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Bounded functions on the character variety

Konstantin Ardakov and Laurent Berger

With an appendix by Dragos, Cris,an and Jingjie Yang

Abstract. This paper is motivated by an open question in p-adic Fourier theory, that seems
to be more difficult than it appears at first glance. Let L be a finite extension of Qp with

ring of integers oL and let Cp denote the completion of an algebraic closure of Qp. In their
work on p-adic Fourier theory, Schneider and Teitelbaum defined and studied the character

variety X. This character variety is a rigid analytic curve over L that parameterizes the set

of locally L-analytic characters λ : (oL,+)→ (C×p ,×). One of the main results of Schneider
and Teitelbaum is that over Cp, the curve X becomes isomorphic to the open unit disk. Let

ΛL(X) denote the ring of bounded-by-one functions on X. If µ ∈ oL[[oL]] is a measure on oL,

then λ 7→ µ(λ) gives rise to an element of ΛL(X). The resulting map oL[[oL]] → ΛL(X) is
injective. The question is: do we have ΛL(X) = oL[[oL]]?

In this paper, we prove various results that were obtained while studying this question. In

particular, we give several criteria for a positive answer to the above question. We also recall
and prove the “Katz isomorphism” that describes the dual of a certain space of continuous

functions on oL. An important part of our paper is devoted to providing a proof of this

theorem which was stated in 1977 by Katz. We then show how it applies to the question.
Besides p-adic Fourier theory, the above question is related to the theory of formal groups,

the theory of integer valued polynomials on oL, p-adic Hodge theory, and Iwasawa theory.
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1. Introduction

1.1. Motivation. Let L be a finite extension of Qp and let Cp denote the
completion of an algebraic closure of Qp. In their work on p-adic Fourier theory
[28], Schneider and Teitelbaum defined and studied the character variety X.
This character variety is a rigid analytic curve over L that parameterizes the
set of locally L-analytic characters λ : (oL,+) → (C×p ,×). One of the main
results of Schneider and Teitelbaum is that over Cp, the curve X becomes
isomorphic to the open unit disk.

The ring OL(X) of holomorphic functions on X is a Prüfer domain, with
an action of oL coming from the natural action of oL on the set of locally
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L-analytic characters. One can then localize and complete OL(X) in order to
obtain the Robba ring RL(X), and define (ϕ, o×L )-modules over that ring and
some of its subrings. These objects are defined and studied in [5], with the
hope that they will be useful for a generalization of the p-adic local Langlands
correspondence from GL2(Qp) to GL2(L).

In this paper, we instead consider a natural subring of OL(X), the ring
ΛL(X) of functions whose norms are bounded above by 1. If µ ∈ oL[[oL]] is
a measure on oL, then λ 7→ µ(λ) gives rise to such a function X → Cp. The
resulting map oL[[oL]] → ΛL(X) is injective. We do not know of any example
of an element of ΛL(X) that is not in the image of the above map.

Question 1.1.1. Do we have ΛL(X) = oL[[oL]]?

This question seems to be more difficult than it appears at first glance, and
so far we have not been able to answer it (except of course for L = Qp). The
results of this paper were obtained while we were studying this problem. A
related question is raised in remark 2.5 of [11]. We now give more details about
the character variety X, and then explain our main results.

1.2. The character variety. Let B denote the open unit disk, seen as a
rigid analytic variety. This space naturally parameterizes the set of locally
Qp-analytic characters λ : (Zp,+)→ (C×p ,×). Indeed, if K is a closed subfield
of Cp and z ∈ mK = B(K), then the map λz : a 7→ (1 + z)a is a K-valued
locally Qp-analytic character on Zp, and every such character arises in this
way. Note that λ′z(0) = log(1 + z). If d = [L : Qp], then oL ' Zdp and

hence Bd parameterizes the set of locally Qp-analytic characters λ : (oL,+)→
(C×p ,×). Such a character is locally L-analytic if and only if λ′(0) is L-linear. In
coordinates z = (z1, . . . , zd), there exists α2, . . . , αd ∈ L such that the character
corresponding to z is locally L-analytic if and only if log(1+zi) = αi ·log(1+z1)
for all i = 2, . . . , d. These d − 1 Cauchy–Riemann equations cut out the
character variety X inside Bd. Schneider and Teitelbaum showed [28] that X
is a smooth rigid analytic group curve over L.

The ring of Qp-analytic distributions DQp−an(oL, L) on oL is isomorphic to
the ring of power series in d variables that converge on the open unit polydisk.
Every distribution µ ∈ DQp−an(oL, L) gives rise to an element of OL(X), de-
fined by the map λ 7→ µ(λ). This gives rise to a surjective (but not injective if
L 6= Qp) map DQp−an(oL, L)→ OL(X), whose restriction to oL[[oL]] is injective
and has image contained in ΛL(X).

1.3. Schneider and Teitelbaum’s uniformization. We now explain why
over Cp, the curve X becomes isomorphic to the open unit disk. Let GL =

Gal(Qp/L). Choose a uniformizer π of oL and let G denote the Lubin–Tate
formal group attached to π. This gives us a Lubin–Tate character χπ : GL →
o×L and, once we have chosen a coordinate Z on G, a formal addition law
X ⊕ Y ∈ oL[[X,Y ]], endomorphisms [a](Z) ∈ oL[[Z]] for all a ∈ oL, and a
logarithm logLT(Z) ∈ L[[Z]].
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By the work of Tate on p-divisible groups, there is a non-trivial homomor-
phism G → Gm defined over oCp . Concretely, there exists a power series
G(Z) ∈ oCp [[Z]] (where G(Z) is a generator of HomoCp

(G,Gm)) such that

(1 + G(X ⊕ Y )) = (1 + G(X)) · (1 + G(Y )). If z ∈ mCp , then the map
λz : a 7→ 1 +G([a](z)) is a locally L-analytic character on oL, and every such
character arises in this way. This explains the main idea behind the proof of
the statement that over Cp, the curve X becomes isomorphic to the open unit
disk.

In particular, OCp(X) is isomorphic to the ring of power series
∑
i≥0 aiZ

i

with ai ∈ Cp that converge on the open unit disk. Let χcyc denote the cy-
clotomic character, and let τ : GL → o×L denote the character τ = χcyc ·
χ−1
π . The Galois group GL acts on OCp(X) by the formula g(

∑
i≥0 aiZ

i) =∑
i≥0 g(ai)[τ(g)−1](Z)i. This action is called the twisted Galois action, and we

write GL, ∗ to recall the twist. It follows from the Ax-Sen-Tate theorem that
CGLp = L and then, by unravelling the definitions, that OL(X) = OCp(X)GL,∗.

At the level of bounded functions, this tells us that ΛL(X) = oCp [[Z]]GL,∗. The
natural map oL[[oL]] → ΛL(X) sends, for instance, the Dirac measure δa with
a ∈ oL to 1 +G([a](Z)) ∈ oCp [[Z]]GL,∗.

1.4. The operators ϕq, ψq. The monoid (oL,×) acts on oL by multiplica-
tion, and hence on the set of locally L-analytic characters, on X, and on the
ring OCp(X). If a ∈ oL, this action is given by f(Z) 7→ f([a](Z)). Let q
denote the cardinality of the residue field kL of oL and let ϕq denote the ac-
tion of π on OCp(X). The map ϕq is injective and the ring OCp(X) is a free
ϕq(OCp(X))-module of rank q. Let ψq : OCp(X)→ OCp(X) be the map defined
by ϕq(ψq(f(Z))) = 1/q · TrOCp (X)/ϕq(OCp (X))(f(Z)). The action of oL and the

operator ψq commute with the twisted action of GL, and therefore preserve
OL(X). If we consider the image of the map DQp−an(oL, L)→ OL(X), we have
a ·δb = δab and ψq(δb) = 0 if b ∈ o×L and ψq(δb) = δb/π if b ∈ πoL. In particular,

oL[[oL]]ψq=0 coincides with oL[[o×L ]], those measures that are supported in o×L .
We use later on the fact (Lemma 5.1.9) that ΛL(X) = oL[[oL]] if and only if
ΛL(X)ψq=0 = oL[[o×L ]]. Note that if L 6= Qp, then ψq(ΛCp(X)) is not contained
in ΛCp(X) as TrOCp (X)/ϕq(OCp (X))(f(Z)) is divisible by π, but not always by q.

Our first result is the following.

Theorem 1.4.1. We have ΛL(X) = oL[[oL]] if and only if ψq(ΛL(X)) ⊂ ΛL(X).

This is proved at the end of §3.1.

