 F 1)° from Corollary 2.9.3 is stable
under the 1,-operator. Now the result follows from Proposition 3.1.8. (I

3.2. The covariant bialgebra of G. Katz [20, §1] talks about the “algebra
Diff (G) of all G-invariant o -linear differential operators from O(G) into itself”.
Because we are not aware of any place in the literature which adequately deals
with invariant differential operators on formal groups, we will instead use the
covariant bialgebra of G which will turn out to be isomorphic to Katz’s Diff (G).

Definition 3.2.1.

(1) Let Z1 @ Zy € op[Z1, Z3] denote the formal group law defining the
formal group G.

(2) Let U(G) denote the set of all or-linear maps from O(G) = o.[Z] to
or, that vanish on some power of the augmentation ideal Zoy[Z]. In
other words,

U(G) = lim Hom,, (O(G)/2"0(G), o1,

We will often use the abbreviation U := U(G).
(3) For each f,g € U(G), define the product f - g by the formula

(f-9)(F(2)) = (fRg)(F(Z1 ® Z3)) for all F(Z) € o,[Z].

(4) With this product, U(G) is the covariant bialgebra of G, defined at [17,
36.1.8].
(5) For each m > 0, let w,, € U(G) be the unique or-linear map that
satisfies
U (Z™) = O, forall n >0.

(6) Let (—,—):U(G) x O(G) — o1, be the evaluation pairing:
(f, F) = f(F).

This covariant bialgebra is also known as the hyperalgebra or the distribution
algebra of G. Note that U(G) is a commutative ring: this follows directly from
Definition 3.2.1(3), as the formal group law Z; @ Z5 on the Lubin-Tate formal
group G is commutative. We will now explain the link with Katz’s work, using
his notation.

Lemma 3.2.2.
(1) {un :n >0} is an or-module basis for U(G).
(2) Let i > 0 and write (Z1 ® Z3)* = > Xn,m;d)Z2Z5 for some
n,m>0
n+m2>i

A(n,m;i) € or,. Then for all n,m > 0 we have

n+m

Uy * Upy, = Z A(n, m; k)ug.
k=0
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1022 LAURENT BERGER AND KONSTANTIN ARDAKOV

(3) Let s be a variable. The map L[s] — U(G) ®,, L which sends s to
u1 ® 1 is an isomorphism of positively filtered L-algebras.

Proof. (1) This is clear because Z"oL[Z] = 0, Z™ & Z" 1oL [Z] for any n > 0.
(2) We compute that for every n,m,i > 0 we have

(up, - Um)(zz) = (un@Um)((Zl @ ZQ)i)

= (un®um) Z Ma, b;))Z8Z8 | = X(n,m;i).

a,b>0
a+b>1

n+m i
Because > A(n,m;k)uy also sends Z* to A(n, m; 1), it must be equal to ty, up,.

k=0
(3) From (2) we see that the or-submodule U(G), of U(G) generated by
{u; : 0 < i < n} defines an algebra filtration on U(G):
U(g)n : U(Q)m c U(g)n+m for all n,m > 0.

The associated graded ring is the free or-module with basis {gruw, : n > 0}.
Since Z1 ® Zo = Z1 + Zy mod (Z1, Z,)? by part (2), we see that for any i > 0
we have

> Anmii) 2y 2y = (Zy @ Zo)'

n,m>0
n+m>i

=(Zi+2Z)' = ) (Qz?z;n mod (Z1, Zy)"+1.
n+m=i

Equating the coefficient of Z} Zi~ ™ shows that \(n,i — n;i) = (;) whenever
0<n<u:

Aln,m;n+m) = (n+m) for any n,m > 0.
n

Hence from (2) we see that the multiplication in gr U(G) is given by

() (grun) = (

The same formulas hold in gr(U(G) ®,, L). Induction on n shows that we have
(grup)™ = nlgruy, for all n > 0. Since L has characteristic zero, we see that
gr(U(G) ®o,, L) is generated by gru; as an L-algebra. The result follows. O

n-—+m

) BT Uyt -
n

We will henceforth identify U(G)®,, L with the polynomial ring L[s]. Recall
the polynomials P, (Y) € L[Y] from [28, Definition 4.1], which are defined by
the following formal expansion:

exp(Ylogip(2)) = Y Pu(Y)Z™.

m=0

Lemma 3.2.3. For every n > 0, we have u, = P,(uy) inside U(G) ®,, L.
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Proof. The structure constants of Katz’s algebra Diff (G) are the same as the
ones in U(G) by [20, (1.2)] and Lemma 3.2.2(2). So the op-linear map that
sends D(n) € Diff(G) to u, € U(G) is an or-algebra isomorphism. Compar-
ing [20, Corollary 1.8] with [28, Definition 4.1] shows that D(n) = P,(D(1))
in Diff(G) ®,, L for all n > 0. The result follows by applying the algebra
isomorphism Diff(G) — U(G) established above. O

Of course in the context of affine group schemes, this isomorphism between
the algebra of left-invariant differential operators on the group scheme and
the distribution algebra of the group scheme is the well known ‘Invariance
Theorem’, [12, Chapter II, §4, Theorem 6.6].

Next, we consider the action of the monoid o7, on the formal group G. The
covariant bialgebra construction is functorial in G: if ¢ : G — H is a morphism
of formal groups, then U(p) : U(G) — U(H) is the morphism of op-bialgebras
which is the transpose to the op-algebra homomorphism ¢* : O(H) — O(G)
induced by ¢. Using the evaluation pairing, we have the following formula
which defines this action:

(4) U)(f), F) = (f,¢"(F)) forall feU(G),Fec0O(G).
Definition 3.2.4. Take a € or,.

(1) Let [a] : G — G be the action of a on G.

(2) Write a - f :=U([a])(f) for all f € U(G).

The og-algebra endomorphism U([a]) of U(G) extends to an L-algebra en-
domorphism U([a]) ® 1 of U(G) ®,, L = L[s]. What does this action do to the
generator s of L[s]?

Lemma 3.2.5. We have a-s = as for all a € oy,.
Proof. We know that [a](Z) = aZ mod Z%0r[Z]. Hence
U(la)(u1), Z™) = (w1, [a](Z2)") = adn,1 = (au1, Z") forall n>0

using Definition 3.2.1(5). Hence a - u; = au; and so a - s = as. O

Corollary 3.2.6. For each j > i >0 and a € oy, there exists 0;;(a) € oy, such
that

a-u; = Pj(as) = Zoij(a)Pi(s) = Zaij(a)ui.
=0 1=0

Proof. Tt follows from Lemma 3.2.5 that the L-algebra endomorphisms of L[s]
given by s — as preserve the or-subalgebra U(G) C L[s]. Hence a-u; = Pj(as)
lies in U(G) for all a € o, and all 7 > 0. But U(G) has {u; : i > 0} as an og-
module basis by Lemma 3.2.2(a), so P;(as) must be an oz -linear combination
of these u;’s. On the other hand, P;(s) is a polynomial of degree j in s,
therefore so is Pj(as); because deg P; = i for each ¢ it follows that P;(as) is an
L-linear combination of Py(s),--- , P;(s) only. |
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We now introduce a coefficient ring .S, which we assume to be a m-adically
complete op-algebra. For every S-module M, let M* := Homg (M, S) be the
S-module of S-linear functionals on M. We will need to work with a larger
class of S-linear functionals on S[Z] than those arising from U(G), namely the
continuous ones.

Definition 3.2.7. We say that A € S[Z]* is continuous if it is continuous
with respect to the (m, Z)-adic topology on S[Z], and the w-adic topology on
S. Let S[Z]%.s denote the set of these continuous S-linear functionals on S[Z].

Explicitly A € S[Z]* is continuous if and only if for all n > 0 there exists
m > 0 such that A({m, Z)™) C 7"S.

Consider now the base change U(Gs) := U(G) ®,, S, and its m-adic com-
pletion

U(Gs) =1ImU(G) ®q,, (S/7"S).
Since {um, : m > 0} is an or-module basis for U(G) by Lemma 3.2.2(1), we see
that U(Gs) has the following description:

o0

(5) U(gs)z{z_:oamum: ameS,W}i_rgoamzo}.
Here we equip S with the m-adic topology.
Lemma 3.2.8.

(1) The pairing (—,—) : U(G) x or[Z] — or extends to an S-bilinear

pairing
(—,—):U(Gs) x S[Z] — S.
(2) Foreachu € U/(\gs), the S-linear map (u, —) : S[Z] — S is continuous.
(8) The map U(Gs) — S[Z]ks, u > (u,—), is an S-linear bijection.

(4) The map S[Z] — U(Gs) , F — (—, F), is an S-linear bijection.

Proof. (1) Let u = Y amum € U/(Q\S), F = > F,Z"™ € S[Z] and define

m=0 n=0

o0
(u, F) = 3 amFr. This series converges in S because a,, — 0 as m — oo
m=0
and because S is assumed to be m-adically complete.

(2) Let n > 0 and write u = > amUy, with a,, — 0. Then for some r > 0,
m=0

am, € 8 for all m > r. Hence (u,—) sends the ideal (7", Z") of S[Z] into
7S, Since (m, Z)"*" C (x",Z"), we conclude that (u,—) is (m, Z)-adically
continuous.

(3) The injectivity of u + (u,—) follows by evaluating on each Z". Now
let A € S[Z]%, and define a,, := A(Z™) € S for each m > 0. Since A is
(m, Z)-adically continuous, for each n > 0 we can find some r > 0 such that

A({(mw, Z)") C 7«™S. Then a,, € #"S for all m > r which implies that a,, — 0
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(o) —
as m — oo. Hence u := Y amu,, is an element of U(Gs) and (u, —) — A
m=0
vanishes on S[Z] by construction. Since this difference is continuous and since
S[Z] is dense in S[Z] with respect to the (m, Z)-adic topology, we conclude
that A = (u, —).
(4) Again, the injectivity of F' — (—, F) follows from (u,, F) = F,,. Given

an S-linear map A : U(Gs) — S, let F:= > A(un)Z™. Then (tp,, F) = A(um)
n=0
for all m > 0. Since the u,, span U(Gs) as an S-module, A = (—, F). O

As an immediate consequence of Lemma 3.2.8, we have the following

Corollary 3.2.9.
(1) For every continuous S-linear o : S[Z] — S[Z] there exists a unique
S-linear map o* : U(Gg) — U(Gg) such that

(a*u, Fy = (u,aF) for all ue[@, F e S[Z].

(2) For every S-linear B : U(Gs) — U(Gs) there exists a unique S-linear
map B5* : S[Z] — S[Z] such that

—

(u, BF) = (B*u, F) for all uwe U(Gs), F € S[Z].
We also extend this S-linear pairing to an Sy, := S ®,, L-linear pairing
<—,—> : U(QS)L X S[[Z]]L — SL
which we will use without further mention. Observe that there is a natural
or-linear map U — U(Gg) for any or-algebra S.

%

Lemma 3.2.10. The restriction map U(Gs) — Hom,, (U,S) is an S-linear
isomorphism.

Proof. Let A : (@ — S be an S-linear map whose restriction to U is zero.
Then in particular A(u,,) = 0 for all m > 0, so A vanishes on all finite sums of

the form Y anum € U(Gs) with a,, € S. These sums are m-adically dense
m=0

—_— — o0

in U(Gg) in view of (5), so for any x € U(Gg), A(z) € () #™S. Since we're
n=0

assuming that S is m-adically complete, this intersection is zero, so A = 0 and
the restriction map in question is injective.

Suppose now A : U — S is an or-linear map. Using the description of U(Gg)
given in (5), we extend it to an S-linear map A : U(Gg) — S by setting for
every zero-sequence (a,) in S

A (Z amum> = Z A A (U

m=0
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Since lim a,, = 0in .S, the series on the right hand side converges in S because
m—o0

S is assumed to be m-adically complete. So, X is a well-defined S-linear map
extending A. O

3.3. Gal-continuous functions. Let C%(o,C,) be the C,-Banach space of
all continuous C,-valued functions on oy, equipped with the supremum norm.
The unit ball of this C,-Banach space is the oc,-submodule C°(or,0c,) of
continuous oc,-valued functions.

Definition 3.3.1. A function f € C%(oy,C,) is said to be Gal-continuous if
o(f(a)) = flar(o)) forall a€or,0€Gy.

We write C' := C&,,(or,C,) for the set of all Gal-continuous C,-valued func-
tions.

Evidently C := C2,(or,0c,) = CNC%or,0c,) forms an oy -lattice in C.
Lemma 3.3.2. Let f € C. Thenim f C Ly, and im f C oy, if f €C.

Proof. By Definition 3.3.1, we have im f C CI;G” for all f € C, and im f C
oﬁ” for all f € C. But C57 = Ly and Oéer = 0 by Lemma 2.7.2. O

Lemma 3.3.3. For cach u € U, the function a — K(u)(a) := (u, Ay) on oy,
is Gal-continuous.

Proof. By definition, K(u) is the composition of ., : 0 = 05[Z]* with
the restriction of the linear functional (u, —) : 0s0[Z] — 000 t0 056[Z]*. This
linear functional is continuous by Lemma 3.2.8(3), so to establish the continuity
of K(u) it remains to show that jy,, is continuous. Since pj,, is a group
homomorphism, it is enough to show that it is continuous at the identity
element 0 of or,. Let n > 0 and consider the basic open neighbourhood 1 +
(m, Z)™ of 1 € 00[Z]*. Since ¢"(Z) — 0 as n — o0 in 05[Z] by Lemma
3.1.7, we can find m > 0 such that ¢™(Z) € (7, Z)". Hence for any a € or,
using Lemma 3.1.5 we calculate

Arma = Bo = 9™ (Aa — 1) € 9™ (Z0w | Z]) € o™ (Z)0x 2] € (m, Z)".

Hence py,, is continuous as required.

Now let o € Gr; since A, € 05[Z] is invariant for the x-action of G on
0s0[Z], we know that 0(Aq) = Ay([7(0)](Z)) = Aar(s) for any a € or. Since
u € ff\, we have for any a € o,

o(K(u)(a)) = o({u, Aa)) = (U, 0(Aa)) = (U, Aar(0)) = K(u)(a7(0)).
Hence K(u) is indeed Gal-continuous. O
Definition 3.3.4.
(1) Define the Katz map K : U — C as follows:

Ku)(a) = (u,Ay) forany weU,ac€op.
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(2) Define K; : U — 000 by Ky = evy oK.
(3) Define ¥¢ : C — C by the rule

Yo(f)(a) = deero, fla/m) forall a€of.

The operator 9¢ : C — C is by definition the restriction of ¥ to C.
(4) Define p¢c : C — C by the rule

vo(f)(a) = f(ra) forall a € of.
The operator ¢¢ : C — C is by definition the restriction of p¢ to C.
Using his notation, Katz has already observed [19, p. 99] the following fact.

Lemma 3.3.5. The map K : U—Cisan or,-algebra homomorphism.
Proof. By the definition of the Lubin-Tate logarithm, we have
logr(Z1 @ Z2) = logr(Z1) + logr(Z2)
from which it follows that for all a € o, we have
A2y © Za) = Aa(Z1)Au(Z2).

Using Definition 3.2.1(3), we can then compute that for any u,v € U and any
a € oy, we have

K(u-v)(a) = (u-v,84(2)) = (u@0)(Da(Z1 ® Z2))
= (u®v)(Aa(Z1)Aa(Z2)) = K(u) (@)K (u)(v).
Hence K(u - v) = K(u)K(v) for all u,v € U and the result follows easily. O

Now we recall the coefficient ring S that was introduced before Definition
3.2.7. Applying the S-linear duality functor

(=)* := Hom,, (—,5)
to the Katz map K : U—=c¢C gives us the dual Katz map
K*:c* = U*
defined on the space of S-valued Galois measures C* = Hom,, (C, .S). We iden-

tify U* = Hom,, (U, S) with S[Z] using Lemma 3.2.10 and Lemma 3.2.8(4);
then K* : C* — S[Z] is given explicitly by

(6) (tm, K*(N)) = A(Pp(—Q))) forall \eC* m>0.

After Lemma 3.1.6 and Corollary 3.2.9 applied with S = o, we have at our
disposal the dual or-linear endomorphisms ¢, and ¢* of U.

Lemma 3.3.6. We have K¢* = ¢pcK and Ky, = qpek.

Proof. Let u € ffL and a € or,. Then using Lemma 3.1.5, we have

K(Wca(w)(a) = ($e(u), Aa) = (U, Ycor(Ba)) = (U, q¥q(Aa))
= Q<ua 6a€7roLAa/7T> = q(SaE‘n'OLIC(u)(a/ﬂ-) = Q¢C(K(u>)(a)
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which gives the second equation. The first equation is proved in a similar
manner. O

Corollary 3.3.7. We have K*p§ = pK* and K*)j = K.
Proof. We apply the S-linear duality functor (—)* = Hom,, (—, S) to the equa-

tions from Lemma 3.3.6. Using Lemma 3.2.8, we see that
and similarly,

aK* e = (qvcK)" = (Ktoga)" = YoaK” = qgK*.
Now divide both sides by gq. |

Lemma 3.3.8. We have 14 0 K7 = 0.

Proof. Corollary 3.3.7 gives YK = ¢, K*¥evi = K*¢Yievi = (eviek)*.
But evy ¢e(f) = ¢e(f)(1) = 0 for any f € C by Definition 3.3.4(3), because
51€7TOL =0. O

Proposition 3.3.9. If K is injective and T is surjective, then qker; C
Vo (U)-

Proof. In this proof we may assume S = oy. Suppose that eviof(u) = 0
for some u € U. Then K(u) is zero on o} because T is surjective and be-
cause K(u) is Gal-continuous by Lemma 3.3.3. Hence K(u) = tepcK(u).
But gcpcK(u) = qeKe*(u) = Kypg 9™ (u) by Lemma 3.3.6, so K(qu —
PEqp*(u)) = 0. Since K is injective by assumption, qu = ¥¢, (¢ (u)) €
Yol (U).- O

Proposition 3.3.10. Suppose that 7 : G, — of and Ky : U — 0xo are both
surjective, and that IC: U — C is injective. Then

K : o, — S[Z]%e=°
is an S-linear bijection.

Proof. The image of K* : of, — S[Z] is contained in S[Z]¥+=° by Lemma

3.3.8. If K3(£) = 0 for some £ € of,, then £ o Ky = 0 so £(K1(U)) = 0. But

K1(U) = 000 by assumption, so £ = 0. Hence K7 is injective and it remains to
prove it is also surjective.

Take some F € S[Z]¥=" and let ¢ := (—, F) € U(Gs) = U* be the S-
valued op-linear functional on U given by Lemma 3.2.10 and Lemma 3.2.8(4).
Then since Ycol(F) = gy (F) =0,

0 = (u,Ycol(F)) = (Wi (u), F) = ((tgo(u) forall uwel.

So, ¢ vanishes on @/Jéol(ﬁ) and hence also on gker Ky by Proposition 3.3.9.
Since or, has no ¢-torsion, we see that £ is zero on ker ;. Hence ¢ descends to
an S-valued or-linear functional on U/ ker K;. But this quotient is isomorphic

Miinster Journal of Mathematics VoL. — (—), 999-999



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 1029

to 0., by assumption. So, we get a vAvell—deﬁned or-linear form £ : oo, — S
such that £(Ky(u)) = £(u) for all u € U. Then

(u, KX (0)) = Z(ICj(u)) =l(u) = (u,F) forall uel

which implies that F' = K3(¢) by Lemma 3.2.8(4). Hence K7 is surjective. O
We make the following tentative

Conjecture 3.3.11. The map X, : U — 0co 1s surjective and the map I :
U — C is injective whenever 7 is surjective.

3.4. The largest 1,-stable or-submodule of o7 [Z]. For brevity, we will
write

A:=S[7]
in this subsection. The 4-operator is only defined on A; and it does not
preserve A, in general.

Definition 3.4.1. Let AY+" be the largest S-submodule of A stable under
Pg-

Remark 3.4.2. We have A¥s = {F € A: ¢ (F) € A for all n > 0}.
Lemma 3.4.3. The image of K* : C* — A is contained in A%¥a 't

Proof. Let A € C*. By Corollary 3.3.7, ¥7 (K*(\)) = K*((¢¢)"(\)) lies in A
for all n > 0. Now use Remark 3.4.2. O

Clearly, A%+=0 is contained in A%+"*; moreover this last is (-stable in view
of Remark 3.4.2 and the fact that 14 o ¢ = 14 by Corollary 3.1.4. Therefore

o0
S+ " (A¥a=0) C Aveint,
n=0
Our next result makes this relation more precise; first we need some more
notation.

Definition 3.4.4. We have the following truncation operators:
(1) s:C—C, given by s(f) = f — f(0)1, and
(2) t: A— A, given by t(a) = a — a(0)1.

It will be helpful to observe that tp = ¢t as S-linear endomorphisms of A.

Proposition 3.4.5. There is a well-defined oy, -linear bijection

o

16 ant cop @ H Aibq:O = Alﬁq-int.
n=0 n=0

Proof. Given any (a,), € [[7—, A=, Lemma 3.1.7 implies that ¢"(t(ay)) —
0 as n — oo, because t(ay,) € ZA for all n > 0. Hence

(Za (an)n) =2+ Z tﬂ"(t(an))

n=0
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o) .
is a well-defined S-linear map v : S@ [] A%+~ — A. Now A¥« " is a t-stable

n=0

S-submodule of A since ¥,(1) = 1. Because a, € A%+=9 this implies that
O (t(an)) = to"™(ay,) € t(AYa ) C AYaint for any n > 0. Since oo : A — A
is continuous by Lemma 3.1.6 and since AV« = {q € A : 93 (a) € ¢"A for
all n > 0} by Remark 3.4.2, we see that A¥a " is a closed S-submodule of A
with respect to the (m, Z)-adic topology on A = S[Z]. Hence the image of
is contained in A%+ and it remains to show that +y is bijective.

Suppose that v(z,(an)n) = 0 so that z = — > ¢"(t(a,)). Since ZA is

n=0
closed in A, this infinite sum lies in ZA. Since SN ZA = 0, we conclude that
z = 0. Hence ag = — Y ¢"(t(an)) € p(A). But ag € A%+~ by definition,
n=1

and
AY=0Np(A) =0
because 1), 0 p = 14 by Corollary 3.1.4. Hence ag = 0. Proceeding inductively
on n, we quickly deduce that a,, = 0 for all n > 0 in a similar manner. Hence
v is injective.
Now let a € A¥a ™ then by definition, Y (a) € A for all n > 0, so we can
define

an = Py (a) — oy ti(a) € A.
Since 1, 0 ¢ = 14 by Corollary 3.1.4, we see that a,, € A¥+=0 for all n > 0.
Since ty = t,

D@ (tan) =t <Z @" (g (a) — wﬁ?“(@)) = t(a— "yt (a))
n=0 n=0
for any m > 0. Since to™ 1" (a) = ™ (1" (a)) = 0 as m — oo by
Lemma 3.1.7,
1(a(0). (a1)) = a(0) + Ha) — lim " (07 (a) =
Hence ~ is surjective. O

Lemma 3.4.6. For each n > 0, there is a commutative diagram

eV;n s*

* * *

0%, C C

’C‘Ii \LIC* IC*\L

A¥a=0 o A%gint o A¥g-int
P t

Proof. To see that the square on the left commutes, we use Corollary 3.3.7:
P"KT ="K evi = K plevi = K" (evipe) = K evin .
Hence in view of Lemma 3.2.8(4), it remains to show that

(U, K (s*(N)) = (um, t(KJ (X)) forall m >0,\€eC".
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Since t kills the constant term of a power series in A, we have
(Um, t(a)) = 6m>1(Um,a) forall ae€ A
Now K(tm)(0) = Pp(0) = 00 by [28, Lemma 4.2] and K(ug) = K(1) =1, so

(wm, K (s%(N))) = A(s(K(um))
= MK (um) = K(un )(0)1) = 01 A(K(um)) = (um, t(K*(A))).
The result follows. O

Let ¢o(000) :={(@n)n € [] 000 : lim z, = 0}.
n=0 n—oo

Lemma 3.4.7. Suppose that T is surjective. Then the map
n:C— or ®co(000)
given by n(f) = (f(0), (f(#™) = f(0))n) is an or-linear bijection.

Proof. Recall that any f € C takes values in 0o, by Lemma 3.3.2. Since 7" — 0
as n — oo in oy, and since f is continuous, f(7™) — f(0) — 0 as n — 00 in 0uo-
Thus 7 is well-defined.

Suppose n(f) = 0 for some f € C. Then f(0) = 0 and f(7™) = 0 for
all n > 0. Hence f(7"7(0)) = o(f(n™)) = 0 for all 0 € G, so f also
vanishes on 7"7(Gr) for each n > 0. Since 7 is surjective, f vanishes on

o0
U 7"of U{0} = or, so f = 0. Hence n is injective.
n=0

To show 7 is surjective, let (2, (25,)n) € 0L @ co(0x0) and define f : of, = 000
by setting f(0) = z and f(n"7(0)) := 24+ 0(zy,) for all n > 0 and all 0 € G,
This makes sense because 7 is surjective, and if 7(o) = 7(0”) for some o,0’ €
Gy then 0710’ € ker T fixes 0o, by Lemma 2.7.2, so 0/(2,,) = (070" (2,,)) =
o(zy,) for any n > 0. It is easy to see that f : 05, — 0 is Gal-continuous and
that n(f) = (2, (2n)n). Hence 7 is surjective. O

Lemma 3.4.7 allows us to give an explicit description of the space of Galois
measures C*.

Corollary 3.4.8. Suppose T is surjective. Then
oo

n*:0L69HoZO—>C*
n=0

is an or,-linear bijection.
Proof. The functor (—)* = Hom,, (—, S) from or-modules to S-modules com-

o0
mutes with finite direct sums and sends cp(0s) to [] of,. Now apply this

n=0

functor to the isomorphism 7 : C oL@ ¢0(0s0) from Lemma 3.4.7. g

Theorem 3.4.9. Suppose that T is surjective and that Ki : of, — A¥a=0 is
an isomorphism. Then K* : C* — AYa ™ s an isomorphism as well.
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Proof. Using Corollary 3.4.8 and Proposition 3.4.5, we can build the following
diagram:

o0 *

Sa [] o ! c*
n=0
19 ﬁoiql c*
(o] .
S@ ] Av«=0 A¥arint
n=0 10 f Pt
n=0

Note that we can write n = evy ®(evyn 05),. Lemma 3.4.6 implies that
K*(evgn 08)* = K*s* evin = to"K] = ¢"tK] for any n > 0.
Using P,,(0) = d,,,0 again together with (6), we also have

K (" (1,(0))) = K*(evg (1) = Y evg()(Pn(—2)Z™ = Y Pu(0)2™ = 1.
m=0 m=0

So the diagram is commutative. Now n* is an isomorphism by Corollary 3.4.8,
and the bottom map is an isomorphism by Proposition 3.4.5. Since K is an
isomorphism by assumption, the vertical map on the left is an isomorphism.
Hence K* is also an isomorphism by the commutativity of the diagram. g

Corollary 3.4.10. Let S be any m-adically complete oy -algebra. The dual
Katz map

K*:c* — S[z]va™
is an isomorphism if T : Gy, — o] and Ky : U — 0so aTE Surjective, and
K :U — C is injective.

Proof. Apply Theorem 3.4.9 together with Proposition 3.3.10. O

Remark 3.4.11. Katz claims on [19, p. 60] that it is easy to show that
the map that he denotes by (x*) on p.59, is injective. In our notation, this
map is K*; at least when 7 is surjective, the proof of Theorem 3.4.9 shows
that its injectivity is equivalent to the injectivity of K7, which is equivalent to
ICl(ff) - L = Ly, in view of the proof of Proposition 3.3.10. We were only able
to establish the equality ICl(ﬁ ) = 0 in the case where L = Q2 by carrying
out an explicit computation — see Proposition 3.6.5 below.

3.5. The Newton polygon of A;(Z) — 1. In this section, we obtain some
estimates on v, (Pg(2)), & > 1. Recall that d and e and f denote the degree
and ramification and inertia indices of L/Q,, respectively.

Lemma 3.5.1. If Kk > 0 and 1 < r < e, then we have an isomorphism of
abelian groups

OL/ﬂ_ek—&-rOL ~ (Z/ka)f(e—r) P (Z/pk-HZ)fT.

Miinster Journal of Mathematics VoL. — (—), 999-999



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 1033

Proof. Note that po;, = w0, C 7”0y, since e > r by assumption, so or, /7" oy,
is an elementary abelian p-group of order |oy/m"or| = p’". Hence, using the
elementary divisors theorem, we can find vy, --- ,v4 € o, such that

s d
op, =Zpv1 ® - ®ZLpvg and 7w o = @vai P @ Zypv;

i=1 i=s+1
for some integer s with 1 < s < d. We deduce that fr =d—s,sos= f(e—r).
Since 7¢*t7o;, = p*n"or, the result now follows easily. O

ek+r

Lemma 3.5.2. In oy /7 or, the image of 1 has order pFtL,

Proof. This can be proved directly as p* -1 € ¢ - 05 £ 0 in of, /7" "0, O

Definition 3.5.3. Let m > 0.
(1) Let ky, = [(m —1)/e], so that m = ek,,, + » with 1 <r <e.
(2) Define x,, := ¢™/pkm+1.

(3) Define
m—1
e 1 e 1 q
= _— d m = — — .
S B R | ; phitt  pkmtl(g—1)

For example, 2o = 1 and 1 = ¢/p. Note that if m = en+r with 1 <r <e,

then
e T 1

Yen+r = - .
T pr(p—1)  prt o (g 1)pntt

Theorem 3.5.4. The vertices of the Newton polygon of A1(Z) — 1 (using
the valuation v, and excluding the point (0,+00)) are the points (T, Ym) for
m > 0.

Proof. Via the Schneider-Teitelbaum isomorphism « : B(C,) = X(C,), the
zeroes of the power series

A(Z)—1= i Pn(R)Z™ € oc, [ 7]

are the z € mc, such that x(z) is an L-analytic character satisfying x(2)(1) = 1.
These characters are torsion®, and correspond to some of the torsion points of
the Lubin-Tate group G. There are precisely ¢™ points in G[7™], and the
common valuation of each point z € G[7™]\ G[r™ 1] is v.(2) = 1/¢™ 1 (¢—1).
If we write m = ek + r as above, then in view of Lemma 3.5.1 and Lemma
3.5.2 there are x,,, = ¢"/pFm*! elements z € G[7™] such that x(z)(1) = 1.
Let ((z],,y0,))5°_, be the vertices of the Newton polygon, so that the first
vertex is (z(, y5) = (1,v:(92)) = (x0,y0). The slope of the line segment between
(z). 1,y 1) and (x},,y.,) is minus the common valuation of the elements of

3Suppose that A : op — (C;f is a locally L-analytic character such that A(1) = 1. Then
A(a) =1 for all a € Z,. Hence X (1) = 0. Since X is locally L-analytic, A’ is L-linear, and
hence A’ = 0 so that ) is locally constant, and hence torsion.
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z € G[r™]\G[r™ 1] satisfying k(z) = 1, that is 1/¢™ 1 (g—1). Hence z},, = z,
for all m > 0. Using the definitions of x,, and y,,, we have the formula
xr1 — X Tm — Tm—1
Yn =Y — —F——< — "+ — —————————
¢' g —1) " tg—1)

which implies that y/,, = y,, for all m > 0. O
Remark 3.5.5. Note that y,,, = 0 as m — +oo. This is consistent with the
fact that ||A1(Z) — 1|| = 1.
Corollary 3.5.6. We have the following formulas for v, (Px(2)).

(1) For all m >0, we have vz (P, () = Ym.-

(2) For alln > 0, we have vy (Ppua-1) () = 1/p"™ - v-(Q).

Proof. Ttem (1) follows immediately from Theorem 3.5.4. Ttem (2) follows from
item (1) with m = en. Indeed, zc, = ¢*"/p" = p™@~1 and

e e e e e—1 q 1 ( e 1 )
ye’ﬂ: ......... — — = — —_—— .
p—1 p p? p»~t p» p(g—1) p* \p-1 gq-1 -

Remark 3.5.7. If L/Q, is unramified, then item (2) of Corollary 3.5.6 gives all
the valuations of the Py () that can be computed using the Newton polygon.
For n > 0, we get
1 g/p—1
prtp—1) q-1°
Corollary 3.5.8. Suppose that L = Qp2 and m = p. Then we have
1

valy(Pyuia—n () = 1/p" - () =

val,(Px(Q) = ——= forall k>1,
P( p ( )) pk_l(q_l)
and if k > 1 and pk*1 <m< pk, then
1 P —m 1 m — pF1

Pl 2 e T T - D) T - ) ¢ D)

3.6. Verifying Conjecture 3.3.11 in a special case.
Definition 3.6.1. Fix m > 1.

(1) Let G,, = G[m™] be the finite flat or-group scheme of 7™-torsion points
in the Lubin-Tate formal group G.
(2) Let G/, be the Cartier dual of G,,.
(3) Let U(m) i= O(G,,) = Hom,, (0, 121/ (™ (Z)), 01).
(4) Let G' := colim G/, be the dual p-divisible group to the p-divisible
group defined by the formal group G.
Recall that by Cartier duality — see [32, p. 177] — the period Q € C,
corresponds to a choice of generator t' € T,G' = T,.G’ as an or-module. We
recall how this correspondence works. First, the element

Ay = P.()Z" € oc,[Z]

n=0
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o0
gives a compatible system of group-like elements (A;(m))°_; € [[ O(Gm),
m=1

where Aj(m) is the image of Ay in O(G,, X, 0c,) = oc, [Z]/{¢™(Z)) under the
natural surjective homomorphism of oc, -algebras oc, [Z] = O(Gm %o, oc,)-
Since O(Gm X o,,0c, ) can be identified with Hom,. (O(Gy, %0, 0c, ), 0c, ), A1(m)
can be viewed as an oc,,-linear map U(m)®,, oc, — oc, which is in fact an oc,,-
algebra homomorphism because Aj(m) is group-like. This map is determined
by its restriction to U(m); this restriction is an or-algebra homomorphism
ty, : U(m) — oc, and is therefore an element of G, (C,).