1.5. The polynomials Pn. Recall that G(Z) is a generator of HomoCp
(G,Gm)

and that τ = χcyc ·χ−1
π . In fact, we have G(Z) = exp(Ω·logLT(Z))−1 = Ω·Z+

O(Z2), where Ω is a certain special element of mCp such that g(Ω) = τ(g) · Ω.
In particular, for all n ≥ 0, there exists a polynomial Pn(Y ) ∈ L[Y ] such
that 1 + G(Z) =

∑
n≥0 Pn(Ω) · Zn. For n ≥ 0, the polynomial Pn(Y ) is of

degree n, and its leading coefficient is 1/n!. For example, assume that the
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coordinate Z is chosen in a way that logLT(Z) =
∑
k≥0 Z

qk/πk. Then we have

(see Proposition 4.3.1 for more details)

Pn(Y ) =
∑

n0+qn1+···+qdnd=n

Y n0+···+nd

n0! · · ·nd! · π1·n1+2·n2+···+d·nd
.

If a ∈ oL, then G([a](Z)) =
∑
n≥1 Pn(Ω) · [a](Z)n =

∑
n≥1 Pn(aΩ) · Zn. This

implies for instance that Pn(aΩ) ∈ oCp for all a ∈ oL. For n ≥ 0 and i ≥ n, let

σn,i(Y ) ∈ L[Y ] denote the polynomials such that [a](Z)n =
∑
i≥n σn,i(a)Zi

for all a ∈ oL. The σn,i(Y ) are all elements of Int, the oL-submodule of L[Y ]
of integer valued polynomials on oL. The fact that

∑
n≥0 Pn(Ω) · [a](Z)n =∑

n≥0 Pn(aΩ) · Zn implies that Pn(aΩ) =
∑n
i=0 σi,n(a)Pi(Ω).

If µ ∈ DQp−an(oL, L), its image in OL(X) is therefore fµ(Z) =
∑
n≥0 Z

n ·∑n
i=0 µ(σi,n)Pi(Ω). Let Pol denote the oL-span of the σn,i(Y ) inside L[Y ], so

that Pol ⊂ Int. The following gives a relation between our question and the
theory of integer valued polynomials ([30], [31]):

Theorem 1.5.1. If ΛL(X) = oL[[oL]], then Pol = Int.

The proof can be found at the end of §4.2. The converse statement is not
true, but “Pol = Int” is equivalent to U [[Z]]GL,∗ = oL[[oL]], where U is the oL-
submodule of oCp generated by {Pn(Ω)}n≥0. We have not been able to prove
that Pol = Int, although we can show that Pol is p-adically dense in Int. Some
numerical evidence indicates that Pol = Int seems to hold: the details can be
found in the Appendix by D. Crisan and J. Yang at the end of our paper.

We now explain how to compute the valuation of Pn(Ω) for certain n. The
elements z ∈ mCp such that G(z) = 0 correspond to those locally L-analytic
characters λz such that λz(1) = 1. Being locally L-analytic, they are necessar-
ily trivial on an open subgroup of oL, and correspond to certain torsion points
of G. We know the valuations of these torsion points, and this way we can deter-
mine the Newton polygon of G(Z). Using this idea, we can prove the following.
Let e be the ramification index of L/Qp. If m ≥ 0, let km = b(m − 1)/ec, so
that m = ekm + r with 1 ≤ r ≤ e. For m ≥ 0, let xm = qm/pkm+1 (so that
x0 = 1 and x1 = q/p). Write m = en+ r and let

y0 =
e

p− 1
− 1

q − 1
and ym =

e

pn(p− 1)
− r

pn+1
− 1

(q − 1)pn+1
.

Theorem 1.5.2. For all m ≥ 0, we have valπ(Pxm(Ω)) = ym.

For example, if L = Qp2 , then valp(Ppk(Ω)) = 1/pk−1(q − 1) for all k ≥ 0.

1.6. Galois-continuous functions and the Katz map. Following Katz
[19], we let C0

Gal(oL, oCp) denote the oL-module of Galois-continuous functions,
namely those continuous functions f : oL → oCp such that g(f(a)) = f(τ(g) ·a)
for all a ∈ oL and g ∈ GL. If P (T ) ∈ L[T ], then a 7→ P (a·Ω) is such a function.
Let K be a closed subfield of Cp containing L. The dual Katz map is the map
K∗ : HomoL(C0

Gal(oL, oCp), oK) → oK [[Z]] given by µ 7→
∑
n≥0 µ(Pn) · Zn. Let
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oK [[Z]]ψq-int denote the set of f(Z) ∈ oK [[Z]] such that ψnq (f(Z)) ∈ oK [[Z]] for
all n ≥ 1. Our main technical result is the following

Theorem 1.6.1. Suppose that L = Qp2 .

(1) The map K∗ : HomoL(C0
Gal(oL, oCp), oK)→ oK [[Z]] is injective.

(2) Its image is equal to oK [[Z]]ψq-int.

An important part of our paper is devoted to providing a proof of this
theorem, which is completed at the end of §3.6. We note that Theorem 1.6.1
was stated by Katz at [19, p. 60], but he did not give a proof. The remarks
contained in the last paragraph of [19, §IV] seem to indicate that his proof is
different to ours.

The hardest part of the theorem is the claim concerning the image of K∗.
Note that when L = Qp2 , the dual of the p-divisible group attached to G
has dimension 1. Using this and Theorem 1.5.2 for L = Qp2 , we can prove

(see Proposition 3.6.5) that every element of o∞ = oker τ
Cp can be written as∑

n≥0 λn ·Pn(Ω) where λn ∈ oL and λn → 0. This important ingredient of the
proof of Theorem 1.6.1 is not known to be available if L 6= Qp2 .

1.7. Applications of the Katz isomorphism. Throughout this section, we
assume that L = Qp2 and π = p, so that K∗ : HomoL(C0

Gal(oL, oCp), oK) →
oK [[Z]]ψq-int is an isomorphism. Let L∞ = Cker τ

p and o∞ = oker τ
Cp . Since π = p,

L∞ is also the completion of L(G[p∞]).
Theorem 1.6.1 gives us an isomorphism K∗ : HomoL(C0

Gal(o
×
L , oCp), oK) →

oK [[Z]]ψq=0, and we have a natural isomorphism C0
Gal(o

×
L , oCp)→ o∞. Applying

this to K = L, we get the following result (Theorem 5.1.4), where o∗∞ =
HomoL(o∞, oL):

Theorem 1.7.1. The map K∗ gives rise to an isomorphism o∗∞ ' oL[[Z]]ψq=0.

Let ΓLT
L = Gal(L(G[p∞])/L) and Γcyc

Qp = Gal(Qp(µp∞)/Qp). In the cyclo-

tomic setting, Perrin-Riou showed [25, Lemma 1.5] that Zp[[Z]]ψp=0 is a free
Zp[[Γcyc

Qp ]]-module of rank 1. She also raised the question of what happens in

the present setting. Using Theorem 1.7.1, we show in Corollary 5.2.12 that
oL[[Z]]ψq=0 is in fact not a free oL[[ΓLT

L ]]-module of rank 1.
We can also apply the isomorphism HomoL(o∞, oK) ' oK [[Z]]ψq=0 to K =

L∞, and we get HomoL(o∞, o∞) ' o∞[[Z]]ψq=0. The natural action of GL on
the left is the twisted Galois action on the right. Since ΛL(X) = oCp [[Z]]GL,∗ =

o∞[[Z]]GL,∗, we get the following result (Theorem 5.1.6):

Theorem 1.7.2. We have EndGLoL (o∞) ' ΛL(X)ψq=0.

Recall that oL[[o×L ]] ⊂ ΛL(X)ψq=0. If a ∈ o×L , then δa ∈ oL[[o×L ]] acts on o∞
by an element g ∈ GL such that τ(g) = a. Since ΛL(X) = oL[[oL]] if and only
if ΛL(X)ψq=0 = oL[[o×L ]], we get the following criterion (Theorem 5.1.8):

Theorem 1.7.3. We have ΛL(X) = oL[[oL]] if and only if every continuous L-
linear and GL-equivariant map f : L∞ → L∞ comes from the Iwasawa algebra
L⊗oL oL[[ΓLT

L ]].
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In the cyclotomic case, Tate’s normalized trace maps Tn : Qcyc
p → Qp(µpn)

are examples of continuous Qp-linear and GQp -equivariant maps f : Qcyc
p →

Qcyc
p that do not come from the Iwasawa algebra L ⊗oL oL[[Γcyc

Qp ]]. The lack

of normalized trace maps in the Lubin–Tate setting is a source of many com-
plications. In his PhD thesis, Fourquaux considered continuous L-linear and
GL-equivariant maps f : L∞ → L∞. We generalize some of Fourquaux’s re-
sults: we prove in Proposition 5.1.13 that if f 6= 0 is such a map, then there
exists n ≥ 0 such that f(L∞) contains a basis of the Ln-vector space Ln[log Ω],
where Ln = L(G[pn]). In particular, f necessarily has a very large image, so
there can be no analogue of the equivariant trace maps Tn.