Finally, the multiplication-by-7m-maps G,,,1(C,) — G,,(C,) in the inverse
system defining the Tate module TG’ are induced by the inclusions of oy-

algebras U(m) — U(m + 1), so t;n+1\U(m) =t/ for all m > 1, and the

m=1

(oo}
generator t' € TG’ is given by t' = (t,)2°_, € [] G,.(C,).
m=1

Lemma 3.6.2. Let m > 1. The restriction of K1 to U(m) C U is equal to i,

Proof. Recall that we have identified U with oy, [Z]%, using Lemma 3.2.8(3).
Let w € U(m) and let @ € U be the corresponding o-linear map or[Z] — o,
which kills (¢™(Z)). Then

b (1) = Ag(m)(u) = (@, Ar) = K(a)(1) = K1 (a)

m

and the result follows. O

For each m > 1, let L,, be the finite Galois extension of L contained in
Lo = (Cge” defined by Gal(Leo/Lm) = 771(1 4+ 7™oy).

Lemma 3.6.3. Let m > 1. Then t, (U(m)) C o,

m*

Proof. Let 0 € Gal(Loo/Lyy,) so that 7(0) € 1+ 7™or. Then by definition of
the character 7, o acts trivially on G, (C,). In other words, o(t,,(u)) = t, ()
for all u € U(m) and hence ¢, (U(m)) C LS Eoe/bn) — 1 But U(m) is a
finitely generated or-module so t,,(U(m)) is integral over oy, and is therefore
contained in oy, . O

m

Recall from Definition 3.2.1(2) that U = U(G) is the covariant bialgebra of
the formal group G.

Definition 3.6.4. For each m > 1, let U(m)y, := im(U(m) — ﬁ/wﬁ)

We will identify Uy, := U/nU with U/xU via the natural map U/7U —
U/7U and we regard U(m)y as being naturally embedded into U(m + 1).

Proposition 3.6.5. Suppose that t. (U(m)) = or, for all m > 1. Then
K1:U — o0 is surjective.

Proof. Consider o, := L N os. Since o, is m-adically dense in o, to prove
that 01 (U) contains o, it is enough to prove that it contains o,. Fix m > 1.
By Lemma 3.6.2, the restriction of Ky : U — oc, to U(m) is equal to .
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Hence by assumption oy, =t (U(m)) = K1(U(m)), so o, = | or,, is also
m>1

contained in Ky (U). O

m

~ a°—1 ~
Lemma 3.6.6. For each m > 1, we have U(m)+7U = > opu, +7U.
r=0

Proof. Let w € U(m) and let @ : o[Z] — o be the corresponding oy -linear
"1 ~

form which vanishes on (¢™(Z)). Consider v := a4 — >, 4(Z")u, € U. For
r=0

each r < ¢, u, sends ("™ (Z)) into woy, because " (Z) = Z9" mod 7o [Z].

Since @ kills (¢™(Z)), we see that v also sends (¢™(Z)) into mor. By con-

struction, v is zero on 1, Z,--- , Z9" 1. Since

(7) orl@®orZ@---@orZ "' @ (¢"(2)) = or[Z],

we conclude that v (or,[Z]) C wor, and hence v = ww for some or-linear form

w:op[Z] = or. Since v : oL [Z] — oy is continuous for the weak topology on
~ q" 1 ~
or[Z], so is w. Hence w € U and hence & € Y, opu, +wU. This shows that

r=0

C holds. R

For the reverse containment, it is enough to show that u, € U(m) + 7U for
each r =0,...,¢™ — 1. Using (7), define an oy-linear form w, : o [Z] — o,
which is zero on (™ (Z)) and which sends Z% to §; . for each 0 < i < ¢™. Since
u, sends (™ (Z)) into wor, the same is true of u, — w,. Since u, — w, is zero
onl,Z,---,Z9" 1 by construction, we see that u, —w, sends all of o7, [Z] into
wor,. Hence u, — w, = wv, for some oy-linear form v, : or[Z] — or. Since
u, — w, is continuous for the weak topology on or,[Z], so is v,.. Because w; is
zero on (o™ (Z)), it lies in U(m) and hence u, = w, + wv, € U(m) +7U. O

Proposition 3.6.7. If L = Q,2, then t,,(U(m)) = or,, for allm > 1.

Proof. Fix m > 1. By Lemma 3.6.6, for each 0 < r < ¢™ we can find w, €
U(m) such that w, — u, € 7U. Set r := p?m=l = pg™~1 < ¢™. Note that
Ki(ur) = K(uy)(1) = (up, A1) = P(Q). Since L = Q,2, Corollary 3.5.8
applied with & = 2m — 1 tells us that

1 1
Va‘p( 1(7'1’7')) Vap( 7“( )) me,Q(q_l) qul(q_l)
Now 7oy, = poy, since L = Qp2, so Kq(u, —w,) € ICl(ﬂ'fj) C poc, since Ky
takes values in oc,. Hence val,(Ki(u,) — Ki(w,)) > 1 and val, (K1 (w,)) =
val,(K1(u)) = [Lm : L]7!. Therefore Kq(w,) is a uniformiser in L,, and the
result follows. O

=[L,:L"'<1.

Now we start to explore the injectivity of K : U—cC.

Lemma 3.6.8. For each m > 1, we have U(m) N xU = 7U(m).

Miinster Journal of Mathematics VoL. — (—), 999-999



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 1037

Proof. Let g = wh € U(m) for some h € U. Then w(h, F) = (rh, F) = 0 for
any ' € (¢™(Z)). Hence (h, F') = 0 for all such F as well, so h € U(m) and
g € tU(m). O

Corollary 3.6.9. The map O(G), X0, k) = U(m)/7U(m) — U(m)y is an

isomorphism.

Since G’ forms a p-divisible group, we have a closed immersion G;,, — G/, ,
for each m > 1. The comorphism of this map O(G,,,;) = O(G,,) is the dual
of the or-Hopf algebra map O(G,,) = O(Gm+1) induced by ¢ : O(G) — O(G).
Using Corollary 3.6.9, we obtain connecting maps ¢ : U(m + 1) = U(m).

Lemma 3.6.10. The comorphisms ; : U(m + 1), — U(m)y are surjective
for allm > 1.

Proof. By Corollary 3.6.9, U(m)y, is isomorphic as a k-vector space to
O(G!. %o, k) = Homy(O(G X0, k), k).

Since p(Z) = Z7 mod wor[Z], we have O(G,, X,, k) = k[Z]/{Z9™) and the
k-algebra homomorphism ¢y, : k[Z]/(Z9™) — k[Z]/(Z9™*V)) which sends Z
to Z7 is injective. Hence the dual map

@t : Homy ([ 2] /(290" DY k) — Homy (E[Z]/(Z9™), k)
is surjective and the result follows. (I

Next we consider an ideal I of Uy and we set I(m) := I N U(m) for all
m > 1. We assume that I is p*-stable, in the sense that ¢*(I) C I.
Proposition 3.6.11. Suppose that I is a ¢*-stable ideal of Uy such that
Jm UI((Z?)’“ is finite dimensional over k. Then Uy/I = colim [;((:Z)) is also fi-
nite dimensional over k.

Proof. Let m > 1 and consider the short exact sequence
0— I(m) = U(m)r — U(m)i/I(m) — 0.

Since [ is p*-stable by assumption, we get a short exact sequence of towers of
finite-dimensional k-vector spaces. Passing to the inverse limit therefore gives
an exact sequence

U(m)k
I(m)
By assumption, the term on the right is a finite dimensional k-vector space.
We see from Lemma 3.6.10 that the connecting maps U(m + 1);/I(m + 1) —

U(m)x/I(m) induced by ¢* are surjective. Therefore, for large m, all of these
maps are necessarily isomorphisms, and hence there exists my > 1 such that

U(m+ 1) — dim U(m)g
I(m+1) I(m)

0 — I(o0) :zyill(m)—ﬂ'glU(m)k—H'&n — 0.

dim for all m > my.
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Now the definition of I(m) shows that the natural connecting maps in the
opposite direction U(m),/I(m) — U(m + 1)/I(m + 1) is injective for any
m > 1. So they are isomorphisms whenever m > mg. The result follows. O

Proposition 3.6.12. Let J = ker K and let I := (J + 7r(7)/7r(7 be its image
in Ug. Then I is a p*-stable ideal in Uy, such that dim Uy /I = oo.

Proof. Since K is an orp-algebra homomorphism by Lemma 3.3.5, J is an ideal
in U. Since Ky* = @K by Lemma 3.3.6, this ideal is in fact ¢*-stable. Hence
its image I in Uy, is also ¢*-stable.

Suppose that h € U and r > 1 are such that 7"h € J. Then K(x"h) = 0
in C, so K(h) = 0 as well. So JNx"U = 7"J for all r > 1. Now consider the
short exact sequence

0—J—U—KU)—o0.

Equip both U and K(U) with the m-adic filtrations. Then the above shows that
the subspace filtration on J induced by the w-adic filtration on U coincides
with the m-adic filtration on J. Therefore we get a short exact sequence of
gr or-modules
0 grd —grl— gr K(U) — 0.

So, if dimUy/I < oo, then gr ﬁ/ grJ = (Ug/I)[grn] is a finitely generated
module over gror, so gr K(U) is a finitely generated grop-module. The 7-
adic filtration on C is separated, hence the w-adic filtration on KC(U) is also
separated. Therefore K(U) is a finitely generated or-module by [22, Chap-
ter I, Theorem 5.7]. Hence dimy, C(U[1/7]) < oco. But this contradicts [28,
Theorem 4.7]: the space of locally L-analytic Gal-continuous functions is not
finite dimensional over L since it contains the subspace of locally constant
Gal-continuous functions, which is infinite dimensional over L. O

Corollary 3.6.13. Ifd:=[L:Q,] =2, then K: U — C is injective.

Proof. By Proposition 3.6.12, I = (ker K + Wﬁ)/wﬁ is a p*-stable ideal in
Uy of infinite codimension in Uy. Hence I(oc) := lim(I N U(m)y) is an ideal
of infinite codimension in l'glU(m)k by Proposition 3.6.11. By [18, Example
2.5.3], the Dieudonné module M (Gy) associated with the Lubin-Tate formal
group Gi, = G X, k over the perfect field k has basis {7, V7, -, V4~ 1y} over
the ring of p-typical Witt vectors W(k) for a certain element v € M (Gy), and
satisfies V¢ = p. Hence the Verschiebung operator V on M (Gy) is topologically
nilpotent. Therefore the Cartier dual G, is connected. Hence UmU(m); =
O(G’ x,, k) is isomorphic to k[X1, -, X4-1] by [32, Propositions 1 and 3].
Since d = 2, we conclude that I(co) = 0. Hence I(m) = 0 for all m > 1 and
hence I = 0. So ker £ = 0 as well. O

Theorem 3.6.14. Suppose that L = Qp2. Then
K3 :oh, — op[Z]¥e=°

s an or,-linear bijection.
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Proof. Since d = 2, we know that 7 is surjective by Lemma 2.6.4. Then
KL : U — C is injective by Corollary 3.6.13 and K1 : U — o4, is surjective by
Proposition 3.6.5 and Proposition 3.6.7. Now apply Proposition 3.3.10. ([

We can now prove Theorem 1.6.1 from the Introduction. In fact, we prove
the following more general version, from which Theorem 1.6.1 follows as a
special case by setting S = ok.

Theorem 3.6.15. Let L = Qp2 and let S be a m-adically complete or,-algebra.
(1) The map K* : Hom,, (C&, (oL, 0c,), S) — S[Z] is injective.
(2) Its image is equal to S[Z]¥ant.
Proof. Since d = 2, 7 is surjective by Lemma 2.6.4. By Theorem 3.6.14, the
map K7 : 0o}, — or[Z]%+=0 is an isomorphism. Now apply Theorem 3.4.9. [

4. INTEGER-VALUED POLYNOMIALS

4.1. The algebraic dual of O°(Xk). Recall from §2.1 that our coefficient
field K is a complete field extension of L contained in C,. Pick a basis
{v1,--- ,vq} for oy, as a Z,-module with v; = 1. We view oy, as a p-valued
group with p-valuation w given by

d
w (Z )\ivi> =1+ 1I£i£dva1p(Ai).

i=1
Let r be a real number in the range 1/p < r < 1. Recall from [29, §4] that

D=1 (o; K carries a norm || - ||, given by
(8) I Z dob®||, = sup |da|rl®.
a€eNd aeNd

where b; := 6,, — 1 € D%~ (op K) for i = 1,---,d, b® = b S byt €
DY~ (op K) and |a| = Tao = oy + -+ + aq for all a € N%.
Definition 4.1.1. Let 1/p <r < 1.
(1) Let Dgpﬁan(oL, K) denote the completion of D%~ (or, K) with re-
spect to || - ||,
(2) Let Xo(r)x := Sp D (0, K).
(3) Let X(r)x := Xk N Xo(r)x = Sp DE~2%(or, K), where DL=2%(0;,, K)
is the factor algebra of D" ™ (o1, K) by the ideal generated by
U2 — V2Uy, U3 —UV3UL, - ,Uqd — UqUL
where u; = log(1 + b;) € D%~ (o1, K).
As r approaches 1 from below, the K-affinoid varieties X(r)x form an in-

creasing family of K-affinoid subvarieties of Xx: whenever 1/p <r <71’ <1
we have

(9) 1eX(l/pxC--CXrCX()xC---CXx= |J X()x.
1/p<r<1
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Here 1 € X is the trivial character: the ideal generated by by, --- , bg.

Lemma 4.1.2. The completed local ring (’)/xK\J of X at 1 is isomorphic to a
power series ring in one variable b := by over K:

Ox1 = K[b].

Proof. We have O(Xo(1/p)r) = K(b1/p, -+ ,ba/p) = K(u1/p,--- ;ua/p).
Quotienting out by the ideal generated by the elements u; — v;u; shows that
OX(1/p)k) = K{ui1/p) = K(b/p). So X(1/p)k is isomorphic to the closed
disc of radius [p| = 1/p with local coordinate b; it is well known that the
completed local ring at b = 0 of such a disc is K[b]. The result follows since

1 € %(1/p)x implies that Oz, 1 = Ox(1/mr.1 = K[b]. 0

Applying the functor O° to the increasing chain of rigid K-varieties (9) and
using Lemma 4.1.2 yields a decreasing chain of ox-algebras

(10) K[b] > O°(X(1/p)k) 2 -+ D O°(X(r)K)
SO (X()g) D D O°(Xk) D oxlor].

Definition 4.1.3. Let A be an ox-subalgebra of K[b] and let m > 0. The m-th
infinitesimal neighbourhood of 1 in A is the image A, of A in K[b]/b™T K [b]:
A A+ TIK[b] K[b]

e bm+1K[b] b tIK 0]
Remark 4.1.4. This construction respects inclusions and is compatible with

variation in m. More precisely, whenever A C B are two ox-subalgebras of
K|[b], for every n > m there is a commutative diagram of ox-algebras

A, —— B,

]

Am Bm
with injective horizontal arrows and surjective vertical arrows.

Definition 4.1.5. Let A be an ox-subalgebra of K[b] and for each m > 0,
let A* := Hom,, (A, 0k). The algebraic dual of A is

A* = colim A" .
[eS) m>0 m

Lemma 4.1.6. Let oxfor] € A C B be two ox-subalgebras of K[b] and let
n>m>0.

(1) In the commutative square

* *
An Bn

]

A* < B,

all arrows are injective.
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(2) The map B, — A% is injective.

Proof. (1) The vertical maps A, — A are injective because A, — A, is
surjective. Let C be the cokernel of the map A, — B,. Since A, contains
ok [or]» which is an ok-lattice in K[b],, we see that C' is a torsion ox-module.
The dual functor (—)* is left exact, so we have the exact sequence 0 — C* —
B — Ay. Since C is torsion, C* = 0 which shows the injectivity of the
horizontal arrows in our diagram.

(2) This follows by taking the colimit over all of the horizontal maps in part
(1) above. O

Thus we see that the connecting maps appearing in the colimit in Definition

4.1.5 are injective. Applying the contravariant algebraic dual functor (—)%, to

the chain (10) and using Lemma 4.1.6(2) gives us a chain of algebraic duals

O°(X(1/p)K)s C -+- C O%(X(r) k)5
CO°(X(r")k)i, C - CO°(XK)E CokloL]k-
We can now calculate the largest one of these, namely the algebraic dual of

the Iwasawa algebra o [or], but first we must introduce integer-valued poly-
nomials. Recall the following notion from [6].

Definition 4.1.7. A 7w-ordering for or, is a subset {ag, a1, aa,...} of or, such
that

k-1 k-1
(11) Up (H(ak - ai)> = ilelng (H(s - ozi)> for all k> 1.

i=0 i=0
Starting from an arbitrary element ag € op, it is possible to construct a
m-ordering {ag, a1, ...} of or, by induction on k, choosing at each stage ay to
minimise the expression appearing on the right hand side of (11). In particular,
m-orderings always exist, but are far from unique.
Definition 4.1.8. Let{ag, a1,...} be a m-ordering for or,.
(1) Define the Lagrange polynomials as follows: fo(X) :=1 and
(X - Ozo)(X — 041) cee (X — Ozk_l)
Ju(X) =
(ak — ag)(ax — 1) -+ (ax — ag—1)
(2) Suppose that R is an op-algebra which embeds into Ry := R ®,, L.
Then we define the ring of R-valued polynomials on oy, as follows:
Int(or, R) := {g(X) € R.[X] : g(or) C R}

(3) For each m > 0, let Int(or, R),, denote the R-submodule of Int(oy,, R)
consisting of all R-valued polynomials on oy, of degree at most m.

€ L[X] foreach k>1.

The following result, closely related to de Shalit’s work on Mahler bases
[30], explains why we are interested in these Lagrange polynomials.