The Katz isomorphism also allows us to prove several results about the
span of the polynomials Pn in C0

Gal(oL,Cp). Recall that by [28, Theorem 4.7],
every Galois-continuous locally analytic function on oL can be expanded as an
overconvergent series in the Pn. One may then wonder about the existence of
such an expansion for Galois-continuous functions. Let C0(L) denote the set
of sequences {λn}n≥0 with λn ∈ L and λn → 0. The Katz isomorphism, and
computations involving ψq, imply the following (Proposition 5.3.1, Corollary
5.3.4, and Corollary 5.3.9):

Theorem 1.7.4. The map C0(L)→ C0
Gal(oL,Cp), given by

{λn}n≥0 7→

[
a 7→

∞∑
n=0

λn · Pn(aΩ)

]
is injective, has dense image, but is not surjective.

The same methods imply the following precise estimates for those elements
of C0

Gal(oL,Cp) that are given by a polynomial function a 7→ Q(aΩ) with
Q(T ) ∈ L[T ]. See Proposition 5.3.6 and Corollary 5.3.12.

Theorem 1.7.5. Assume that Z is a coordinate on G such that [p](Z) =
Zq + pZ. Let Q(T ) ∈ L[T ] be a polynomial such that Q(aΩ) ∈ oCp for all

a ∈ oL, and write Q(T ) =
∑degQ
n=0 λn · Pn(T ).

(1) We have λn ∈ p−koL if n ≤ qk.
(2) For all k, there exists such a polynomial Q for which λqk−1 = p−k.

1.8. Other criteria. The following two criteria for our main question may be
of interest.

Let ∂ : Cp[[Z]] → Cp[[Z]] denote the invariant derivative ∂ = log′LT(Z)−1 ·
d/dZ. It does not commute with the twisted action of GL, but D = Ω−1 · ∂
does. We get a map D : OCp(X) → OCp(X) that does not preserve ΛCp(X) if

L 6= Qp since valp(Ω
−1) < 0. Note that D(δa) = a · δa if a ∈ oL, so that D

does preserve oL[[oL]]. We have the following result.

Theorem 1.8.1. If L = Qp2 , then ΛL(X) = oL[[oL]] if and only if we have
Dq−1(ΛL(X)) ⊂ ΛL(X).
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This Theorem follows from Theorem 1.4.1 and the following result, which is
inspired by computations of Katz: assume that L = Qp2 and that π = p. Let

λ = Ωq−1/p(q − 1)! ∈ o×Cp . If f(Z) ∈ oCp [[Z]], then

ϕψq(f)− λ ·Dq−1(f) ∈ oCp [[Z]].

Here is another result concerning our main question. It says that if the
answer is yes for a finite extension L/K, then the answer is also yes for K.

Theorem 1.8.2. If L/K is finite and if ΛL(XL) = oL[[oL]], then ΛK(XK) =
oK [[oK ]].

1.9. Acknowledgements. This paper grew out of a project started with Pe-
ter Schneider. The authors are very grateful to him for numerous discussions,
interesting insights (in particular, considering the Katz isomorphism), and sev-
eral invitations to Münster. Several results in this paper were obtained in
collaboration with him. L.B. also thanks Pierre Colmez for some discussions
about the main problem of this paper.

2. The character variety

2.1. Notation. Let Qp ⊆ L ⊂ Cp be a field of finite degree d over Qp, oL
the ring of integers of L, π ∈ oL a fixed prime element, kL = oL/πoL the
residue field, q := |kL| and e the absolute ramification index of L. We always
use the absolute value | | on Cp which is normalized by |p| = p−1. We let

GL := Gal(L/L) denote the absolute Galois group of L. Throughout our
coefficient field K is a complete intermediate extension L ⊆ K ⊆ Cp.

2.2. The p-adic Fourier transform. We are interested in the character va-
riety X of the L-analytic commutative group (oL,+). We refer to [28, §2] for
a precise definition, but recall that X is a rigid analytic variety defined over L,
whose set of K-points (for K a field extension of L complete with respect to a
non-archimedean absolute value extending the one on L) is the group X(K) of
K-valued characters χ : (oL,+)→ (K×,×) that are also L-analytic functions:

X(K) := {f ∈ CL−an(oL,K) : f(a+ b) = f(a)f(b) for all a, b ∈ oL}.

Here CL−an(oL,K) is the space of locally L-analytic K-valued functions on
oL. Let DL−an(oL,K) be the K-algebra of locally L-analytic distributions on
oL, defined in [29, §2]. One of the main results of p-adic Fourier Theory —
[28, Theorem 2.3] — tells us that there is a canonical isomorphism

F : DL−an(oL,K)→ O(X×L K)

called the p-adic Fourier Transform. This isomorphism is determined by

F(λ)(χ) = λ(χ) for all λ ∈ DL−an(oL,K), χ ∈ X(K).

Since X is a rigid L-analytic variety, we have at our disposal the subalgebra
O◦(X) of O(X) consisting of globally-defined, rigid analytic functions on X
that are power-bounded — see [7, §1.2.5].
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Definition 2.2.1. Write Λ(X) := O◦(X).

The functorial definition of the character variety does not shed much light on
its internal structure. It turns out that the base change X×LK is isomorphic to
the rigid analytic open unit disc over K, provided the field K is large enough.
This isomorphism is obtained with the help of Lubin-Tate formal groups and
their associated p-divisible groups.

2.3. Lubin-Tate formal groups. Let Z be an indeterminate and let

Fπ :=
(
πZ + Z2oL[[Z]]

)
∩ (Zq + πoL[[Z]])

be the set of possible Frobenius power series. Recall [21, Theorem 8.1.1]1 that
for every Frobenius power series ϕ(Z) ∈ Fπ, there is a unique formal group
law Fϕ(Z) = Z1 ⊕ Z2 ∈ oL[[Z1, Z2]] such that ϕ(Z) is an endomorphism of
Fϕ(Z). Since we have fixed a coordinate Z on the power series ring oL[[Z]], this

formal group law defines a formal group2 (G,⊕) on the underlying formal affine
scheme Spf oL[[Z]], where we give oL[[Z]] the Z-adic topology. This formal group
is called a Lubin-Tate formal group. Up to isomorphism of formal groups, it
does not depend on the choice of the Frobenius power series ϕ(Z), however it

does depend on the choice of π. The base change of G to the completion L̂ur

of the maximal unramified extension Lur of L does not even depend on the
choice of π.

The Lubin-Tate formal group G is in fact a formal oL-module. This means
that there is a ring homomorphism oL → End(G), a 7→ [a](Z) ∈ oL[[Z]], such
that [a](Z) ≡ aZ mod Z2oL[[Z]] for all a ∈ oL. In other words, the formal
group G admits an action of oL by endomorphisms of formal groups, in such
a way that the differential of this action at the identity element 1 of G agrees
with the natural oL-action on the cotangent space of G at 1. The action of
π ∈ oL is given by the power series [π](Z) = ϕ(Z).

2.4. A review of p-divisible groups. In his seminal paper [32], Tate intro-
duced p-divisible groups and considered their relation to formal groups. Here
we review some of his fundamental theorems.

Let R be a commutative base ring and let Γ = (Spf A, ∗) be a commutative
formal group over R where A = R[[X1, · · · , Xd]] is a power series ring in d
variables over R. Then we can associate with Γ the p-divisible group Γ(p) =
(Γ(p)n, in) over R where Γ(p)n := Γ[pn] is the subgroup of elements of Γ
killed by pn. More precisely, let ψ : A → A be the continuous R-algebra
homomorphism which corresponds to multiplication by p on Γ and let Jn be the
ideal Aψn(X1)+· · ·+Aψn(Xd) of A; then A/Jn is a Hopf algebra over R free of
finite rank over R, and Γ(p)n = Spec(A/Jn) is the corresponding commutative
finite flat group scheme over R. The closed immersions in : Γ(p)n → Γ(p)n+1

are obtained from the R-algebra surjections A/Jn+1 � A/Jn.

1Note that what Lang calls a formal group should really be called a formal group law.
2a group object in the category of formal schemes over Spf oL

Münster Journal of Mathematics Vol. — (—), 999–999



1008 Laurent Berger and Konstantin Ardakov

Theorem 2.4.1 (§2.2, Proposition 1 [32]). Let R be a complete Noetherian
local ring whose residue field k is of characteristic p > 0. Then Γ 7→ Γ(p) is an
equivalence between the category of divisible commutative formal groups over
R and the category of connected p-divisible groups over R.

Recall that the formal group Γ is said to be divisible if A/J1 is finitely gen-
erated as an R-module, and a p-divisble group (Γn, in) is said to be connected
if every finite flat group scheme Γn is a connected scheme.

Remark 2.4.2. The fact that the functor Γ 7→ Γ(p) is fully faithful holds in
greater generality: if R is any commutative ring and G,H are divisible formal
groups defined over R such that O(G) and O(H) are power series rings in
finitely many variables over R, then the natural map

HomR−fgp(G,H)→ Homp−div(G(p), H(p))

is a bijection.

Now we specialise to the case where R is our complete discrete valuation
ring oL. The Tate module associated to a p-divisible group Γ = (Γn, in) is by
definition

T (Γ) := lim←−Γn(L)

where L is the algebraic closure of L, Γn(L) = HomoL−alg(O(Γn), L) is the set

of L-points of Γn, and the connecting maps in the inverse limit are induced by
the multiplication-by-p-maps jn : Γn+1 → Γn. By functoriality, the Tate mod-
ule T (Γ) carries a natural action of the absolute Galois group GL = Gal(L/L),
making T (Γ) into a continuous Zp-linear representation of GL of rank equal
to the height h of Γ. Remarkably, it turns out that this Galois representation
completely determines the p-divisible group Γ. More precisely, we have the
following

Theorem 2.4.3 (§4.2, Corollary 1 [32]). The functor Γ 7→ T (Γ) is a fully
faithful embedding of the category of p-divisible groups over oL into the category
of finite rank Zp-linear continuous representations of GL.

2.5. Cartier duality for p-divisible groups. The category of commutative
finite flat group R-schemes admits a duality called Cartier duality : if G is a
commutative finite flat group scheme over R, then its Cartier dual is defined
by G∨ = Spec(O(G)∗) where O(G)∗ := HomR(O(G), R) is the R-linear dual of
the coordinate ring O(G). The group structure on G∨ is obtained by dualising
the multiplication map on O(G) and the scheme structure on G∨ is obtained
by dualising the comultiplication map on O(G) encoding the group structure
on G.

Tate shows in [32, §2.3] that Cartier duality extends naturally to a duality
Γ 7→ Γ∨ on the category of p-divisible groups. He also shows in [32, §4] that
when R = oL, the Tate-module functor to Galois representations converts
Cartier duality into what is now called Tate duality on Galois representations,
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namely V 7→ Hom(V,Zp(1)). In other words, there is a natural isomorphism
of continuous GL-representations on finite rank Zp-modules

T (Γ∨) ∼= HomZp(T (Γ),Zp(1))

where Zp(1) := T (Ĝm(p)) is the Tate module associated to the formal multi-

plicative group Ĝm, the formal completion at the identity of the group scheme
Gm := Spec oL[T, T−1].

2.6. The character τ : GL → o×L and the period Ω. We return to the
Lubin-Tate formal group G as in §2.3, which is easily seen to be divisible.
Because G is a formal oL-module, the functoriality of T (−) implies that the
Tate module T (G(p)) of the p-divisible group G(p) associated with G is actually
an oL-module. It is a fundamental fact due to Lubin and Tate — see [23,
Theorem 2] — that T (G(p)) is a free oL-module of rank one. Since oL is itself
a free Zp-module of rank d = [L : Qp], it follows that the underlying Zp-module
of T (G(p)∨) ∼= HomZp(T (G(p)),Zp) is free of rank d as a Zp-module as well.
Since it is also an oL-module by the functoriality of HomZp(−,Zp), we see that
T (G(p)∨) is also a free oL-module of rank 1.

On the way to his proof of Theorem 2.4.3, Tate explains how to compute
T (G(p)∨): using Cartier duality, on [32, p. 177] he obtains a natural isomor-
phism of abelian groups

(1) T (G(p)∨) ∼= Homp−div /oCp
(G(p)×oL oCp , Ĝm(p)×oL oCp).

On the other hand, applying Remark 2.4.2 with R = oCp , we see that the
natural map

(2) Homfgp /oCp
(G ×oL oCp , Ĝm ×oL oCp)

→ Homp−div /oCp
(G(p)×oL oCp , Ĝm(p)×oL oCp)

is a bijection. As a consequence, we see that Homfgp /oCp
(G×oLoCp , Ĝm×oLoCp)

is free of rank 1 as an oL-module.

Definition 2.6.1.

(1) We fix a generator t′o for T (G(p)∨) as an oL-module.
(2) We let Ft′o be the generator for the oL-module

Homfgp /oCp
(G ×oL oCp , Ĝm ×oL oCp),

which corresponds to t′o along the isomorphism

T (G(p)∨)
∼=→ Homfgp /oCp

(G ×oL oCp , Ĝm ×oL oCp)

obtained by combining (1) and (2).
(3) We let τ : GL → o×L be the character afforded by the free rank 1

oL-module T (G(p)∨):

σ(t′o) = τ(σ)t′o for all σ ∈ GL.
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The morphism of formal groups Ft′o : G×oL oCp → Ĝm×oL oCp is an element
of

Ft′o(Z) ∈ O(G ×oL oCp) = oCp [[Z]].

Then 1 + Ft′o(Z) is “grouplike” in the topological Hopf algebra oCp [[Z]]: it
satisfies the relation

1 + Ft′o(Z1 ⊕ Z2) = (1 + Ft′o(Z1))(1 + Ft′o(Z2)).

When we further base change the formal group G ×oL oCp to Cp, it becomes
isomorphic to the additive formal group. It follows from this that logFt′o(Z) is
necessarily “primitive” in the topological Hopf algebra Cp[[Z]]: it satisfies the
relation

(3) log(1 + Ft′o(Z1 ⊕ Z2)) = log(1 + Ft′o(Z1)) + log(1 + Ft′o(Z2)).

Since the logarithm logLT(Z) of the formal group G spans the space of primitive
elements in Cp[[Z]], it follows that there exists a unique element Ω ∈ Cp such
that

1 + Ft′o(Z) = exp(Ω logLT(Z)).

Definition 2.6.2. The element Ω is called the period of the dual p-divisible
group G(p)∨.

Let IL ⊆ GL denote the inertia subgroup.

Lemma 2.6.3. If L 6= Qp, then the character τ : IL → o×L has an open image.

Proof. Let χπ be the character describing the GL-action on the Tate module
T of G. By local class field theory we know that on IL, NormL/Qp ◦χπ = χcyc,

the cyclotomic character. From Definition 2.6.1(2), we have τ = χ−1
π · χcyc.

Hence τ : IL → o×L is the composition of the surjective map χπ : IL → o×L and
of the map given by x 7→

∏
σ:L→Qp, σ 6=Id σ(x).

On the Lie algebra L of o×L , the derivative of the above map is given by
U = TrL/Qp − Id. We prove that U : L → L is injective, hence surjective,
which implies the lemma. If U(x) = 0, then x = (U + Id)x = TrL/Qp(x) ∈ Qp
and hence U(x) = ([L : Qp]− 1)x so that x = 0. �

For future use, we record here the more precise result (pointed out to us by
B. Xie) which gives a sufficient criterion for τ to be surjective.

Lemma 2.6.4. If d−1 and (p−1)p are coprime, then τ : IL → o×L is surjective.

Proof. Since τ = χ−1
π · χcyc and χcyc = NormL/Qp ◦χπ, we have

τ(g) = χπ(g)−1 NormL/Qp(χπ(g)) for any g ∈ IL.

Note also that the restriction to IL of the totally ramified surjective character
χπ � o×L is still surjective. Let now u ∈ o×L be any fixed element.

We first show that there is an a ∈ Z×p such that ad−1 = NormL/Qp(u). Let

v := NormL/Qp(u) and let v̄ denote its image in F×p . By our assumption the
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polynomial Zd−1− v̄ is separable over Fp and has a root in F×p . Hence Hensel’s

Lemma implies that the polynomial Zd−1 − v has a root a ∈ Z×p .

Choosing now a g ∈ IL such that χπ(g) = au−1 we deduce that

τ(g) = (au−1)−1 NormL/Qp(au−1) = ua−1ad NormL/Qp(u−1) = u. �

2.7. The Amice-Katz transform. With the period Ω ∈ Cp in hand, we now
recall some constructions from p-adic Fourier Theory [28]. For each a ∈ oL,
define

∆a := 1 + Fat′o(Z) = exp(aΩ logLT(Z)) ∈ Cp[[Z]]×.