Lemma 4.1.9. The set {fo, f1, fo,...} is an R-module basis for Int(or,, R).
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Proof. Tt follows directly from Definition 4.1.7 that v, (fx(s)) > 0 for all s € oy,
and all £ > 0. Hence f;(or) C or, C R for all k > 0 which implies that

(12) Rfo+Rfi+Rfp+--+Rfn+--- C Int(or, R).

If g € Rp[X] has degree n and leading coefficient A, then g—A(ay, —ag) - - - (an—
ap—1)frn has degree strictly less than n. This implies that {fo, f1, f2,...}
generates Rp[X] as an Rp-module. Now let g € Int(or, R) and write g =
Xofo+ -+ Anfn for some Ag,---, A\, € Ry as above. Setting X = «
shows that A\g = g(ag) € R since g € Int(or, R). Assume inductively that
Ao,y Ai—1 € R for some 1 <t < n. Setting X = «a; shows that

At = glag) — Xofolaw) — A fi(ae) — -+ = M1 fio1(aw)

and this lies in R because g(a¢) € R and f;(ay) € R for all i. This completes the
induction and shows that we have equality in (12). Taking g = 0 in the above
argument also shows that the sum on the left hand side of (12) is direct. O

Using Lemma 4.1.9, we obtain the following

Corollary 4.1.10.
(1) The multiplication map

Int(or,01) ®,, 0x — Int(or, 0k)

is an isomorphism, which sends Int(or,, 0r)m®o, 0k onto Int(or, 0k )m
for any m > 0.

(2) The Lagrange polynomials {fo(Y), -, fm(Y)} associated with a choice
of m-ordering for or, form an ox-module basis for Int(or,, 0K )m

Proposition 4.1.11. The evaluation map ev : Int(or,o0x)m — ox[or]k,
defined by
ev(f(Y))(A) :== A(f(Y))

for all f(Y) € Int(oL, 0k )m, A € ok [oL] is an ox-module isomorphism.

Proof. This is essentially a complicated-looking tautology, but we try to give
the details.

Note that ox[or]m is an ox-lattice in K[b],,. We can therefore identify
ok [or]%, with an ox-submodule of V' := Hom g (K [b]n, K), a K-vector space

of dimension m + 1. The linear functionals ev(1),ev(Y), - ,ev(Y™) are lin-
early independent in V because if 3 7i"; ¢; ev(Y") = 0 then eV(Z?;o Y (0,) =
Zi:o c;a* =0 for all a € oy, and this forces ¢cg = --- = ¢,,, = 0. It follows that

ev : K[Y],, — V is injective and is therefore an isomorphism by the rank-
nullity theorem.

Hence ev : Int(or,0x)m — ox[or]s, is injective. However if g € ox[or]%,
then by the above we can find some f(Y) € K[Y],, such that ev(f(Y)) = g.
Since d, € ox[or] for all a € or, we see that f(a) = ev(f(Y))(0a) = 9(0a)
must lie in og for all a € or. O

Corollary 4.1.12. The map ev : Int(or, 0x) — ox[or]%, is an isomorphism.
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Proof. This follows immediately from Proposition 4.1.11. O

Proposition 4.1.13. Suppose that K is discretely valued. Then
O°(Xk)i, = Col<i{n O°(X(r)k )5

Proof. Since colimits commute with colimits, it is enough to show that for
every m > 0,

m*

0° (X, = colim O°(X(r));

Fix m > 0. Then O°(X(r)k)m form a decreasing chain of ox-submodules
of the m + 1-dimensional K-vector space K[b].,, and all of them contain the
ox-lattice o [or]m. Since K is discretely valued, the ox-module (K/ox )™ !
satisfies the descending chain condition. Hence there exists ro < 1 such that

(13) O°(X(r)k)m = O°(X(ro)k)m whenever 19 <71 <1.

Following an argument of Schmidt [26, proof of Proposition 4.9], we will now
show that

O0°(Xk)m = O°(X(ro) & )m
The forward inclusion is clear, so fix some & € O°(X(79) k )m, choose a sequence
of real numbers 7y < r; < ry < --- approaching 1 and consider the K-Banach
space
Aj = O(%(TJ)K)
Let ¢; : A7 — K[b],, be the obvious of-linear map. Using (13) we see that
the convex subset

e () C Ay
is non-empty. It was recorded in the proof of [29, Lemma 6.1] that the re-

striction maps A,;1; — A; are compact. We may therefore argue as in [16,
Proposition V.3.2] that

(¥ "6 € 0°(xk)
j=0

is non-empty. Then any element A in this intersection satisfies A,, =&, so £ €
O°(Xk)m as required. Hence O°(Xk)%, = O°(X(r)k)¥, whenever ro < r < 1,
and the result follows. O

4.2. The matrix coefficients p; ;j(Y). Let B¢, be the rigid analytic open
unit disc of radius 1 defined over C,,, with global coordinate function Z. There
is a twisted G, = Gal(C,/L)-action on O(Bg,) given by F — F7 o [r(c™1)],
which induces an L-algebra isomorphism

1 O(X) = O(Be, o,

see [28, Corollary 3.8]. Inspecting the proof of this result, we see that it extends
naturally to give a description of O(Xk) for more general closed coefficient
fields L € K C C, as well:
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Lemma 4.2.1. There is a K-algebra isomorphism
pr s O(Xg) —» O(Be, )5,
Since O°(Bc,) = oc,[Z], we deduce the following
Corollary 4.2.2. There is an isomorphism of ok -algebras
MK : OO(:fK) i) OCP [[Z]]GK’*.
Until the end of §4.2, we assume that (2 is transcendental over K.

Definition 4.2.3. We call an ox-subalgebra R of K[Q] Noc, admissible if
P,(R2) € R for all n > 0, and if R is stable under the natural G -action on
K[Q]Noc, (in particular, K itself is then stable under Gp,).

Example 4.2.4. The algebra K[Q]Noc, is itself an admissible ox-subalgebra
of K[Q)].
Proof. This follows from Corollary 4.2.2 together with [28, Lemma 4.2(5)]. O

Definition 4.2.5. Let R C K[Q] be an admissible ox-subalgebra.
(1) Let K[Q], :={f(Q) € K[Q] : deg(f) < n} for each n > 0.
(2) Let R, := RN K|[Q)],, for each n > 0.
(3) {b.(2):n >0} C R is a regular basis if

bo() =1, and R, =R,_1Dokb,(Q) forall n>1.

Lemma 4.2.6. Suppose that K is discretely valued. Then a regular basis exists
for every admissible ok -subalgebra R of K[Q]Noc, .

Proof. Since (Q is assumed to be transcendental over K, the K-vector space
K[Q],, has dimension n + 1. The restriction of the norm |- | on C, to K[Q],
turns it into a normed vector space over K and by Definition 4.2.3(1), R,, is
contained in the unit ball with respect to this norm. Since any two norms on a
finite dimensional K-vector space are equivalent — see [27, Proposition 4.13]
— it follows that R, C 7~ ™ok [}, for sufficiently large m.

Since K is discretely valued, its valuation ring oy is Noetherian and this
forces R, to be a free ox-module of rank n+1. Because the R,,’s form a nested
chain, we can now construct the desired ox-module basis for R by induction
on n. O

Example 4.2.7. Because (2 is assumed to be transcendental over K, Lemma

3.2.2(1) together with Lemma 3.2.3 implies that > ox P, () is isomorphic

n=0
to U(G) ®,, ok as an og-algebra. Abusing notation, we will write U :=
o0

> 0 Pn(2) until the end of §4. Although this conflicts with Definition

n=0

3.2.1(2), we hope that no confusion will be caused by this abuse of notation.
Then U is an admissible subalgebra of K[Q], and {P,(Q2) : n > 0} is a regular
basis for R: since deg P;(Y) = j, an element f(Q) of U,, is a K-linear combi-
nation of Py(Q),- -+, Py(R) lying in U, but {P,,(2) : m > 0} is an or-module
basis for U so all coefficients of f(£2) must in fact lie in oy,.
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Until the end of §4.2, we assume that

K is a discretely valued intermediate subfield L C K C C,,
Q) is transcendental over K,

R C K[Q]Noc, is an admissible ox-subalgebra, and
{bn(Q) : n > 0} is a regular basis for R.

Lemma 4.2.8. Take j > 0.
(1) There are unique po ;(Y),p1,(Y), - ,p;;(Y) € K[Y] such that

Pi(YQ) = pii(Y)bi(Q).
=0

(2) degp; ;(Y) < j whenever 0 <i < j.

(3) degp;;(Y)=3j.
(4) pij(a) € ox whenever a € o, and 0 < i < j.

Proof. (1) €2 is transcendental over K, and {b;(€2) : ¢ > 0} is a K-vector space
basis for K[| with degb;(Q2) = ¢ for each i. Hence it is also a K[Y]-module
basis for the two-variable polynomial algebra K[Q,Y], so we can find unique
pi.;j(Y) € K[Y] such that

Pi(YQ) = pij(Y)bs(Q)

i>0

where p; ;(Y) = 0 for sufficiently large i. Now P;(s) is a polynomial in s of
degree j by [28, Lemma 4.2(3)], so €7 is the highest degree monomial in
appearing in P;(YQ2). Since degb;(2) = ¢, this means p; ;(Y) = 0 for ¢ > j.

(2) Since the highest degree monomial in Y appearing in P;(Y) is Y7, this
means that deg p; ;(Y) < j for each i < j.

(3) The monomial Y7/ appears in P;(Y(2) with a non-zero coefficient. This
monomial does not appear in p; ;(Y)b;(€2) for any ¢ < j because degb;(2) =1
for all 7. So it must appear in p; ;(Y)b;(£2), and because of (2), this can only
happen if deg p; ;(Y) = j.

(4) Let a € o We know that P;(af?) € oc, by [28, Lemma 4.2(5)]; in fact,
P;(a) is an or-linear combination of the P;(2) for 0 < ¢ < j by Corollary
3.2.6, so Pj(aQ) € R. Setting Y = a in (1) shows that p; j(a) € ok, since
{b;(Q) : i > 0} is a regular basis for R. O

Theorem 4.2.9. For each A € D=2 (oy, K) we have

pi(N) =3 Mo (V))bi(2) 2.

§=0 k=0
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In the case when A\ = ¢, for some a € o, Lemma 4.2.8 implies that

which explains where the formula comes from. We will now give a rigorous
argument to show that the formula is valid for any A € DX~ (or, K).

Lemma 4.2.10. Let t :=log;(Z) be the Lubin-Tate logarithm. Then
pi () =D AYF/ENQEY for all X € D (op, K).
k=0
&)
Proof. We may identify C,[t] with C,[Z], and we write px(X) = > ¢ mt™
m=0
for some ¢; ,,, € Cp. Then applying [28, Lemma 4.6(8)], we have

-1 k
MY /R = (e (), Y4 = 22 o) 0

=Q 7%y forall k>0. O
Proposition 4.2.11. Let A € Hom(L[Y], K). Then in C,[t] = C,[Z],

oo J
AYF/EDQEE =3 " Nk (V)b () Z7.
0 7=0 k=0

M8

=
Il

Proof. For each k > 0, write t¥ = > d§-k)Zj € L[Z]. Substituting this into
ik
Lemma 4.2.10 gives

ZA (YE/ENQR R = ZA (Y /R QkZd

k=0

On the other hand, the identity

00 _ oo 1 oo YkQFk e & )
S P(YQZ = exp(YQt) =Y Y = 3 —i Sz
j=0 k=0 k=0 j=k

together with Lemma 4.2.8 shows that for all j > 0 we have

J
k
(15) Z k,d< QYR = Py) =3 pr (V)
k=0

k=0
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Now, the L-linear form A : L[Y] — K extends to a K[{2]-linear form K[Q,Y] —
K[Q]. Applying this extension to (15) gives

iq J
> LA = 3 A (V).
k=0 k=0

Substituting this equation into (14) gives the result. a

Proof of Theorem 4.2.9. Follows immediately from Lemma 4.2.10 and Propo-
sition 4.2.11. O

Definition 4.2.12. Let R be the ox-linear span of {pr;(Y):j>k>0}in
the space I := Int(or,0x) of og-valued polynomials on oy,.

We will see shortly that R does not depend on the choice of regular basis
for R.

Corollary 4.2.13. Let A € DE=a1(op K). Then ux(X) € R[Z] if and only

Proof. Theorem 4.2.9 tells us that uxr(A) belongs to R[Z] if and only if
ZJ: Apr,;(Y))be(Q) € R for all j > 0. Since {bx(2) : £ > 0} is a regular
f)zzigis, this is equivalent to A(px ;(Y)) € ok for all j > k > 0. O
Proposition 4.2.14. Let A € Homg (K[Y], K) be such that MR) C ox. Then
there exists X € p (R[Z]) € O°(Xk) such that A|gy) = A.

Proof. The twisted G -action on C,[Z] preserves R[Z] since we assumed that
R C K[Q]Noc, is Gr-stable in Definition 4.2.3. Therefore R[Z]%%* makes
sense.

oo 7 )
Define Fy := > Z Aok, ;(Y)be(2)Z7 € Cy[Z]. Then Fy € K[Qt] =
7=0k=

CplZ]%%* by Proposmon 4.2.11 and Fy € R[Z] because A(R) C ox. Hence
Fy € R[Z]%%* C og,[Z]%%*, so F\ = ux(\) for some A\ € 0°(Xk) b
Corollary 4.2.2. Tn particular, A € ux' (R[Z]).

Next, applying [28, Lemma 4.6(8)] we see that for all m > 0,

AY™ ml) = {ux (X), Y™ /ml} = {F, Y™ /ml}

= {Z )\(Y’“/k!)Q’“tk,Ym/m!} = AY™/m)).

k=0

Since the Y™ /m/! span K[Y] as a K-vector space, we have S\‘K[y] =\ O

Recall the isomorphism ev : Int(or, 0x) — ox[or]%, from Corollary 4.1.12.

Theorem 4.2.15. We have ev(R) = ui (R[Z])%,
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Proof. The og-module R contains the og-submodule of K[Y] generated by
{p;;(Y):j>0}and degp;;(Y) = j for each j > 0 by Lemma 4.2.8(3). Hence
R spans K[Y] as a K-vector space. On the other hand, R, := RN K[Y]<,
is contained in Int(or,, 0k ), by Lemma 4.2.8(4), which is a finitely generated
ox-module by Remark 4.1.10(2). Since K is discretely valued, R, is a finitely
generated ox-module for each n > 0. So we can find an ox-module basis
{to,t1, -+ ,tn, -~} for R such that {tg,--- ,t,} is an og-module basis for R,
for each n > 0. Tt follows that the natural map R ®,, K — K[Y] is an
isomorphism, and we may identify Hom,, (R, ox) with {¢ € Homg (R, K) :
6(R) C oxc}. V
Let {tf, : m > 0} C Hom,, (R, 0x) be determined by

tr,(tn) = 6 forall m,n>0.

m

Then by Proposition 4.2.14, t¥, extends to some \,, € ux'(R[Z]) such that
Am|r[y] = b, In particular, we have A\, (t,,) = dy,n for all m,n > 0.

Now suppose that g € px'(R[Z])% C ox[or]i. Then g = ev(h) for
some h € Int(or, 0k )m by Proposition 4.1.11. Since h € K[Y]<,, and since
{to,- -+ ,tm} is a K-vector space basis for K[Y],,, we can write h = " ¢y tp

for some ¢, € K. But then
9(An) = ev(h)(An) = An(h) = 1;

n(
Since A, € pux' (R[Z]) and g € i (R[Z])%, we conclude that 9(An) € ok
for all n > 0. Hence h € Y. joxt, C R nd g = ev(h) € ev(R). Hence
nx (RIZ])% C ev(R).
Conversely, take A € u' (R[Z]). Then A(R) C o by Corollary 4.2.13 and
thus for all g € R, ev(g)(\) = A(g) € ox. Hence ev(R) C pu (R[Z])%. O

h)=c¢, foral n>0.

Corollary 4.2.16. Let S C R be two admissible subalgebras of K[Q]. Then
RCS.

Proof. We have pi (S[Z]) € ' (RIZ]), so uy' (RIZ])% € pi (S[Z])%
Lemma 4.1.6(2). Hence ev(R) C ev(S) by Theorem 4.2.15. Hence R C S
because ev is an isomorphism by Corollary 4.1.12.

I:I

Note that Theorem 4.2.15 implies that the ox-module R depends only on
the admissible subalgebra R and not the particular choice of regular basis
{bn(Q) : n > 0} for R.

Lemma 4.2.17. If A € DY=%(o;,, K), then \ € ox[or] if and only if we have
AMInt(or,0k)) C ok

Proof. Suppose that A(Int(or,0x)) C ox. The m-adic completion of I is nat-
urally isomorphic to the ring C°(or,0x) of ox-valued continuous functions
on or. Since A(I) C ok, A extends to an og-linear form A C%or,0x) —
ox which is automatically continuous. View X as an element of ox[or] =
D(or,, K). The restrictions of A and of A € DX~2"(or,, K) to K[Y] agree by
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construction. Since K[Y] is dense in C**(oy, K), we conclude that X lies in

OK[[OL]].
Conversely, if A € ox[or] = C°(or,0x)*, then A\ must take integer values
on Int(or, 0x) C C%or, 0K). O

Theorem 4.2.18. Let R be an admissible subalgebra of K[Q].
We have ' (R[Z]) = ox[or] if and only if R = I.

Proof. (<). Suppose that R = I, and take A € uy' (R[Z]). Then \(R) C ox
by Corollary 4.2.13. Since R = I, this means that A(I) C or. Hence \ €
ok [or] by Lemma 4.2.17.

(=). Suppose that R < I. Since K is discretely valued, K /oy is an injective
cogenerator of the category of ox-modules. Hence Hom,,. (I/R, K/ox) is non-
zero. So there exists an og-linear map A : I — K such that A(R) C og, but
A(I) € ok. Regard X as an element of Homg (K [Y], K); then by Proposition
4.2.14, X extends to some A € O°(Xx) such that 5‘|K[Y} = \. Since A(R) C ok,
using Theorem 4.2.9 we see that ur()\) € R[Z]. However, A ¢ ox[or] by
Lemma 4.2.17 because A(I) € ok, so A € gt (R[Z])\ox[oL]- O

We will now see what implications the above general results have for par-
ticular choices of the admissible subalgebra R. Let B = K[Q] Noc, be the

largest possible admissible subalgebra of K[)], and let U := Y ox P,(£2) be
n=0
the smallest possible one. Recall from Example 4.2.7 that {P,(Q2) : n > 0}

forms a regular basis for U.

Corollary 4.2.19.
(1) U =TInt(or, 0x) if and only if ui (U[Z]) = ox[or].
(2) okor] = Ak (X) if and only if B = Int(oy,, 0x).

Proof. (1) This is an immediate consequence of Theorem 4.2.18 with R = U.
(2) Theorem 4.2.18 tells us that B = I if and only if ox[or] = ' (B[Z]).

However p ' (B[Z]) = px'(Cp[Z]¢* N B[Z]) since ur(O(X)k) is fixed

by the twisted Gr-action on C,[Z] by Lemma 4.2.1. Hence ug'(B[Z]) =

1 (oc, [Z2]94*) = Ak (X) by Corollary 4.2.2, and the result follows. O
Recall the matrix coefficients o; j(a) from Corollary 3.2.6.

Lemma 4.2.20. Let R=U and let b, := P, for each n > 0. Then
(1) pij(Y)=0;;Y) forallj >i>0, and
(2) [al(2)' = Y 05 ;(a)Z? for any a € o,i > 0.
j=i
Proof. (1) This follows by comparing Corollary 3.2.6 with Lemma 4.2.8(1).
(2) Using Definition 3.2.1(5) and Lemma 3.2.3 we see that (Py(s), Z%) = ks

j
for all i,k > 0. By Corollary 3.2.6 we have Pj(as) = Y ox;(a)Px(s). Fix
k=0
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i >0 and apply (—, Z%) to this equation: using equation (4) we then have

aij(a) = <Z Ukj(a)Pk(S)in> = (Pj(as), Z") = (Pi(s),[a](2)").
k=0

Hence o; j(a) is precisely the coefficient of Z7 in the power series [a](Z)". O

This justifies the definition of the polynomials o; ;(Y") which was given in
§1.5. We can now give the proof of Theorem 1.5.1 from the Introduction.

Theorem 4.2.21. If Ap(X) = or]oL], then Pol = Int.

Proof. Note that Pol = U, in view of Lemma 4.2.20(1) and Definition 4.2.12.
Now Ar(X) = 0°(X1), so if this is equal to or[or], then B = Int(or,0r) by
Corollary 4.2.19(2). But U C B, so B C U C Int(or, 0r) by Corollary 4.2.16.
Hence U = Int(oz,,01) as claimed. O

4.3. Calculating the matrix coefficients o; ;(Y"). Here we will assume that
the coordinate Z on the Lubin-Tate formal group is chosen in such a way that

-
Z4
logrr(2) =) —r-
n=0
It turns out that the polynomials P;(s) are sparse: the coefficient of s’ in P;(s)
is non-zero only if i = j mod (¢ — 1). We will obtain more information about
these coefficients; this will require developing some notation to deal with this

sparsity. The calculations that follow rest on the following observation.

Proposition 4.3.1. For every n > 0, we have
y kot +ka

Bu(Y) = Z kol kgl - mlkit2katFdka ©
k‘o+qk‘1+-“+qdk‘d:’ﬂ

Proof. If logip(Z) = > rep zd" /7% and exp is the usual exponential, then
> Pa(Y)Z" = exp(Y logyn(2)) = [[exn(y - 27 /')
n=0

>0
T2 e

£>0k>0
The coefficient of Z™ in this product is the sum of Ykot+ka /gl ..k ! .
glkit2hettdks gyer all tuples (ko,--- ,kq) of positive integers such that
ko + ki + -+ qka = n. O

The following formula for the derivative 5% P, (Y) will be very useful in the
calculations.

Proposition 4.3.2. For every n > 0, we have %P, (Y) = Zkzow_k-

Py (Y).
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Proof. We have P,(Y + Z) = Po(Y) + Y_7_, Pi(Z)Pn—;(Y) by [28, Lemma
4.2(4)]. Hence it is enough to determine which P;(Z) have a term of degree
1 in them, and what the corresponding coefficient is in this case. The answer

now follows from Proposition 4.3.1. O
We fix m € {0,1,2,--- ,q — 2} from now on. We will use the convenient
notation

i:=m+i(¢g—1) forall ¢>0.

Definition 4.3.3. For each j > ¢ > 0, we define

Qm(i,j):{kGNmIZke:i, Zkz<q_1)=j—l}7 and
=1

=0 q
(m) ._ L PR
i Z <k0;k‘1;k2§"') i '
keQW‘L(l)])

Here ( is the multinomial coefficient.

i )f @)!
koskiskase--) T kol-kil-kal-e

Lemma 4.3.4. We have r](;") =1 for all j > 0.

Proof. If i = j, then the second condition on a vector k € N*° to lie in Q. (%, j)
a
forces k1 = ko = --- = 0 because % > 0 for all £ > 1. But then kg =i =7
from the first condition, so the formula for TJ(T) collapses to give 1. O
Proposition 4.3.5. Let n = j for some j > 0. Write
P,(s) = Z b;cn)sk
k=0

with bfﬁn) €L fork=0,...,n.

(1) We have bfcn) =0 k#£n mod (¢—1).

(2) For each 0 <1i < j, we have bl(.l) =4,
Proof. By Proposition 4.3.1, the coefficient b,(ﬂn) of s¥ in P,(s), is given by

(n) _ 1
b = Z (kolk1'ko! - - - )0 -ko+1-ki+2-kat
k

where the sum runs over all possible sequences k = (ko, k1, k2, --) of non-

negative integers satisfying the following two conditions:
ko+ki+ke+---=k, and ko+qgki+¢*ko+-- =n.

Of course given any such sequence, necessarily k; must be zero for all suffi-
ciently large ¢ depending only on n and k, and the set of solutions to these
equations is always finite, so the sum of all these fractions makes sense.
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Next note that if kg, k1, - - - satisfies these two conditions, then necessarily
n=k mod (¢—1).
This implies part (1). For part (2), let £ = i and n = j, and suppose that

the non-negative integers ko, k1, - - - satisfy kg + k1 + - - - = k; then subtracting
gives
ko+aki+q’ ket =m+(g=1)j & (a=Dki+(¢*—Dka+-- = (¢=1)(j—0).

In this way, we see that Q,, (4, j) is precisely the set of sequences that contribute
to the coefficient of s* in P;(s). This coefficient is then

= (m)
(n) _ 1 k! - Z:: Lk i
b =g 2 Rolkal-—- 7 T TR =

" KEQum (i,))

Lemma 4.3.6. Suppose that j > i > 0. Then TE;-TL) is the coefficient of Z1 in
log . (Z)*.

Proof. Write log, (Z)k =30, d'P) Zn. Then

o0 o0 1
Z Po(Y)Z" = exp(Y logp(Z)) = Z T log,r(Z2)"Y*
k=0 "

n=0
= i o i d®) zny*

=0 n==k

Equating the coefficent of Z"Y* shows that

n 1 .
b,(ﬁ):gd%k) for1 <j<n.
Applying Proposition 4.3.5(2), we have TZ(T) = g‘!bg) = d;i). |

Corollary 4.3.7. Define polynomials Rgm) (t) € L[t] for j >0 by the formula
(m) L
R () =Y g,
70 =2
Then for all j > 0 we have P;j(s) = s™ - Rﬁ-m)(sq’l).

Lemma 4.3.8. For each j > i > 0 there exist 0, ;(Y) € Int(or,0r) such that
J
Pi(Ys) =Y _0i;(Y)Pi(s).
=0

Proof. By Example 4.2.7, {P,,(Q) : n > 0} forms a regular basis for the ad-
missible subalgebra Y ox P, () of L[Q)]. Apply Lemma 4.2.8 and use the

n=
transcendence of € over L. O
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Of course this is just another way of rephrasing Corollary 3.2.6. We will
now see that the matrix of polynomials (o; ;(Y)); ; is sparse as well.
Proposition 4.3.9. Let j > 0 and suppose that 0 < k < j.

(1) 01,;(Y)=0ifk#m mod (g —1).
(2) For eachi=0,...,j there exists T( )(X) € L[X] such that

01, (Y) = Y™ r (yarhy,

Proof. Using Lemma 4.3.8, we have

s) = 2 ok, (Y)Pr(s)
=0

Dividing both sides by Y™s™ we obtain an equality of Laurent polynomials
j
(16) R (v 157 =S¥ gy (V) - 5T Py(s).
k=0

The left hand side of (16) is a polynomial in s7~! with coefficients in L[Y]. The
Laurent polynomial s~ Py(s) lies in s¥~™L[s971, s179] by Proposition 4.3.5.

Since
@SCL J[s?71, 179,

looking at the component of the rlght hand side of (16) that lies in the space
sCLY][s?7 Y, s'79] for c € {1,--+ ,q — 2} and then looking at the leading coef-
fiicent of s™™ Py (s) implies (1).

Using Corollary 4.3.7, we can now rewrite (16) as follows:

(17) R™ (yatsity ZY 01;(Y) - BRI (s771).

Since the left hand side of (17) is now a polynomial in Y9! with coefficients
in L[s?71], we deduce by looking at the right hand side of (17) that the a
priori Laurent polynomial Y ~"0; ;(Y) in Y in fact lies in L[Y971]. Part (2)
follows. - O

Setting t = s~ and X = Y71, we deduce the following

Corollary 4.3.10. The polynomials R§m)(tX) satisfy
J
R (tx) =37 (X) BRI (1),
i=0

Definition 4.3.11. Consider the following infinite upper-triangular matrices.
(1) [r™)i; =7 for j > i >0,
(2 7" = ("”<X>, and
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(3) Dx :=diag(1, X, X2,---).
Lemma 4.3.12. We have the matriz equation
p(m) (m) — py.p(m)

Proof. Note that each matrix appearing on the right hand side has infinitely
many rows and columns, but each one is also upper triangular, so matrix

multiplication makes sense. Moreover, as r](;n) =1 for all 7 > 0 by Lemma

4.3.4, the matrix r(™) is invertible, with inverse matrix having entries in L.
Substitute the definition of R§-m) (t) from Corollary 4.3.7 into Corollary
4.3.10 to obtain
J ) i rém)
14 _ m v 4l
(Xt = ;) 0N @!t.

£=0

>4
=0
Equate the coefficients of t¢ to get
J
TX;)XK _ Z Ti(gb) (X) - (T;L)'
i=0
The right hand side is the (¢, j)-th entry of (™) . 7(™) The left hand side is
the (¢, 7)-th entry of Dy - (™). The result follows. O

The following two results on the coefficients r( ™) are strictly speaking not
needed for the calculations appearing in Appendlx A but they are nevertheless
interesting in their own right.

Lemma 4.3.13. For each j > i > 0, we have

(m) _ i 5 ke (4=
rl] Z ) (ko,kl, )772

kEQm (4,

i

Proof. Let k € Qy,(4,7). Then Y2 ke (q;—_ll) = j — i, and therefore

o for = =
71'22::1 Iw( a-1 €> . 7'ri_j = 7rj_i T 22::1 bk . Wi_j =T 22::1 Hw.
The result now follows from Definition 4.3.3. O

Proposition 4 3.14. Let 5 > 1> 0. Then
(1) ©i=t.r )EOL,and

(2) mi= 1~r£?) = (Jfl) mod 7% oy

Proof. (1) Note that for every £ > 1 we have

£_ —1))— 14+£(g—1)+(9) (g—1)%++(g—1)* -1
ap = qqfll _y _ (1+(qq711)) 1y M=) (2)((1(171 (@-»'-1_,

= (g)(q_ 1)+ (g)(q— D244 (g— 1) 0
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Thus ay > 0 always. Hence the expression in the big brackets in Lemma 4.3.13
lies in oy,.

(2) The exponent of 7 appearing in the term in the sum corresponding to k €
Qm(4,7) is equal to >, kea. It follows from the formula for ay established
above that a; = 0. Hence this exponent is a positive multiple of ¢ — 1, unless
ke = 0 for all ¢ > 2. In this case, the exponent is 0 and the corresponding term

. S ‘
is equal to (sz) because in this case k; = ZZ k‘g% =7 —1i O
=1

5. CONSEQUENCES OF THE KATZ ISOMORPHISM

5.1. Equivariant endomorphisms of L.,. Throughout this §, we assume
that L = Q,2 and that 7 = p. In particular, L. is the completion of L(G[p>]).
We recall the statement of the Katz isomorphism (Theorem 3.6.15): if S is a
m-adically complete oy -algebra, then the map

K* : Hom,, (C%al(0L7o(cp),S) — S[[Z]]w‘fint

is an isomorphism. Recall ([19], page 58), that y is said to be supported in o}
if and only if u(f) = 0 for all f such that f = 0 on 0. We have the following
criterion.

Lemma 5.1.1. A measure ;1 € Hom,, (C&, (oL, 0c, ), S) is supported in o} if
and only if Y, (K*(u)) = 0.

Proof. Note that f € C&, (oL, 0c,) is zero on o} if and only if f = ¥¢(g) for
some g € C, (oL, 0c,). Indeed, e (g)(a) = 0 if a € of by definition, and if

f=0o0noy, then f =vYcpc(f).
The map K* is injective by Theorem 3.6.15. By Corollary 3.3.7, we have

P K* = K*E. Hence Y,K*(n) = 0 & K'9&(p) = 0 & ¢i(p) = 0 &
wu(e(g)) =0 for all g < p is supported in o . O

There is the usual G, * action on oc, [Z], and on Hom,, (C2, (oL, oc, ), oc,)

it is given by g*(1)(f) = g(u(g~'(f))) = g(ula — f(r(9)~" - a)) since [ is Gal
continuous. In particular, Theorem 3.6.15 applied with S = oc, implies the
following.
Corollary 5.1.2. We have
(1) Hom,, (Cga (oL, oc,), 0c,) 8" = AL (X)Va .
(2) Hom,, (C2,,(0F,0c,),0c,) %" = Ap(X)¥a=0.
Since L = Qy2, the map 7 is surjective. Let I'r, = Gal(L(G[p*>])/L).

Lemma 5.1.3. The map CQ, (0} ,0c,) — 0o given by f — f(1) is an iso-
morphism of or-modules.

Proof. Since d = 2, we know that 7 is surjective by Lemma 2.6.4. Now, if
T € 0o, let fo € Cgy(of,0c,) be given by fo(1) = o and fu(7(9)) = g().
Every element of C,, (0}, oc,) is of this form. O
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Theorem 3.6.15 applied with S = oy, now gives us the following

Theorem 5.1.4. The map K* gives rise to an or-linear isomorphism 0%, =~
OL[[Z]]%:O‘

Proposition 5.1.5. The space Hom,, (C&,,(0},0c,), oc,)%%* is naturally iso-
morphic to the space of I -equivariant oy, -linear maps 0oo — 0o -

Proof. If © € 0o, let fy € C&,i(0F,0c,) be as in the proof of Lemma 5.1.3
above. If 1 € Hom,, (C,,(0],0c,),0c,)% ", we define a map T : 0o — 0Ooo
by T(xz) = u(fy). We have fyyy = fo + fy and fo, = af, if a € of, so that
T is op-linear. In addition, T is I'p-equivariant because p is fixed under the

G, *-action. Indeed, g(T'(z)) = g(p(fz)) = pn(g(fz)) and g(f.)(1) = g(z) so
that g(fz) = fy(z). Therefore, g(T'(x)) = T(g(x)).

Conversely, a I'j-equivariant oy -linear map T : 05, — 0o, as above gives an
element p € Hom,, (C2, (0}, 0c,), 0c,)“"* via u(fs) = T(x). O

Combining Corollary 5.1.2 and Proposition 5.1.5, we get the following.
Theorem 5.1.6. We have EndS* (050) =~ Ap(X)¥=0.

Corollary 5.1.7. We have AL (X) = or[or] if and only if every T 1, -equivariant
or-linear map 0o — 00 comes from an element of or[T'r].