The map (oL,+) → (Cp[[Z]]×,×) which sends a ∈ oL to ∆a is a group ho-
momorphism. The fundamental property of these power series is that their
coefficients all lie in oCp :

∆a ∈ oCp [[Z]]× for all a ∈ oL.

This follows from the fact that for each a ∈ oL, Fat′o : G×oL oCp → Ĝm×oL oCp
is a homomorphism of formal groups defined over oCp ; see also [28, Lemma
4.2(5)].

Definition 2.7.1.

(1) Let L∞ be the closure in Cp of the subfield L(Ω) of Cp generated by
L and Ω.

(2) Let Lτ := L∞ ∩ L.
(3) Let o∞ := L∞ ∩ oCp .
(4) Let oτ := Lτ ∩ oCp .

Lemma 2.7.2. We have L∞ = Cker τ
p and o∞ = oker τ

Cp .

Proof. From the relation appearing in Definition 2.6.1(3), we deduce

σ(Ω) = τ(σ)Ω for all σ ∈ GL.

This immediately implies that L∞ ⊆ Cker τ
p . Let H := Gal(L/Lτ ), a closed

subgroup of GL, and let g ∈ H. Then g extends to a unique continuous Lτ -
linear automorphism g of Cp. Now L∞ is the closure of Lτ in Cp, so g fixes
Ω ∈ L∞. Hence τ(g) = 1 by the above relation. Hence H ≤ ker τ which implies

that Cker τ
p ≤ CHp . But L

H
is dense in CHp by the Ax-Sen-Tate theorem, [9,

Proposition 2.1.2], and L
H

= Lτ by infinite Galois theory. Hence Lτ is dense
in CHp , so CHp is contained in the closure of Lτ in Cp, namely L∞. Hence

Cker τ
p ≤ L∞.

The second statement follows from the first by intersecting L∞ = Cker τ
p

with oCp . �

It is clear from the definition of ∆a that in fact ∆a ∈ o∞[[Z]]× for all a ∈ oL.
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Definition 2.7.3. We write oL[[oL]] for the completed group ring of the abelian
group oL with coefficients in oL. The Amice-Katz transform is the unique
extension to a continuous oL-algebra homomorphism

µ : oL[[oL]]→ O(G ×oL o∞) = o∞[[Z]]

of the group homomorphism oL → oCp [[Z]]× which sends a ∈ oL to ∆a ∈
o∞[[Z]]×.

2.8. The Schneider-Teitelbaum uniformisation. At this point, rigid an-
alytic geometry enters the picture. Let B be the rigid L∞-analytic open disc
of radius one, with local coordinate Z. By definition, B is the colimit of the
rigid L∞-analytic closed discs B(r) of radius r < 1, as r ∈ |L×∞| approaches 1
from below:

B = colimr<1 B(r), B(r) = SpL∞〈Z/ṙ〉
where ṙ is any choice of an element of L×∞ such that |ṙ| = r. Choosing,
for convenience, any strictly increasing sequence r1 < r2 < r3 < · · · of real
numbers in |L∞|∩(0, 1) approaching 1 from below, we have a descending chain
of L∞-algebras, each one containing o∞[[Z]]:

L∞〈Z/ṙ1〉 ) L∞〈Z/ṙ2〉 ) L∞〈Z/ṙ3〉 ) · · · )
∞⋂
n=1

L∞〈Z/ṙn〉

= O(B) ⊇ o∞[[Z]]⊗oL L.

With this notation in place, it follows from one of Schneider-Teitelbaum’s main
results, [28, Theorem 3.6], that the oL-algebra homomorphism µ : oL[[oL]] →
o∞[[Z]] extends to a continuous isomorphism of L-Fréchet algebras

µrig : DL−an(oL, L∞)
∼=−→ O(B)

which makes the following diagram commutative:

oL[[oL]]⊗oL L
µ //

��

o∞[[Z]]⊗oL L

����
DL−an(oL, L∞)

∼=
µrig

// O(B)

The vertical arrow on the left is the natural restriction map oL[[oL]] ⊗oL L
into DL−an(oL, L), witnessing the fact that every locally L-analytic function
on oL is continuous, and hence that every continuous distribution on oL re-
stricts to a locally L-analytic distribution on oL; see [29] for more details. The
vertical arrow on the right is the inclusion o∞[[Z]] ⊗oL L ⊂ O(B) from the
above discussion. Combining the isomorphism µrig with the Fourier transform
F : DL−an(oL, L∞)→ O(X×L L∞), we obtain an isomorphism of L∞-Fréchet
algebras

µrig ◦ F−1 : O(X×L L∞)
∼=−→ O(B).
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Since X ×L L∞ and B are both Stein rigid analytic varieties over L∞, this
isomorphism determines, and is completely determined by, an isomorphism

κ := Sp(µrig ◦ F−1) : B
∼=−→ X×L L∞.

This is a version of [28, Theorem 3.6]: the base-change of the character variety
X to L∞ is isomorphic to the rigid L∞-analytic open disc of radius one, so
κ can be viewed as giving a uniformisation of X ×L L∞ by B. Schneider
and Teitelbaum also show that the morphism κ is given on Cp-points by the
following rule: for each z ∈ B(Cp) we can evaluate the power series ∆a ∈
o∞[[Z]] at Z = z to obtain an element ∆a(z) ∈ o×Cp , and the locally L-analytic

character κ(z) : oL → Cp is given by

κ(z)(a) = ∆a(z) for all a ∈ oL.

2.9. ΛL(X) and the twisted GL-action on Cp[[Z]]. It is natural to enquire,
in the light of the Schneider-Teitelbaum isomorphism

κ : B
∼=−→ X×L L∞

how far the character variety X is itself from being isomorphic to an open rigid
L-analytic unit disc. For general reasons, X×L L∞ carries a natural action of
the Galois group GL, acting on the second factor, giving an isomorphism of
L-Fréchet algebras

O(X) ∼= O(X×L L∞)GL .

Definition 2.9.1. The twisted GL-action on O(B) is given as follows:

σ ∗ F (Z) := (σF )([τ(σ)−1](Z)) for all F (Z) ∈ O(B), σ ∈ GL.

Here F 7→ σF is the “coefficient-wise” GL-action on Cp[[Z]] ⊃ O(B), given

explicitly by σ(
∞∑
n=0

anZ
n) =

∞∑
n=0

σ(an)Zn for all σ ∈ GL.

Schneider and Teitelbaum showed that this twisted GL-action on O(B) in
fact comes from the following twisted GL-action on the set of Cp-points B(Cp):

σ ∗ z = κ−1(σ ◦ κ(z)) for all z ∈ B(Cp), σ ∈ GL.

From the proof of [28, Corollary 3.8], we can also deduce the following

Proposition 2.9.2. The algebra isomorphism

κ∗ = µrig ◦ F−1 : O(X×L L∞)
∼=−→ O(B)

is equivariant with respect to the natural GL-action on the source, and the
twisted GL-action on the target.

Corollary 2.9.3. The map µrig restricts to give an isomorphism of oL-algebras

(µrig ◦ F−1)◦ : O◦(X)
∼=−→ o∞[[Z]]GL,∗.
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Proof. Applying the functor O◦ to the isomorphism of rigid L∞-analytic va-
rieties κ : B → X ×L L∞, we see that µrig ◦ F−1 restricts to an o∞-algebra
isomorphism

O(X×L L∞)◦
∼=−→ O(B)◦.

It is well known that O(B)◦ = o∞[[Z]] and that ΛL(X) = O(X)◦ = (O(X ×L
L∞)◦)GL . The result follows by passing to GL-invariants and applying Propo-
sition 2.9.2. �

Consequently, the image of the Amice-Katz transform µ : oL[[oL]]→ o∞[[Z]]
lands in the subring of twisted GL-invariants. One of our main goals in this
paper is to study the following

Question 2.9.4. Is the Amice-Katz transform µ : oL[[oL]] → o∞[[Z]]GL,∗ an
isomorphism?

2.10. Some properties of ΛL(X). In this section, we identify (through the
LT-isomorphism) the ring ΛL(X) = O(X)◦ with the ring o∞[[Z]]GL,∗. From [5]
we know that ΛL(X) is an integral domain and that the norm ‖ ‖X = ‖ ‖1 on
ΛL(X) is multiplicative. Let kK denote the residue field of K.

Lemma 2.10.1. If L 6= Qp and if K is a finite extension of L, then k[[Z]]GK ,∗ =
kK .