Proof. We have Ar(X) = or[or] if and only if Az (X)¥=% = A(0}) by Lemma
5.1.9 below. If u € Ap(X)¥=0 then by Corollary 5.1.2 it corresponds to an
element of Hom,, (C2, (o}, 0c,),0c,)¢"*. By Proposition 5.1.5, the element
p € Ap(X)¥=Y comes from an element v € or[['z]. The element u then
corresponds to the image of v in Ao} ) via 7. Indeed, if g € T';, and T is given
by z — g(z), then it corresponds to u : f — g(x) and g(z) = f.(7(g)) so that
p=0r(g)- O

Using Corollary 5.1.7, we get the following

Theorem 5.1.8. We have Ap(X) = op[or] if and only if every continuous L-
linear and G -equivariant map f : Loo — Lo comes from the Twasawa algebra
L ®o;, OL [[FL]]

Proof. Indeed, by Corollary 2.10.11, Ar(X) N (L ®,, orfoL]) = oroL]- O
Lemma 5.1.9. If A(X)¥=% = A(0}), then AL(X) = or[oL].

Proof. It f € Ap(X), then &; - p(f) € AL(X)¥=°. So o(f) € orfor] and
f=1vqp(f) € orfoL]. O

The following proposition implies that there are no “Tate trace maps” Lo, —
L or Lo, — L, (recall that Ly is the completion of L(G[p*])).

Proposition 5.1.10. Let f : Lo, — Lo be a continuous, I'f-equivariant
and L-linear map. If f(Lo) is included in a finite field extension of L, then
1) =0,
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Proof. We have logQ € Lo, and (g — 1)logQ =log7(g) if g € T';,. Hence

(9 —1)f(log Q) = f((g — 1)log Q) = f(log7(g)) = log7(g) - f(1).
Hence if f(1) # 0, then f(log ) cannot belong to a finite extension of L. O

Note that a similar result was proved by Fourquaux, see for instance [14,
Prop 2.2.1]. Proposition 5.1.10 can be strengthened: almost the same proof
gives us the following proposition. Recall that Ly = Ly, by the Ax-Sen-Tate
theorem, see Theorem 1 on page 176 of [32].

Proposition 5.1.11. Let f: Lo, — Lo be a continuous, I'p -equivariant and
L-linear map. If f # 0, then there exists a; # 0, ag € L(G[p*>]) such that
f(Loo) contains ailogQ + ag.

Proof. We have logQ € Lo, and (g — 1)logQ = log7(g) if g € T',. Take
x € L(G[p*]) such that f(z) # 0, and choose (note that f(L,) C L, by the
Ax-Sen-Tate theorem) some n such that z, f(z) € L,,. If g € T',, then

(g—1)f(x-logQ) = f((g — 1)(z - logQ)) = f(x -log7(g)) = log7(g) - f(x).

Therefore (g — 1)(f(z - log Q) — f(z) - log) = 0 for all g € T, so that f(x -
log ) — f(z) - log Q € L,, by Ax-Sen-Tate.
We can now take a1 = f(z) and ag = f(z -log Q) — f(x) - log Q. O

This can be strengthened even further. Let L% denote the vectors in L,
that are locally algebraic for the action of the Lie group I'y. Let ¢(g) =
log 7(g) = log x3(g). The set L3 is the set of 2 € Lo such that there exists
an open subgroup I';, of I'y, and d > 0 and x¢p = x,x1,...,2q € L such that
g(x) = zo + 21¢(9) + -+ + wac(g)? if g € T Note that technically, these are
the locally o-analytic locally algebraic vectors in Lo,. However since L = Q,2,
every locally analytic vector of Lo, is locally o-analytic (see [4]).

Lemma 5.1.12. We have L% = L(G[p*>])[log 9.

Proof. One inclusion is easy. Now take z € L& and write g(x) = zo+z1c(g) +
- 4 acdc(g)d if geI'y. On Lﬁég we have the derivative V : ¢ +— 1 and we
know (from the theory of locally analytic vectors) that V7 (z)/j! = z; for all
4. In particular, V(z4) = 0, so that z4 € L(G[p™]). The element z — z4log? Q
is then in L% and it is of degree < d — 1, which allows us to prove the Lemma
by induction. ([l

We see that V = ﬁ. For all n, the map V : L,[logQ] — L,[log Q] is
surjective, and its kernel is L,,. If f : Lo — L4 is a continuous, I'z-equivariant
and L-linear map, then f(L%8) C L. In addition, V = lim,—1(g — 1)/c(g)
so that foV =V o f.

Proposition 5.1.13. Let f : Lo, — Lo be a continuous, I'y -equivariant and
L-linear map. If f # 0, there exists n > 0 such that L, - f(Ly[logQ]) contains
L, [log Q.
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Proof. Take © € L(G[p*]) such that f(z) # 0 and let n > 0 be such that
x, f(x) € L,. We prove by induction on d that L, - f(L,[log]) contains
L, [log Q]geg<q- In order to do this, we prove that f(z- log? Q) is a polynomial
(in log Q) of degree d. The case d = 0 follows from the fact that f(z) # 0.
Now assume that the result holds for d — 1. We have

Vf(z-log?Q) = f(z- Vieg? Q) = f(dz - log?™ ' Q),
so that f(z - log? Q) is a polynomial of degree d. This implies the claim. O

5.2. The dual of the ring of integers of a p-adic Lie extensions. Recall
that m € oy, is a uniformiser and ky, := o, /7oy, is the residue field of L. In this
8, Loo/L is an infinite Galois extension with Galois group I' = Gal(Ls/L).
We fix a chain

rorioreo---

of open normal subgroups of " such that (| T, = 1.

n=1
Definition 5.2.1. Let n > 1.
(1) L, := LY~ a finite Galois extension of L with Galois group I'/T,.
(2) o, is the integral closure of oy, in Ly,.
(3) o} :=Hom,, (0, 0L).
(4) kp := on/m0p.
(5) k) := Homg, (kn, k).

Note that o, and o} are naturally oz, [I'/T';]-modules, both free of finite rank
as an or-module, and k,, and k7 are kr[I"/T",,]-modules, both finite dimensional
over ky,.

Remark 5.2.2. Let n > 1.

(1) of can be identified with the inverse different 021 /L of the extension
L,/L.

(2) Applying the duality functor (—)* = Hom,, (—,0r) to the natural
inclusion of or-modules 0, — 0,41, we obtain a natural connecting
map oy, — 0y. This map is surjective, because the o0,41/0, is a
finitely generated and torsion-free op-module.

*

Lemma 5.2.3. For each n > 1, there is a short exact sequence of or[T'/T)]-
modules
0—of 5 o0f =k —0.

Proof. Let M be an or-module and consider the complex of oy-modules
0— M* = M* ™5 (M/zM)Y =0

where M* := Hom,, (M,o0r), (M/mM)"V = Homy, (M/nM, ki) and where
nm(f)(m +7M) = f(m) + wor, € kr. This complex commutes with finite
direct sums and is exact in the case when M = or. So the complex is exact
whenever M is a finitely generated free or-module. If M also happens to be
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an or,[G]-module for some group G, then the maps in the complex are oy [G]-
linear. The result follows when we set M = o,, an o [I'/T,;]-module which is
free of finite rank as an or-module. O

We now pass to the limit as n — oo.

Definition 5.2.4. Recall the Iwasawa algebras A(I') = y_oL[F/Fn] and
Q(T) = lim b [T/, ).
(1) 0s := colimo,, an oy, [I']-module.
(2) :=lim o}, a A(T")-module.
<_
(3) koo := colimk,,, a kp[I']-module.
(4) = ]glkv an (T")-module.

n?a

Lemma 5.2.5. There is a short exact sequence of A(I')-modules
0— o = oi, — k% —0.

Proof. The short exact sequences from Lemma 5.2.3 are compatible with vari-
ation in n, in other words we get a short exact sequence of towers of A(T')-
modules. Applying the inverse limit functor gives a long exact sequence

0— o, — ot — k2 %@(1)0’;.

The @ (1) term on the right vanishes in view of Remark 5.2.2(2), whence the
result. O

Remark 5.2.2(2) also implies that the natural maps o%, — o are surjective.
Proposition 5.2.6. The A(T')-modules oo, and o, are faithful.

Proof. Suppose £ € A(T) kills 0. Then its image &, € o[['/T,] kills o,.
Therefore &, € L[I'/T,] kills L,, = 0,, ®,,, L. But L,, is a free L[I'/T",,]-module
of rank 1 by the Normal Basis Theorem. So, &, = 0 for all n > 0 and therefore
& =0 as well.

Suppose now & € A(T') kills of,. Then ¢ kills each the quotients o}, of o, .
But the action of A(T") on o} factors through or[I'/T',], so the image &, of £
in or[I'/T,] kills of. Since &, also kills o, = (0})*, we deduce from the above

n

that &, = 0 for all n. Hence £ = 0. (]

Proposition 5.2.7. Suppose that p ¥ |[T'/T1|. Then kY is a free kp[T'/T1]-
module of rank 1.

Proof. The field extension L;/L is tamely ramified by our assumption on
|T'/T1]. Now it follows from Noether’s Theorem on rings of integers in tamely
ramified extensions that oy is a free o [I'/T'1]-module of rank one — see, e.g.
[33, Proposition 2.1]. Hence 01 /7oy is a free k1 [['/T'1]-module of rank one, and
we can apply Lemma 5.2.3 to conclude. (]
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Lemma 5.2.8. Suppose that ' is a p-adic Lie group. Let M = lgan be an
inverse limit of a tower of Q(I")-modules, where each M, is finite dimensional
over kr,. Then the natural map on I'-coinvariants

MF — I&H(Mn)r
is an isomorphism.

Proof. The Iwasawa algebra Q(I") is Noetherian, so its augmentation ideal
J = (T —1)Q(T) is finitely generated. Let uq,--- ,u, € J be generators and
let N be an Q(T")-module; then

Nr=N/('=1)-N=N/JN =N/(uyN +--- 4+ u,N).
In other words, we have the short exact sequence of kr-vector spaces

(w1, cur)

(18) N —""N— Npr—0.

Applying this to each M,, we obtain an exact sequence of towers of Q(T')-
modules

where each term is a finite dimensional kp-vector space. The inverse limit
functor is exact on such towers, since they all satisfy the Mittag-Lefller condi-
tion. So passing to the inverse limit we obtain the exact sequence of kp-vector
spaces

M7 M (M) 0.
Comparing this with (18) applied with N = M gives the result. O

Theorem 5.2.9. Suppose that

o ' is abelian,
o pt|T/I4],

e ['1 is a torsionfree pro-p group of finite rank.
Then o, is a free A(T')-module of rank 1 if and only if the map ki — kL3 is
an isomorphism.

Proof. (<) Note that the connecting maps k, — k,41 in the colimit ko :=
colim k,, are injective: if x + 7o, € k, maps to zero in k,y; then there is
Y € Opy1 such that x = 7y; but then y € L, No,41 = 0, and hence z =
7y € mo,. Under our hypothesis that k; — kL! is an isomorphism, it follows
that for each n > 1, the map kL' — kgﬁrl is an isomorphism. Applying the
(=) = Homy, (—, k1) functor, we deduce that for each n > 1, the map on
I';-coinvariants

(kX-H)Fl = (k)

is an isomorphism. Now, Lemma 5.2.8 tells us that
(k(\)/o)rl = m(kX)Fl .
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Since the maps in the tower of I'i-coinvariants are all isomorphisms, we con-
clude that the natural map of k[I'/T'1]-modules

(kgo)rl - kY

must be an isomorphism. Now &y is a cyclic k1, [I'/I';]-module by Proposition
5.2.7 and the ideal JQ(T') generated by the augmentation ideal J of Q(T';) is
topologically nilpotent in the sense that J” — 0 as n — oo, because I'y is
assumed to be pro-p. In this situation we can apply the Nakayama Lemma for
compact A-modules — see [3, Corollary to Theorem 3] — to deduce that kY,
is a cyclic Q(T')-module: any lift of a kz[I'/T';]-module generator for kY to kY,
will generate it as an Q(I")-module.

Now of, /mo’, = kY by Lemma 5.2.5. The A(T)-module o}, is profinite
and 7 — 0 as n — oo in A(T'), so applying the Nakayama Lemma again, we
conclude that o, is a cyclic A(T")-module.

Since 0%, is a faithful A(T')-module by Proposition 5.2.6 and since T" is
abelian, we deduce that o, must be a free A(T')-module of rank 1.

(=) We reverse the argument above. Assume 0% is a free A(I")-module
of rank 1. Then Lemma 5.2.5 implies that kY, is a free Q(T')-module of rank
1. Hence (k¥)r, is a free k[I'/T'1]-module of rank 1. By Lemma 5.2.8 we
have (kY)r, = @(k‘%)pl and the connecting maps in the tower (kY)r, are
surjective, with the bottom term being (kY)r, = kY. Since this is a free
kr[T/T'1]-module of rank 1 by Proposition 5.2.7, the natural map (k¥,)r, — kY
from the inverse limit to the bottom term is a surjection between two free
kr[T'/T1]-modules of rank 1. So it is also an isomorphism. Dualising shows
that k; — kL is an isomorphism as well. d

Lemma 5.2.10. In the situation of Proposition 5.2.9, suppose that o, is a
free A(T')-module of rank 1. Then L, /L is tamely ramified for all n > 1.

Proof. Consider the I',-coinvariants of o} . These coinvariant must be a free
rank 1 or,[I'/T;]-module by assumption. On the other hand, by construction,
there’s a surjective or[['/T,]-linear map

(0%)r, = 0},

(see the remark just before Proposition 5.2.6). Both sides are free or-modules
of rank [L,, : L], so this surjective map must actually be an isomorphism by
the rank-nullity theorem. So, o} is a free rank 1 or[I'/T',]-module. But then
using, for example [2, Lemma 5.4], we see that

on = Hom,, (0},,01) = Hom,, r/r,1(05,, 0L[T'/T'])

must also be a free rank 1 or [I'/T',,]-module. In other words, o, has an integral
normal basis, so by [33, Proposition 2.1] L,,/L must be tamely ramified. O

The following result, which may be of independent interest, shows that the
hypothesis that the action map p : Q(T') — Endgr)(kY,) is an isomorphism
has strong implications about ramification behaviour in the tower Lo, /L.
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Lemma 5.2.11. Suppose I is a torsionfree abelian pro-p group of finite rank,
and that the action map p : Q(T') — Endgry(kY,) is an isomorphism. Assume
that Ty =T. Then L, /L is tamely ramified for alln > 1.

Proof. Let a € kL} and consider the multiplication-by-a map £, : koo — Koo.
Since a is fixed by I' = I'y, this map is Q(T')-linear. By our assumption on p,
we can find some b € Q(T") such that p(b) = a. Now a is algebraic over k7, and
p is injective by assumption, so b € Q(I') must be algebraic over k as well.
Since I' = 'y, the mod-p Iwasawa algebra Q(T") is a power series ring over ky,
in finitely many variables. The only elements of such a power series ring that
are algebraic over kj are constants. Hence b € k;, and so a € k;, = ki since
I' = I'y. Hence ki = k;. Now the result follows from Theorem 5.2.9 and
Lemma 5.2.10. O

Returning to the setting of §1.7, we have the following conclusion.

Corollary 5.2.12. Suppose that L = Q,» and m = p, and let G be the
Lubin-Tate formal group attached to w. Let TXT = Gal(L(G[p>])/L). Then
or[Z]%4=° is not a free op [['¥T]-module of rank 1.

Proof. 1t is well known that L,, /L is not tamely ramified for any n > 2. Hence
0%, is not a free A(TET)-module of rank 1 by Lemma 5.2.10. Since G is self-

dual, the tower Lo, /L coincides with the one defined at Definition 2.7.1(1).
The result now follows from Theorem 1.7.1. O

5.3. The operator » and the span of the P,. We now turn to some
consequences of the Katz isomorphism for the span of the P,, where P, is
the element of C2, (o, 0c,) given by a — P,(a - ). The Katz map K* :
Hom,, (C&, (oL, 0c,),S) = S[Z]¥+ ™™ is then given by p+— >, o u(Pn)Z".

Proposition 5.3.1. The L-span of the P, is dense in the L-Banach space
C(O}al(OL7 (CP) .

Proof. Let W denote the closure of the L-span of the P, in C&,,(or,Cp). If
W 2, (or,C,), then it has a closed complement in C&,,(or,, C,) and we can
find a measure p # 0 that is zero on W (and hence on all of the P,). This is
a contradiction. O

Remark 5.3.2. There is another proof of this result. Indeed, locally analytic
functions are dense in C%(or,C,) and for locally analytic functions, we have
the generalized Mahler expansion of [28, Theorem 4.7]. So it is enough to prove
that locally analytic and Gal continuous functions are dense in C2,(or, Cp).
A Gal-continuous function is determined by (f(p™))52, where each f(p") €
Lo and f(0) € L and f(p™) — f(0) (see also §§3.3-3.4). We can approximate
each f(p™) by an element of L, and this way, we can show that Gal-continuous
locally constant functions are dense in the Gal-continuous functions. More
precisely, given a sequence { f,,} as above and some k > 0, we have f,, — fo €
pkocp for all n > n(k), so we replace these f,, by f, and approximate the

others to within p=%.
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We now choose a coordinate X on LT such that [p]rr(X) = pX + X9.
The polynomials P; depend on the choice of coordinate. However, the op-
module U,, = @}_,or, - P; is independent of the coordinate. Given this choice
of coordinate, we have formulas and estimates for 1, in [15, §2A].

Lemma 5.3.3. If k > 1, then ¢,(X*) € L[X]x-1.
Proof. See [15, Proposition 2.2]. O

Let ¢°(A) denote the set of sequences {c,}n>0 with ¢, € 4 and ¢, — 0
(with A =0y or L).
Corollary 5.3.4. The map ®(or) — C%al(OL,O(cp) given by {c; }iso — > ;P
is injective, as well as the same map °(L) — C&, (o, C,).
Proof. Lemma 5.3.3 implies that for all & > 0, there exists n = n(k) such
that p"X* € or[X]¥s ™. Let u be the corresponding measure. We have
1> 50 CiPs) = p™ep henceif Yo ¢;P; = 0, then ¢, = 0. The second assertion
follows from the first. a O
Lemma 5.3.5. If k > 1, then 1q(p* - op[X] ) C 71 0p[X] e
Proof. This follows from [15, Proposition 2.2]. O

Let H,, C L[] denote the set of P({2) such that deg P < n and P(af?) € oc,
for all a € or,. Obviously, U, = &I yor, - P;(Q) C H,. Let p; : C&,,(or, oc,) —
L be the measure corresponding to X*, so that u;(P;) = d;;.

Proposition 5.3.6. If Q(Q) = Y1, ¢;P(Q) € H,, then ¢; € p~ ™oy, if i <
qm.

Proof. We have Q(Q) € C&, (o, 0c,). By Lemma 5.3.5, p™ X* € o [X]¥a- ™t if
i < ¢™, and hence p™p; € Hom,, (C&,, (oL, 0c,),0r) for all 0 <4 < ¢™. Hence
p™c; € or,. O
Corollary 5.3.7. We have Hgx C p*kqu.

Let 1, = p - 94 so that 1, (or[X]) C or[X].

Lemma 5.3.8. 1, (X%T@1) = X* mod p and 1,(X™) = 0 mod p if m #
—1 mod gq.
Proof. This follows from [15, Proposition 2.2]. O

Corollary 5.3.9. The map c°(L) — C2,,(or,C,) is not surjective.

Proof. By Corollary 5.3.4, it is injective. If it is a bijection, then the continuous
dual of C2,,(or,C,) is naturally isomorphic to or,[X][1/p] via the map p
Y nso M(Pn)X™. However by the Katz isomorphism, the image of this map is
oL [X]%«™™[1/p].

Take f(X) =14 X9 + X9 ~! +.... Lemma 5.3.8 implies that t,(f) =
fmod p and hence ¢ (f) = fmodp. We therefore have ¢y (f) € p™"f +
p~ (Do [X] for all n > 1, so that f(X) is not in oy [X]¥s™[1/p]. Hence
or[X][1/p] # oL [X]¥™[1/p]. O
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In order to say more using Katz’ result, we need to produce more elements
of op [X]¥s "t There is oy [X]%*=°, which contains X? for 1 <i < g — 2 and
pX 7' +(g—1) and hence (BIZ7 X704 (0L [X]) ® (pX 97 +(g—1))-pq (0L [X]).
If fo(X) € (X - or[X])¥w™ and the by, are in or, then Y o bagi(fn) €
or[X]¥« ™ as well (the sum converges for the weak topology, and 1, is con-
tinuous for that topology). For example, if f(X) € (X - or[X])¥+=0, then
ano wq(f) € oL [X]¥e="

Remark 5.3.10. We have
(1) wq(Xi) =0if1 <i<g—2andg+1 <i<2¢—3and?2¢+1<i<3q—4
(2) ¥q(1) =1 and 1y(X97") = (1 — q)/p and ¥ (X7) = X
(3) ¥q(X?172) = g — 1 and ¢(X?7"") = X(1/p — 2p) and g (X?) = X?
(4) More generally, 1, (X*) = X1p,(X*79) — papy (X FFT179)

Lemma 5.3.11. We have p* X"~ ¢ or[X]¥« it but not ph-lxd -1,

Proof. Recall that 1,(X?7') = (1 — ¢q)/p. This implies that 1,(1/X) =
(X7 +p)/i0g(X)) = 1/pX. If k > 1, then

k—1 k—1
q i q -1 k—1_i
pt= €
( ) ) p ( 1—1 ) P'/i poL

This implies that o (X7 ') € X7 + p*"Xop[X]—1. By Lemma 5.3.5, we
have

k—1 k k—1 k—1
X1 X —p (X1 D CA :
wq(qu_l) = 1), (‘Pq( )+ Pq( )) c . _|_0L[[X]]wq-mt_

X
This implies the Lemma by induction on k. O
Corollary 5.3.12. There is an h € H in which the coefficient of Px_q is in
—k X
p "o

Proof. Let ¢y € C2, (o1, Cp)* be the linear form corresponding to X1,
There is an f € C2, (oL, 0c,) such that ¢y (f) € p~Fo] (if it was in p' For,
for all f, then p’“*lch_l would be an integral linear form, and we’d have

pk_quk_l € or[X]¥a"t. This is not the case by Lemma 5.3.11). By Corol-

lary 5.3.1, the L-span of the P, is dense in C,,(or, C,). Therefore there is an

h € H such that ||f — k|| < p~*. We then have c,x_;(h) € p~*o]. O
6. OTHER CRITERIA

We indicate how to prove Theorems 1.8.1 and 1.8.2.

6.1. The Lubin-Tate derivative. As we said in the Introduction, Theorem
1.8.1 follows from Theorem 1.4.1 and Proposition 6.1.2 below.

Lemma 6.1.1. The sum Z[p](w):() whisqifn=0,itis0if (¢g—1)tn, and
it is (g — 1)(=p)* if n = (¢ — )k with k > 1.
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Proof. Since [p|(T) = pT + T9, the sum is over 0 and the roots of 7971 = —p.
If X is one of the roots, the set of all the roots is {#A},s-1-1. The result follows
(for n = 0 it is a convention). O

Proposition 6.1.2. Assume that L = Q2 and that m = p. Let A = Q11 /p(q—
D€ og . If f(Z) € oc,[Z], then wo(f) =X DI71(f) € oc, [Z].

Proof. Recall from [20, p. 667] that f(Z&Y) =3_, ., Y"P.(9)f(Z). We have
o (f)(Z2)=1/q- Z[p](w):o f(Z @ w), so that

1 n
(qu Z Zw 62 Z w Pn(a)f(z)
7 pi@)=0n>0 n2>0 \ [p](w)=0
By Lemma 6.1.1, the " w™ for n not divisible by ¢ — 1 are zero, and the > w"
for n = (¢ — 1)k are divisible by ¢ except when k = 1. Hence

ool - §<q ()P (O)(f) € 05, [Z].

The proposition now follows from the fact that
-1 -1
o4 _ ppL. 04
(g—1)! plg—1)!

6.2. Changing the base field. We now turn to Theorem 1.8.2. If K is a
subfield of L, we also have a character variety X for K; write Xx and Xj.
An L-analytic character 7 : o — C; can be restricted to ok, and it is then
K-analytic. This gives a rigid analytic map Xy — Xx. This map in turn gives
rise to a map resy, /i : Oc,(Xkx) — Oc,(XL), which sends bounded functions
to bounded functions, and On(Xk) to Op(Xp) for all closed subfields L C
M C C,.

P,—1(0) = =pDit .\, O

Lemma 6.2.1. On bounded functions, resy, /i : O(lép (Xk) — O(lép (X1) is in-
jective.

Proof. Suppose that f € Of:p (Xk) is zero on the restriction to o of every
L-analytic character of oy,. Since ok is a direct summand of oy, every torsion
character of ox extends to a torsion character of o;. Hence f is zero on all
torsion characters of og. This implies that f = 0 as f is bounded. (]

If p is a distribution on og, we define a distribution resL/K(u) on oy, as
follows: if f € C*"(or), we let resp,r(1)(f) = pu(fl,, ). This is compatible
with the above map if we view elements of Oc, (X) as distributions.

Lemma 6.2.2. If p is a distribution on ok, whose image under resy, /i (j1) s
a measure on or, then there exists a measure i on ox such that 4 = i on

Proof. Let f be a locally constant function on of. Since ok is a direct sum-
mand in or,, we can extend f to a locally constant function f on or, in a way
that the sup norm of f on o, is the sup norm of f on o . Since resy,/x(u) is a
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measure, there exists C' such that || resy,x (1)(9)llo, < C -lgllo, for all locally
constant functions g on or,. We then have

it (Plloxe = llvesryx () (Dllos, < C - 1Flo, = C - 1 F o

We can now let fi(f) = p(f) for any f € LC(ox). The above estimate shows
that fi extends continuously to C%(of). O

Proposition 6.2.3. If 0% (XL) = L®,, A(or), then O% (Xk) = L®,, A(ok).

Proof. If u € O%(Xk), then u can be seen as a distribution on oy, and it
gives rise via resy x to an element of L ®,, A(or). By Lemma 6.2.2, there is
a measure fi on ox such that u = i on LC(0k). The image of the distribution
p — fi under resy /g belongs to L ®,, A(or) and is zero on locally constant
functions, hence resy k(¢ — fi) = 0. By Lemma 6.2.1, = i and hence p is a
measure on og. O

Theorem 6.2.4. If L/K is finite and if Ap(Xr) = or[or], then Ax(Xk) =
ok [ok].

APPENDIX A. AN ALGORITHM FOR WHETHER THE 0; ;'S SPAN Int(or,0r,)
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A.1. Introduction. Let Q, C L C C, be a field of finite degree d over Q,, o,
the ring of integers of L, 7 € oy, a fixed prime element, and ¢ := |or, /7oL | the
dimension of the residue field. For an or-submodule S of L[Y] and an integer
n, let S, = {f € S:deg(f) <n}.

Recall that the polynomials P, (Y") are defined by

exp(Y -logp(2)) = Y Pu(Y)Z".
n=0

We choose the coordinate Z such that log;(Z) = Yoo k7",
Define the upper-triangular matrix (o3 ;), ;>0 With entries in L[Y] by

P;(Ys) = Z 0ij(Y)Py(s).

By Lemmas 4.3.8 and 4.2.8, we know that o, ;(Y) € Int(or,0r) and that
deg(o;,;(Y)) < j. The question that we consider is whether the or-linear
span of {o; j(Y) : 0 < ¢ < j} equals Int(or,, or,). In this write-up we develop an
algorithm to check whether (Int(o L,0 L))n is contained in the oy -linear span of

{0;;(Y):0<i<j< N} for some fixed N, where for convenience we require
g—1]|N.
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A.2. Theory.

A.2.1. Reduction to Ti(‘;). To ease notation, for a fixed a € {0,1,...,q — 2}, we

s

denote ¢ = a + (¢ — 1)i. By Proposition 4.3.9(2), there exist upper-triangular
matrices Ti(;)(Y) such that

(19) 01;(Y) =Y 9 (yay,

Definition A.2.1. For a polynomial P(x), we denote by v, (P) the coefficient
of 2™ in P.

Definition A.2.2. Let M be the op-linear span of {o; ;(Y):0 <i < j}. For
a fixed a, let M(®) be the or-linear span of {O’Li(Y) :0<i < j}. Let S(@ be

the or-linear span of {Ti(f;)(Y) 0<i < j}.

Lemma A.2.3. Let (fb(a))bzo be a reqular basis for S(® — that is, each flfa)
has degree b. Then, M = Int(or,,0r) if and only if for all a € {0,1,...q — 2}
and b > 0, we have

ve(n(£y")) = ~wgla+b(g — 1).
Proof. For afixed a € {0,1,...¢—2}, by (19), we have v5(0;,;(Y)) =0if s # j
(mod g — 1). So, by definition, M = @Z;g M@,
We write $(®)(Y9~1) = {f(Y?1): f € S(¥}. Equation (19) shows that
M@ =yae. N@(yaly,

Having chosen a regular basis ( flfa))bzo, these give rise to regular bases
(a) yae-1 ) f (a) yae-1
(A70m),_ for S@(vo),

So, we get regular bases (Y“fb(a)(Yq’l))DO for M(® and thus a regular

basis {Yaflfa)(Yq_l) ca€{0,1,...q—2},b 26} for M.
Then, M = Int(or,0r) is equivalent to Vﬂ(7a+b(q_1)(Yafl5a) (Ya—1))) =
—wgy(a+b(g—1)), which is equivalent to v (vp( Zfa))) = —wy(a+0b(g—1)). O

Let n = a+ b(q — 1), where a, b are integers, with a € {0,1,...q — 2}. The
proof above shows that a polynomial of degree n with m-valuation of leading
term equal to —wg(n) exists in My if and only a polynomial of degree b with
the same valuation of leading term exists in Sz(\(/l/)(qq)' So, the strategy will be

(a)

to compute regular bases for SN/(q_l).

A.2.2. A formula for Ti(f;). One advantage of this approach is that the matrices

Ti(:;)(Y) can be computed quickly. Recall Definition 4.3.3 (where we merely
change notation, calling m by a instead):
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Definition A.2.4. For each j > i > 0, let
S o0 qg -1
{kENOO:ZIWZZ,Zk‘g<q_1) :]_7/}§
£=0 (=1
(@) ._ i ek
Tig = Z (ko;kl;...) T B

keQq(%,5)

Qal(i, )

Define the upper triangular matrix (D; ;);,; of coefficients as follows:
Definition A.2.5. Let D, ; = ilv; P;(Y).

This does not depend on a. From Proposition 4.3.2, we obtain the following
recursion formula, valid for 7 > 1:

-7
Di,j:E T " Di1j—q,
r>0

with the initial conditions being Dy ; = do ;.
Now, by Proposition 4.3.5(2) it follows that rglj) = D, ;. To tie this back to
T(l;), we recall from Definition 4.3.11(3) the notation Dy := diag(1,Y,Y?2,...).

i,
Then, Lemma 4.3.12 gives 7(*) = (#(®))=1.Dy .r(9), This gives a fast algorithm
to compute the matrices 7(%), as the recurrence relation for D allows us to

compute () easily.

A.2.3. Gaussian elimination over a (discrete) valuation ring. Let R be a (dis-
crete) valuation ring and let A be an m x n matrix with entries in R. We define
notions of elementary row operations and row echelon form over R, similarly
to the definitions over a field.

Definition A.2.6. Given a matrix A as above, the elementary row operations
are as follows.

(1) Swap two rows.
(2) Multiply an entire row by a unit in R.
(3) Add an R-multiple of a row to another row.

Lemma A.2.7. Performing elementary row operations on a matriz preserves
its R-row span.

Proof. For each elementary row operation on A, we define an m x m matrix B
with entries in R such that the result of applying the elementary row operation
on A is BA. Observe that in each case, B is invertible, so BA has the same
R-row span as A. O

Lemma A.2.8 (Gaussian Elimination). Let A be a matriz as above. Assume
that m > n and that A has rank n. Then, one can perform a sequence of
elementary row operations on A to produce an upper-triangular matriz of rank
n.
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Proof. We will exhibit an algorithm that puts A in the required form.

We start with the leftmost column. As A has rank n, there is a non-zero
entry on column 1. Pick the one with minimal valuation and swap rows, so
that the entry on column 0 with minimal valuation is on position (0,0). Let
the new matrix be B.

Then, for each row ¢ > 1, subtract ZT?J x (row 0) from row 4. After all of
these operations, the matrix has block form:

ik

where * denotes some 1 X (n— 1) matrix, and A’ is an (m —1) x (n— 1) matrix.
Observe that, as A had rank n and the elementary row operations don’t change
the rank, A’ will have rank n — 1.

Now, we can inductively apply the same procedure to A’. Observe that all
row operations on A’ extend to row operations on the whole matrix that don’t
change the block structure (as the corresponding entries in the first column are
all 0’s). By construction, the end result is an upper-triangular matrix, which
has the same rank as the initial matrix A. O

A.3. Implementation. We focus on two fields L: the totally ramified exten-
sion Qp(pl/ 4), and the unramified extension of degree d, where we take the
prime p, the degree d, and the cutoff N as input parameters.

Fixa € {0,1,...,¢—2}. First, we compute the matrices (T(a))OSiS]‘<N/(q*1)
following the method discussed in Section A.2.2. Then, for s =0,...,N/(q —
1) — 1, we will appeal to the following result to inductively compute a basis
(géa)’s)ogbgs for the or-span of {Ti(g) 10 <i < j < s}, with each glga)’s having
degree b.

Proposition A.3.1. Fiz s > 0, and let (géa)’s_l)ogbgs_l be a basis for the
or-span of {Ti(f;) :0<i<j<s—1} such that each géa)’s_l has degree b.
Record the coefficients of these polynomials g£a)’3_1 i s row vectors, and

append s + 1 new row vectors obtained from the coefficients of T,,Efls) to obtain
the (2s + 1) x (s + 1) matriz

V& stl 1
o & ¥\ Y
Y e * g(i)is 1
— a),s—1
B = oo
xox | Y
* * * Ts(i)l s

Miinster Journal of Mathematics VoL. — (—), 999-999



1070 LAURENT BERGER AND KONSTANTIN ARDAKOV

with coefficients in L. The o’s are non-zero (where BS 0 # 0 because o5 = Y2

by Lemma 4.3.8 which by Equation 19 implies that 7'5 s =Y?*), so B has rank
s+ 1.

Bring the full-rank matriz B to upper-triangular form B’ using Gaussian
elimination over the discrete valuation ring oy, as per Lemma A.2.8. Then

(i) we can define the new polynomials g( @) ,gia)i ,...,g(()a)’s by reading off

the first s+1 rows of B’, so that each 915 5 has degree b and (géa)’s)ogbgs
form a basis for the or-span of {7; (@ ) :0<i<j<s};
(ii) for each b =0,. —1, the 7- adzc valuation of the leading coefficient in

(a)7 (a),s—1

the new polynomml /N is at most that of the old polynomial g,

Proof. By Lemma A.2.8 the upper-triangular matrix B’ still has rank s+1, so it
has only non-zero elements on its main diagonal. Hence for each b = 0,1,...,s,
the polynomial g(a)’ obtained by reading off the b-th row has degree b. Then of
course these polynomials are linearly independent. Also they are the only non-
zero rows in B’, so by Lemma A.2.7 their op-span is the same as that of the rows
of B, which by construction is precisely the op-span of {Ti(f;) :0<1<j<s},
giving (i).