Proof. If g ∈ IK , then g acts trivially on k, so that the GL,∗ action of g ∈ IK
on k[[Z]] is given by g :

∑
n≥0 anZ

n 7→
∑
n≥0 an([τ(g)−1]Z)n. The character

τ : IK → o×L has an open image by Lemma 2.6.3. This image therefore contains

χπ(IM ) where M ⊂ L∞ is some finite extension of L, and k[[Z]]IK ,∗ = k[[Z]]IM

where IM acts on k[[Z]] via g :
∑
n≥0 anZ

n 7→
∑
n≥0 an([χπ(g)]Z)n. We know

from the theory of the field of norms that k[[Z]] with that action of IM embeds

into Ẽ+ ' lim←−(−)q
oCp in an IM -equivariant way. Let P := CIMp . We have

(Ẽ+)IM ' lim←−(−)q
oP = k since P/Qp is finitely ramified. Hence k[[Z]]IM = k

and k[[Z]]IK ,∗ = k. The Lemma then follows from the fact that on k, the twisted

GL-action coincides with the usual GL-action, so that k
GK ,∗

= kK . �

Let χtriv denote the character oL → C×p given by χtriv(a) = 1 for all a ∈ oL.
Note that χtriv = κ(0). We have a surjective map ΛL(X) → k given by
f 7→ f(χtriv) mod mL. Its kernel m(X) := {f ∈ ΛL(X) : f(χtriv) ∈ mL} is a
maximal ideal of ΛL(X), with residue field k. Lemma 2.10.1 above implies that
m(X) = mCp [[Z]]GL,∗

Lemma 2.10.2. The ring ΛL(X) is a local ring.

Proof. We have to show that m(X) is the unique maximal ideal, i.e., that f is
a unit in ΛL(X) if and only if f(χtriv) ∈ o×L . The direct implication is obvious.

We therefore assume that f(χtriv) ∈ o×L . The image F (Z) ∈ oCp [[Z]] of f under

the LT-isomorphism then satisfies F (0) ∈ o×L and hence is a unit in oCp [[Z]].
We deduce that f is a unit in OCp(X). Since the twisted GL-action must fix
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with f also its inverse we obtain that f is a unit in OL(X) and hence in ObL(X)
by [5] Cor. 1.24. The multiplicativity of the norm ‖ ‖X finally implies that
1 = ‖f‖X = ‖f−1‖X. �

The oL-algebra ΛL(X) carries two natural topologies. One is the p-adic
topology which is induced by the norm ‖ ‖X. The other is the topology induced
by the Fréchet topology of OL(X). We will call the latter the weak topology
on ΛL(X).

Remark 2.10.3. The weak topology on ΛL(X) is coarser than the p-adic
topology.

Proof. Let X =
⋃
n≥1 Xn be a Stein covering by affinoid subdomains Xn (cf.

[5] §1.3). The Fréchet topology of OL(X) is the projective limit of the Banach
topologies on the affinoid algebras OL(Xn). Since X is reduced these Banach
topologies are defined by the respective supremum norm (cf. [7, Thm. 6.2.4/1] ).
Therefore the Banach topology on OL(Xn) induces on its unit ball with respect
to the supremum norm the p-adic topology. It follows that the natural maps
ΛL(X) → OL(Xn) are continuous for the p-adic topology on the source and
the Banach topology on the target. Therefore the inclusion ΛL(X) ⊆ OL(X)
is continuous for the p-adic topology on the source and the Fréchet topology
on the target. �

Lemma 2.10.4. The oL-module ΛL(X) is p-adically separated and complete.

Proof. We show that, for any reduced rigid analytic variety Y over L, the ring
O≤1
L (Y) of holomorphic functions bounded by 1 is p-adically separated and

complete. Let Y =
⋃
i∈I Yi be an admissible covering by affinoid subdomains.

Since Y is assumed to be reduced, the supremum seminorm on each OL(Yi) is
a norm and defines its affinoid Banach topology (cf. [5, §1.3] ). Hence ‖ ‖Y is a

norm on ObL(Y) and defines the p-adic topology on O≤1
L (Y). In particular, the

p-adic topology on O≤1
L (Y) is separated. Now let (fn)n be a Cauchy sequence

for ‖ ‖Y in O≤1
L (Y). It restricts to a Cauchy sequence in O≤1

L (Yi) for each

i ∈ I which converges to a function gi ∈ O≤1
L (Yi). Obviously the gi glue to a

function g ∈ O≤1
L (Y). We have to show that the sequence (fn)n converges to

g with respect to ‖ ‖Y. Let ε > 0 be arbitrary. First we find an integer N > 0
such that ‖fm − fn‖Y < ε for all m,n > N . Secondly, for any i ∈ I, we have
‖g − fm‖Yi < ε for all sufficiently large (depending on i) m. It follows that
‖g−fn‖Yi ≤ max(‖g−fm‖Yi , ‖fm−fn‖Yi) ≤ max(‖g−fm‖Yi , ‖fm−fn‖Y) <
ε for any n > N and any i ∈ I. Hence ‖g − fn‖Y ≤ ε for any n > N . �

Proposition 2.10.5. The oL-module ΛL(X) is compact in the weak topology.

Proof. According to [13, Prop. 6.4.5] the space X is strictly quasi-Stein. This
means that a Stein covering X =

⋃
n≥1 Xn can be chosen such that the inclusion

maps Xn ⊆ Xn+1 are relatively compact. By loc. cit. Prop. 2.1.16 this implies
that the restriction maps OL(Xn+1) → OL(Xn), which we simply view as
inclusions, are compact maps between Banach spaces. Working over a locally
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compact field we deduce (cf. [27, Remark 16.3] and [24, Cor. 6.1.14] ) that the

closure Cn of O≤1
L (Xn+1) in OL(Xn) is compact. We, of course, have ΛL(X) ⊆

O≤1
L (Xn+1) ⊆ Cn. Therefore, if Ln ⊆ OL(Xn) is any open lattice, then the oL-

modules ΛL(X)/ΛL(X)∩Ln ⊆ Cn/Cn∩Ln are finite. It is straightforward to see
that then ΛL(X)/ΛL(X)∩L must be finite for any open lattice L ⊆ OL(X). On
the other hand ΛL(X) is weakly closed in OL(X) and hence is weakly complete.
It follows [27, Cor. 7.6] that ΛL(X) with its weak topology is the projective
limit of the finite groups ΛL(X)/ΛL(X) ∩ L and hence is compact. �

Lemma 2.10.6.

(1) Any open neighbourhood of zero for the weak topology on ΛL(X) con-
tains a power of the maximal ideal m(X).

(2) If the ideal m(X) is finitely generated then the weak topology on ΛL(X)
coincides with the m(X)-adic topology.

Proof. We have m(X) = πLΛL(X)+n, where n denotes the ideal of all functions
in ΛL(X) which vanish in χtriv. We consider the divisor ∆ on X which maps
χtriv to 1 and all other points to zero. For any integer m ≥ 1 we have the
ideal Im∆ ⊆ OL(X) corresponding to the divisor m∆. As a consequence of [5,
Prop. 1.4] these ideals are closed in OL(X) and satisfy

⋂
m Im = {0}. Hence

the ideals Im ∩ ΛL(X) are closed in ΛL(X) with zero intersection. Let now
U ⊆ ΛL(X) be any fixed open neighbourhood of zero for the weak topology.
Suppose that Im ∩ ΛL(X) " U for any m ≥ 1. We then may pick, for any
m ≥ 1, a function fm ∈ (Im ∩ ΛL(X)) \ U . According to Proposition 2.10.5
the weak topology on ΛL(X) is compact. Hence the sequence (fm)m has a
convergent subsequence with a limit f ∈ ΛL(X). On the one hand we have
fn ∈ Im ∩ ΛL(X) for any n ≥ m. Since Im ∩ ΛL(X) is closed it follows that
f ∈ Im ∩ ΛL(X) for any m ≥ 1. Therefore f = 0. But on the other hand all
the fm and hence f lie in the closed complement of the open subset U . This is
a contradiction. We conclude that nm ⊆ Im ∩ ΛL(X) ⊆ U for any sufficiently
large m. As a consequence of Remark 2.10.3 we also have πmL ΛL(X) ⊆ U for
any sufficiently large m. Hence m(X)2m ⊆ πmL ΛL(X) + nm ⊆ U for large m.
This proves (1).

We have to show that the ideals m(X)m are open for the weak topology.
Under our assumption all ideals m(X)m, for m ≥ 1, are finitely generated.
Hence all m(X)m+1/m(X)m are finite dimensional k-vector spaces. We see that
each quotient ΛL(X)/m(X)m, for m ≥ 1, is a finite oL-module. Hence it suffices
to show that the ideal m(X)m is closed for the weak topology. Let f1, . . . , fr be
generators of m(X)m. Then m(X)m is the image of the map ΛL(X)r → ΛL(X)
sending (h1, . . . , hr) to

∑
i hifi, which is a continuous map between compact

spaces by Proposition 2.10.5. This proves (2). �

Remark 2.10.7. Any f ∈ m(X) satisfies ‖f‖Xn < 1 for all n.

Proof. If ‖f‖Xn = 1 then the maximum modulus principle for the affinoid Xn
implies that there is a point z ∈ Xn such that |f(z)| = 1. By considering f as
an element of oCp [[T ]], we see that f(0) is a unit so that f is not in m(X). �
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Next we consider the injective map

Λ(oL) = oL[[oL]] −→ ΛL(X) ,

which we treat as an inclusion. More explicitly, let a1, . . . ad be a basis of oL
as a Zp-module. Then the image of the above map is the ring of formal power
series oL[[δa1 − δ0, . . . , δad − δ0]] inside ΛL(X). We immediately conclude from
Lemma 2.10.1 that

m(X) ∩ oL[[oL]] = 〈πL, δa1 − δ0, . . . , δad − δ0〉 ⊆ oL[[oL]] .

Lemma 2.10.8. We have O<1
L (X) ∩ oL[[oL]] = πLoL[[oL]].

Proof. We have πLoL[[oL]] ⊆ P := O<1
L (X) ∩ oL[[oL]]. It follows that P :=

P/πLoL[[oL]] is a “canonical” prime ideal in the formal power series ring k[[oL]]:
in particular, it is invariant for the o×L action on the mod-p Iwasawa algebra

k[[oL]]. Suppose for a contradiction that P is the (unique) maximal ideal of
k[[oL]]. Then P would contain δa1 − δ0 and we would have ‖δa1 − δ0‖X < 1.
For each n ≥ 0, let ζpn ∈ oCp denote a primitive pn-root of unity, and let
χn : oL → C×p be the unique torsion (hence locally L-analytic) character of
oL that sends a1 to ζpn and ai to 1 for all i > 1. Then χn ∈ X(Cp), and
|(δa1 − δ0)(χn)| ≤ ‖ δa1 − δ0‖X < 1 for all n ≥ 0. However, |(δa1 − δ0)(χn)| =
|ζpn − 1| = |p|

1

pn−1(p−1) tends to 1 from below, which is a contradiction. Hence

P is not the maximal ideal of k[[oL]].
In this situation, [1, Corollary 8.1(b)] implies that P must be the zero ideal,

provided we can show that the open subgroup 1 + poL ⊂ o×L acts rationally
irreducibly on oL.

We have to show that every non-trivial 1 + poL-stable subgroup of oL is
open in oL. But such a subgroup contains (1 + poL)a − a = paoL for some
0 6= a ∈ oL, and is therefore open in oL. �

Corollary 2.10.9. The restriction of the norm ‖ · ‖X on ΛL(X) to oL[[oL]]
coincides with the π-adic norm on oL[[oL]]: for any x ∈ πnoL[[oL]]\πn+1oL[[oL]]
we have

‖x‖X = |πn|.

Proof. Since ‖πny‖X = |πn| · ‖y‖X for any y ∈ oL[[oL]], we may assume that
n = 0. But now since x /∈ πoL[[oL]], Lemma 2.10.8 tells us that ‖x‖X = 1. �

Corollary 2.10.10. The oL-module ΛL(X)/oL[[oL]] is torsionfree.

Proof. Suppose that f ∈ ΛL(X) is such that πnf ∈ oL[[oL]] for some n ≥
0. Choose n least possible and suppose for a contradiction that n ≥ 1.
Then πnf ∈ oL[[oL]]\πoL[[oL]], else otherwise we would be able to deduce that
πn−1f ∈ oL[[oL]]. Hence ‖πnf‖ = 1 by Corollary 2.10.9, which implies that
|π|−n = ‖f‖ ≤ 1. Hence n = 0. �

Corollary 2.10.11. We have ΛL(X) ∩ (L⊗oL oL[[oL]]) = oL[[oL]].
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3. The Katz isomorphism

3.1. The ψq-operator. Recall that we denote by ⊕ the formal group law of G.
Furthermore let G1 denote the group of π-torsion points of G. Its cardinality is
q. It coincides with the set of zeros of the Frobenius power series [π](Z) = ϕ(Z).

We fix a π-adically complete and flat oL-algebra S in what follows and define
an injective S-algebra endomorphism ϕ : S[[Z]]→ S[[Z]] by setting

ϕ(F )(Z) := F ([π](Z)) for all F (Z) ∈ S[[Z]].

Lemma 3.1.1.

(1) For any F ∈ S[[Z]] there is a unique F0 ∈ S[[Z]] and a unique polynomial
F1 ∈ S[Z] of degree < q such that F = ϕ(Z)F0 + F1.

(2) {F ∈ S[[Z]] : F (ζ) = 0 for any ζ ∈ G1} = ϕ(Z)S[[Z]].

Proof. (1). This is a form of Weierstrass division. Since ϕ(Z) ≡ Zq mod
πoL[[Z]], the proof of [8, VII.3.8 Prop. 5] goes through by replacing the maximal
ideal of S in the argument with the ideal πS.

(2). Since ϕ(Z) vanishes on G1, the inclusion ⊇ is clear. If F ∈ S[[Z]]
vanishes on G1 then using (1) we may assume that F ∈ S[Z] with degF < q.
But then F = 0, which gives the other inclusion. �

Using the above Lemma the proof of [10, Lemma 3] remains valid for S and
gives

ϕ(S[[Z]]) = {F ∈ S[[Z]] : F (Z) = F (ζ ⊕ Z) for all ζ ∈ G1}.
Since the map ϕ is injective, this description of the image of ϕ implies the
existence of a unique S-linear endomorphism ψCol of S[[Z]] such that

ϕ(ψCol(F )(Z)) =
∑
ζ∈G1

F (ζ ⊕ Z) for any F ∈ S[[Z]] .

Definition 3.1.2. Let S[[Z]]L := S[[Z]]⊗oL L. The ψq-operator is defined by

ψq :=
1

q
ψCol : S[[Z]]L → S[[Z]]L.

Note that ψCol (respectively, ψq) preserves S′[[Z]] (respectively, S′[[Z]]L) for
any intermediate π-adically complete and flat oL-subalgebra S′ of S. These
operators satisfy the following useful Projection Formula.

Lemma 3.1.3. For any F,G ∈ S[[Z]] we have ψq(Fϕ(G)) = ψq(F )G.

Proof. We may instead establish the analogous formula for ψCol. Note that
[π](ζ ⊕ Z) = [π](ζ)⊕ [π](Z) = [π](Z) for any ζ ∈ G1, since [π](ζ) = ϕ(ζ) = 0.
Therefore

ϕ(ψCol(Fϕ(G))) =
∑
ζ∈G1

(Fϕ(G))(ζ ⊕ Z) =
∑
ζ

F (ζ ⊕ Z)G([π](ζ ⊕ Z))

=
∑
ζ

F (ζ ⊕ Z)G([π](Z)) =
∑
ζ

F (ζ ⊕ Z)ϕ(G)

= ϕ(ψCol(F ))ϕ(G) = ϕ(ψCol(F )G) .
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The result follows because ϕ is injective. �

Corollary 3.1.4. We have the fundamental equation ψq ◦ ϕ = 1S[[Z]]L .

Proof. Note that ϕ(ψCol(1)) = q1, so ϕ(ψq(1)) = 1 and hence ψq(1) = 1. Now
set F = 1 in Lemma 3.1.3. �

Next, we remind the reader what the operators ϕ and ψq do to the special
power series ∆a = exp(aΩ logLT(Z)) ∈ o∞[[Z]] from §2.7.

Lemma 3.1.5. Assume that S is an o∞-algebra and take a ∈ oL.

(1) ϕ(∆a) = ∆πa.
(2) ψq(∆a) = δa∈πoL∆a/π.

Proof. (1) More generally, whenever a, b ∈ oL we have

∆a([b](Z)) = exp(aΩ logLT([b](Z))) = exp(abΩ logLT(Z)) = ∆ab(Z).

Hence ϕ(∆a) = ∆a([π](Z)) = ∆πa as claimed.
(2) Using the fact that logLT is a formal homomorphism from G to the

formal additive group we compute

ϕ(ψCol(∆a)) =
∑
ζ∈G1

∆a(ζ ⊕ Z) =
∑
ζ

exp(aΩ logLT(ζ ⊕ Z))

=
∑
ζ

exp (aΩ(logLT(ζ) + logLT(Z)))

=
( ∑
ζ∈G1

∆a(ζ)
)
∆a .