Now fix 0 < b < s — 1, and consider what happens to the b-th column
when we reduce B to B’. Observe that in the proof of Lemma A.2.8, when we
operate on the j-th column for j = 0,...,s—b—1, as the row for glga)’s_l has a
0 entry in the j-th column, it is neither chosen to be the pivot row nor altered
as we subtract off multiples of the pivot row. Thus when we operate on the
(s —b)-th column to determine the (s—b)-th row and column of B’, the leading

coefficient ofg(a) 51

must be a candidate for the pivot. But the pivot B;_b, s—b
is chosen to have minimal valuation, so vz (7 (g\”" ")) > va(B,_, ._,)- Now

By 4= 'yb(gb *) by definition, giving (ii). O

For b fixed, it follows that v, (’yb( (a),s *)), s =b,b+1,... is a non-increasing
sequence. Moreover, as g( @)% ¢ (o) can be written as an or-linear combination
of the f(a)’s and each f( ) is of degree i, we must have g(a) o# = o<i<h )\ifi(a)

for some \; € op; by looking at the leading coefficient, it follows that
ve(1(gy""")) 2 v (fy") = —wqla +b(g - 1)).
These observations motivate us to look at the following

Definition A.3.2. For n = a + b(qg — 1), let so(n) be the minimal s > b such

that (g, (a).s "Jo<b<s satisfies v (v5(g, (a), *)) = —wy(n), if such s exists; otherwise
set so(n ) 0.

Then whenever s > s¢(n) in the computations, we can immediately conclude

that the equality Vﬁ('yb(féa))) = —wg(a + b(¢ — 1)) in Lemma A.2.3 holds for
this n = a + b(q — 1).
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We may thus make a small optimisation: at any stage s, if s > so(a+b(¢—1))
for all 0 < b < d then we can just drop the last d columns when carrying out
Gaussian elimination. Indeed for all s’ > s it is unnecessary to compute
(géa)’s,)ogkd as the m-adic valuation of each leading term has already hit the
desired minimum, and to compute the leading terms of (géa)’sl)dgbgs/ we do
not need the lower-order terms in the last d columns.

3-adic Eisenstein Extension Field in y defined by x~2 - 3

x
200 - %
: 3
X x X x
- X e % X%
150 - & 55 X R
I % R T %xx
z E A S e
3 L o XXX P XxX Xx%
" XX X XX x X
= = H
[ X X X x X X
I X X X X X X
50 -
SEERT R TR / ;
oo wblE BEF HE L F J o
T “10 200 " 300 " 00 ©Us00 “e00 700 " 800
n=a+blg—1)

FIGURE 1. extension = "3,2,800,ram" — so(n) in the qua-
dratic ramified extension Q3(\/§) for n < 800. Red points are

the n’s for which so(n) > 800.

A.4. Data. For reference, the computations in Figure 1 took
e 227.04 seconds for D;
e 616.45 seconds for 7(©) and 616.43 seconds for 7(1);
= 100, 6.15 seconds for

e 0.20 seconds for s = 50, 1.89 seconds for s =
s = 150, 12.09 seconds for s = 200, etc. for a = 0, and slightly less for

a=1.
We see that sg(n) — b seems to depend on the p-adic digits of n; we only

managed to prove a special case of this pattern, which we will discuss below.
Nonetheless, the data do suggest that so(n) is finite for every n and hence that

Int(or, 0r) is spanned by the o; ;’s as an or-module.
A similar pattern emerges for larger p and unramified extensions: see Fig-

ures 2 and 3 below.
More data and plots can be found at our GitHub repository https://
github.com/Team-Konstantin/Bounded-Functions-on-Character-Varieties/

tree/writeup.
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17-adic Eisenstein Extension Field in y defined by x~2 - 17
120 - 1 1 T
100; T i I +
“ S8 ESE S ES
e e e e R s A e

20 -

. ol ol

so(n) b

0 500 " w00 7 Twsoo 7 2000 0 07 T2so0 3000
n=a+b(g—1)
FIGURE 2. extension = "17,2,3216,ram" — sp(n) in the

quadratic ramified extension Qq7(v/17) for n < 3216. Note
that red points are the n’s for which so(n) > 3216 — not

enough computation was done to unveil the pattern for the
larger n’s!

5-adic Unramified Extension Field in y defined by x~3 + x + 1

so(n) b

" 6000
n=a+b(g-1)

FIGURE 3. extension = "5,3,12524,unram" — so(n) in the
cubic unramified extension of Qs for n < 12524. Again, note
how the red points — the n’s for which so(n) > 12524 — give
the illusion of so(n) — b decreasing.

A.5. Some results.

Definition A.5.1. Given a natural number n, let sq(n) be the sum of digits
of n in base gq.
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Recall Definition A.3.2:

Definition. For n = a + b(q — 1), let so(n) be the minimal s > b such that
(géa)’s)ogbgs satisfies Vﬂ(%(géa)’s)) = —wy(n), if such s exists; otherwise set

s0(n) = oc.
We define the following more intuitive quantity:

Definition A.5.2. For n = a+b(g—1), let Cap(n) = a+bsg(n). Alternatively,
Cap(n) is the minimal N > n such that the or-span of {¢;; : 0 <i < j < N}
contains a polynomial of degree n and m-valuation of the leading term —wy(n).

Here, the equivalence of the two definitions follows from the definition of sg(n).
Let n = a + b(q — 1). Analysing the computational results, we are led to
believe that, if s,(n) < p, then so(n) = b. This is made clear by the following:

Theorem A.5.3. Let n be a positive integer such that sq(n) < p. Let j =n
and i = sq(n). Then o;; is a polynomial of degree n, with m-valuation of
leading term equal to —wg(n).

Recall the definition of the polynomials ¢, (Y") from [31]:

Y1) =3 (@)t

Translating the definition of the polynomials ¢; ;(Y") and using Lemma 4.3.8,
we get:

n=1

(Y1(#)" = (Z Cn(Y)t”> = o).
j=i
Using the binomial theorem, this gives:
055 = Z CnyCny - - - Cn,

ni+ns+..+n;=j

Of course, for i = 1 we obtain o1 ; = ¢;. So, the proof of the Theorem 3.1
in [31] shows that Cap(n) = n for n equal to some power of ¢q. We will extend
this result to all n that have s4(n) < p, where s,(n) is the sum of digits of n,
written in base ¢q. For this, we need the following lemma:

Lemma A.5.4. Let ny,no,...,n; be positive integers. Then, wq(n1)+wq(ng)+
oot we(ng) < wg(ne +ne+ ...+ n;). Equality holds if and only if sq(n1) +
sq(n2) 4+ ...+ sq(n;) = sg(n1+mn2+...+mny), that is, if there is "no carrying”
i the sum ny +ng + ...+ n;.

Proof. Direct calculations show that
n — sq(n)

wq(n) = -1
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Substituting into our inequality, we need to prove
Sq(n1) + sq(n2) + ...+ s4(ny) > sg(n1 +n2+ ... +n;)

which can be checked by direct calculations or by induction. Equality holds in
the initial inequality if and only if it holds here, which is to say there is "no
carrying” in the sum ny +nse + ...+ n,. O

Now, we are ready for:

Proof of Theorem A.5.3. Recall that

04,5 = E Cny1Cny - - -Cn,

ni+na+...+n;=j
where each ¢ is a polynomial of degree at most k, with w-valuation of the
leading term at least —w,(n) (as it is in Int(or, 0r)).

Let’s look at each of the terms ¢, ¢p, - - . Cn,;. As each ¢ has degree at most
k, this contributes to the coefficient of Y* in o, ; if and only if deg(c,,) =
ny,deg(cn,) = na, . ..,deg(cy,) = n;. For the moment, assume this is the case.
Then, the coefficient of Y™ in this product is the product of leading coefficients
of the ¢,,’s, which has m-valuation at least —(wq(n1) + wq(n2) + . .. +wq(n;)).
Now, using Lemma A.5.4, this is at least —wg(n1 +ng + ... +n;) = —wy(n),
with equality if and only if s4(n1)+5¢(n2)+. . . +54(n;) = s4(n) = i, so the n;’s
are powers of g. That is, the only contribution to the coefficient of Y™ in o, ;
that has small enough valuation comes from permutations of the unique way of
writing n as a sum of ¢ powers of ¢. In other words, if n = b.b,_1...b1by(g) is
the writing of n in base ¢, then the only terms that have a possible contribution
are obtained when (nj,ns,...,n;) is a permutation of (¢°,¢°, ..., ¢, ..., q"),
where each ¢* appears by, times.

But, by [31], when k is a power of ¢, ¢k is a polynomial of degree exactly k,
with 7-valuation of leading term exactly —wgy(k). So, when (ni,ns,...,n;) is
a permutation as above, the product ¢y, Cp, - . . ¢y, is a polynomial of degree n,
with m-valuation of leading term equal to —wg(n). Moreover, as proved before,
if (n1,n2,...,n;) is not such a permutation, the product ¢,, ¢y, ...cp, has the
coefficient of Y™ either 0 or of m-valuation larger than —wgy(n).

As there are (bg’blf__"br) such permutations, with p { (bo,bi..,br) (because
i < p by the initial assumption on n), the final sum o; ; has degree n, with
m-valuation of leading term —wq(n). O

Definition A.5.2 then gives:

Corollary A.5.5. Let n be a positive integer such that sq(n) < p. Then
Cap(n) = n.

A.6. SageMath Code. (tested on Sage 9.4)

extension = "3,2,100,ram" # Choose the extension to compute with
precision = 1000 # Choose the precision that Sage will use
parse = extension.split(’,’)
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= int (parse[0]) # Prime to calculate with

int (parse[1]) # Degree to calculate with

= int(parse[2]) # Cutoff; must be divisible by g-1
am = parse [3]

R =2 o 'u
[}

# Python imports

from time import process_time
import matplotlib.pyplot as plt
import numpy as np

# Definitions
from sage.rings.padics.padic_generic import ResidueLiftingMap
from sage.rings.padics.padic_generic import ResidueReductionMap

import sage.rings.padics.padic_extension_generic

power = p~d - 1

t_poly = "o
if ram == "ram":

t_poly = f"x"{d}-{p}"
else:

# generate poly for unramified case

Fp = GF(p)

Fp_t.<t> = PolynomialRing(Fp)

unity_poly = t~(power) - 1

factored = unity_poly.factor ()

factored_str = str(factored)

start = factored_str.find(" " "+str(d))
last_brac_pos = factored_str.find(")",start)

first_brac_pos = len(factored_str) \

- factored_str[::-1].find("(",len(factored_str)-start)

t_poly = factored_str[first_brac_pos:last_brac_pos].replace(’t’,

# Define the polynomial to adjoin a root from
Q_p = Qp(p,precision)

R_Qp.<x> = PolynomialRing(Q_p)

f_poly = R_Qp(t_poly)

# Define the p-adic field, its rTing of integers and its restdue field
# These dummy objects are a workaround to force the precision wanted
dummyl.<y> = Zp(p).ext(£f_poly)
dummy2.<y> = Qp(p).ext(f_poly)

o_L.<y> = dummyl.change(prec=precision)
L.<y> = dummy2.change(prec=precision)
k_L = L.residue_field ()

print (L)
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54

55 # Find the generator of the unique mazimal ideal in o_L.

56 Pi = o_L.uniformizer ()

57

58 # Find f, e and g

59 £ = k_L.degree() # The degree of the residual field extension

60 e = L.degree()/k_L.degree() # The ramification indezx

61 9 = p~f

62

63 # Do linear algebra over the ring of polynomials L[X]

64 # in one wvariable X with coeffictents in the field L:

65 L_X.<X> = L[]

66 L_Y.<Y> = L[]

67

68 v = L.valuation()

69

70 # The subroutine Dmatriz calculates the following sparse matriz of coefficients.
71 # Let D[k,n] be equal to k! times the coefficient of Y k in the polynomial P_n(Y).
72 # I compute this using the useful and easy recursion formula

73 # D[k,n] = \sum_{r \geq 0} \pi°{-v} D[k-1,n-q"r]

74 # that can be derived from Proposition 4.3.2.

75 # The algorithm is as follows: first make a zero matriz with S rows and columns
76 # (roughly, S is (q-1)*Size), then quickly populate it one row at a time,

77 # using the recursion formula.

78 def Dmatrix(S):

79 D = matrix(L, S,S)

80 D[0,0] = 1

81 for k in range(1,8):

82 for n in range(k,S):
83 r =0

84 while n >= q°r:
85 D[k,n] = D[k,n] + D[k-1,n-q"r]/Pi"r # the actual recursion
86 r = r+l

87 return D

88

89

90 # \Tau~{(m)} in Definition 4.3.11:
91 def TauMatrix(Size, m, D=None):

92 if D is None:

93 D = Dmatrix((q - 1) * (Size + 1))

94 R = matrix(L, Size,Size, lambda x,y: D[m + (gq-1)*x, m + (q-1)*yl)
95

96 # Define a diagonal matric:

97 Diag = matrix(L_X, Size,Size, lambda x,y: kronecker_delta(x,y) * X"x)
98

99 # Compute the inverse of R:

100 S = R.inverse()

101

102 # Compute the matrixz Tau using Lemma 4.3.12:
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103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

def

def

def
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Tau = S * Diag * R
return Tau

underscore(m, i):

return m + i*(gq-1)

w_q(n):
return (n - sum(n.digits(base=q))) / (q-1)

compute_s (N, filename=None):
assert N%(q-1) == 0

t_start = process_time ()

D = Dmatrix(N)

t_end = process_time ()

print (£"D matrix: {t_end-t_start : .2f} sec")

sO_s = [-1 for _ in range(N)]

for a in range(q-1):

t_start = process_time ()

Tau_a = TauMatrix(N//(q-1), a, D)

t_end = process_time ()

print (f"a={a}, Tau matrix: {t_end-t_start : .2f} sec")

B_old = Matrix(0,0)
d =0
for s in range(N // (q-1)):

t_start = process_time ()

# 1. Use the mon-zero rows from previous calculations

# 2. Add a 0 column to its left

# 3. Add rows corresponding to entries from the j_th column of Tau_
B = Matrix(L, 2*s-d+1, s-d+1)

B[0,0] = 1 # Tau_als, s]

B[1:s-d+1, 1:] = B_old

for i in [0 .. s-1]:
coeffs = Tau_ali, s].list()
Bls-d+1+i, B.ncols()-len(coeffs)+d:] = vector (L, reversed(coeff

# Perform Gaussian elimination

i0 = 0
ks = [1
for k in range(B.ncols()):
valuation_row_pairs = [
(v(B[i,k]), i) for i in range(i0, B.nrows()) if B[i,k] != 0

if not valuation_row_pairs:
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152 raise ValueError ("B is not full-rank")
153 minv, i_minv = min(valuation_row_pairs)
154 ks .append (k)

155

156 # Swap the row of minimum valuation with the first bad Tow
157 B[i0O, :], Bli_minv, :] = B[i_minv, :], B[iO, :]
158

159 # Divide the top Tow by a unit in o_L

160 u = B[i0, k] / Pi~int(e * v(B[iO, k1))

161 B[iO, :1 /= u

162

163 # Cleave through the other rouws

164 for i in range(i0 + 1, B.nrows()):

165 if v(B[i, k]) >= v(B[i0, k]):

166 B[i, :] -= B[i, k]/B[i0, k] * B[iO, :]
167

168 i0 += 1

169

170 d_is_updated = False

171 for b in [d .. s]:

172 n = a + bx(g-1)

173 if v(B[s-b, s-b]) * e == -w_q(n):

174 if sO_s[n] == -1:

175 sO_s[n] = s

176 else:

177 if not d_is_updated:

178 d = b

179 d_is_updated = True

180 B_old = B[:s-d+1, :s-d+1]

181

182 t_end = process_time ()

183 print (f"a={a}, s={s}: {t_end-t_start : .2f} sec", end=’\r’)
184 if filename is not None:

185 with open(filename, ’w’) as f:

186 f.write("n,s0\n")

187 for n, sO in enumerate(sO_s):

188 f.write(£f"{n},{s0}\n")

189 print ()

190

191 plt.style.use(’bmh’)

192 fig = plt.figure(figsize=(15,6), dpi=300)

193 for n, sO in enumerate(sO_s):

194 if sO != -1:

195 b=n// (q-1)

196 plt.plot(n, sO-b, ’x’, c=°C0’)

197 else:

198 plt.plot(n, 0, ’x’, c=’C1’)

199 plt.xlabel(r"$n = a + b(gq-1)$")

200 plt.ylabel("$s_0(n) - Db$")
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201
202
203
204
205
206
207
208
209

sO_s

(13]
(14]
(15]
[16]
(17]
(18]

(19]

20]
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plt.title(str (L))

plt.minorticks_on ()

plt.grid(which="both’)

plt.grid(which=’major’, linestyle=’-’, c=’grey’)

return sO_s, fig

= compute_s(N);
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