Under the Schneider-Teitelbaum isomorphism κ, the group G1 corresponds to
the group of characters χ of the finite group oL/πLoL, and, if ζ corresponds
to χ, then ∆a(ζ) = eva(χ) = χ(a), where a := a+ πoL. Hence

ϕ(ψCol(∆a)) =

(∑
χ

χ(a)

)
∆a.

By column orthogonality of characters of the finite group oL/πL, we have∑
χ χ(a) = qδa,0 = qδa∈πoL . Hence using part (1): qϕ(ψq(∆a)) = qδa∈πoL∆a =

qδa∈πoLϕ(∆a/π). Since ϕ is injective, we deduce that ψq(∆a) = δa∈πoL∆a/π

as required. �

Write m := 〈π, Z〉 and A := S[[Z]].

Lemma 3.1.6. The operators ϕ and ψCol on A are m-adically continuous.

Proof. Since ϕ(Z) ∈ 〈Z〉, we see that ϕ(mn) ⊆ 〈π, ϕ(Z)〉n ⊆ mn for all n ≥ 0.
This implies the m-adic continuity of ϕ.

Suppose first that G1 is contained in S. Then the S-linear maps A → A
sending F (Z) to F (Z ⊕ ζ) are continuous with respect to m-adic topology for
each ζ ∈ G1; hence ϕ ◦ ψCol is also m-adically continuous in this case. Let
L1 = L(G1), a finite extension of L and let S1 := oL1 ⊗oL S. Since oL1 is
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a free oL-module of finite rank, S1 is still a π-adically complete and flat oL-
algebra, so letting A1 = S1[[Z]], we see that ϕ◦ψCol : A1 → A1 is mA1-adically
continuous. It follows that ϕ ◦ ψCol : A→ A is also m-adically continuous.

Let n ≥ 0 be given. Since ϕ(Z) ≡ Zq mod πA, we have mqn = 〈π, Z〉qn ⊆
〈π, Zq〉n = 〈π, ϕ(Z)〉n = Aϕ(mn). Therefore mqn ∩ ϕ(A) ⊆ Aϕ(mn) ∩ ϕ(A) =
ϕ(mn) where this last equation follows from the fact that ϕ(A) admits a direct
complement in A as a ϕ(A)-module. However since ϕ ◦ ψCol is continuous,
ϕψCol(m

m) ⊆ mqn for some m ≥ 0. Hence

ϕψCol(m
m) ⊆ mqn ∩ ϕ(A) ⊆ ϕ(mn).

The m-adic continuity of ψCol now follows from the injectivity of ϕ. �

Lemma 3.1.7. We have ϕn(an) → 0 in the m-adic topology on A, for any
sequence of elements (an) contained in ZA.

Proof. Since ϕ(Z) ∈ G we see that ϕ(Z) ∈ Zm. Assume inductively that
ϕn(Z) ∈ Zmn; then ϕn+1(Z) ∈ ϕ(Zmn) ⊆ ϕ(Z)mn ⊆ Zmn+1, completing the
induction. Write an = Zbn for some bn ∈ A; then ϕn(an) = ϕn(Z)ϕ(bn) ∈
Zmn ⊆ mn+1 for all n ≥ 0, so ϕn(an)→ 0. �

We specialize to the case S = o∞ until the end of §3.1.

Proposition 3.1.8. Let f ∈ DL−an(oL, L) be such that F(f) ∈ O(X)◦. Sup-
pose that ψnq (µrig(f)∆a) ∈ o∞[[Z]] for all a ∈ oL and n ≥ 0. Then f ∈ oL[[oL]].

Proof. We will show that |f(1a+πnoL)| ≤ 1 for all a ∈ oL and n ≥ 0.
By [28, Lemma 4.6(4)], we have

f(1a+πnoL) = (fδ−a)(1πnoL).

The orthogonality of columns in the character table of the finite group oL/π
noL

implies that

1πnoL =
1

qn

∑
[πn](z)=0

κz.

Hence by ibid., (fδ−a)(1πnoL) = 1
qn

∑
[πn](z)=0

f(z)∆−a(z). We now observe that

1

qn

∑
[πn](z)=0

f(z)∆−a(z) = ψnq (µrig(f)∆−a)(0).

Since ψnq (µrig(f)∆−a) ∈ o∞[[Z]] by assumption, we have |f(1a+πnoL)| ≤ 1 for
all a ∈ oL and n ≥ 0, as claimed.

Therefore there exists g ∈ oL[[oL]] such that f = g on all 1a+πnoL . The
function f −g is zero on all locally constant functions, and hence on all torsion
characters, so that it is divisible by log(1 + Z). Since f − g is bounded and
log(1 + Z) is unbounded, this implies that f = g. �

We can now prove Theorem 1.4.1 from the introduction.

Theorem 3.1.9. We have ΛL(X) = oL[[oL]] if and only if ψq(ΛL(X)) ⊂ ΛL(X).
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Proof. The forward implication is clear in view of Lemma 3.1.5(1). For the
reverse implication, the given condition means that the image o∞[[Z]]GL,∗ of
ΛL(X) = O(X)◦ under the bijection (µrig ◦F−1)◦ from Corollary 2.9.3 is stable
under the ψq-operator. Now the result follows from Proposition 3.1.8. �

3.2. The covariant bialgebra of G. Katz [20, §1] talks about the “algebra
Diff(G) of all G-invariant oL-linear differential operators from O(G) into itself”.
Because we are not aware of any place in the literature which adequately deals
with invariant differential operators on formal groups, we will instead use the
covariant bialgebra of G which will turn out to be isomorphic to Katz’s Diff(G).

Definition 3.2.1.

(1) Let Z1 ⊕ Z2 ∈ oL[[Z1, Z2]] denote the formal group law defining the
formal group G.

(2) Let U(G) denote the set of all oL-linear maps from O(G) = oL[[Z]] to
oL that vanish on some power of the augmentation ideal ZoL[[Z]]. In
other words,

U(G) = lim
−→

HomoL(O(G)/ZnO(G), oL).

We will often use the abbreviation U := U(G).
(3) For each f, g ∈ U(G), define the product f · g by the formula

(f · g)(F (Z)) = (f⊗̂g)(F (Z1 ⊕ Z2)) for all F (Z) ∈ oL[[Z]].

(4) With this product, U(G) is the covariant bialgebra of G, defined at [17,
36.1.8].

(5) For each m ≥ 0, let um ∈ U(G) be the unique oL-linear map that
satisfies

um(Zn) = δmn for all n ≥ 0.

(6) Let 〈−,−〉 : U(G)×O(G)→ oL be the evaluation pairing:

〈f, F 〉 := f(F ).

This covariant bialgebra is also known as the hyperalgebra or the distribution
algebra of G. Note that U(G) is a commutative ring: this follows directly from
Definition 3.2.1(3), as the formal group law Z1⊕Z2 on the Lubin-Tate formal
group G is commutative. We will now explain the link with Katz’s work, using
his notation.

Lemma 3.2.2.

(1) {un : n ≥ 0} is an oL-module basis for U(G).

(2) Let i ≥ 0 and write (Z1 ⊕ Z2)i =
∞∑

n,m≥0

n+m≥i

λ(n,m; i)Zn1 Z
m
2 for some

λ(n,m; i) ∈ oL. Then for all n,m ≥ 0 we have

un · um =

n+m∑
k=0

λ(n,m; k)uk.
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(3) Let s be a variable. The map L[s] → U(G) ⊗oL L which sends s to
u1 ⊗ 1 is an isomorphism of positively filtered L-algebras.

Proof. (1) This is clear because ZnoL[[Z]] = oLZ
n⊕Zn+1oL[[Z]] for any n ≥ 0.

(2) We compute that for every n,m, i ≥ 0 we have

(un · um)(Zi) = (un⊗̂um)((Z1 ⊕ Z2)i)

= (un⊗̂um)

 ∞∑
a,b≥0

a+b≥i

λ(a, b; i)Za1Z
b
2

 = λ(n,m; i).

Because
n+m∑
k=0

λ(n,m; k)uk also sends Zi to λ(n,m; i), it must be equal to un·um.

(3) From (2) we see that the oL-submodule U(G)n of U(G) generated by
{ui : 0 ≤ i ≤ n} defines an algebra filtration on U(G):

U(G)n · U(G)m ⊆ U(G)n+m for all n,m ≥ 0.

The associated graded ring is the free oL-module with basis {grun : n ≥ 0}.
Since Z1⊕Z2 ≡ Z1 +Z2 mod (Z1, Z2)2 by part (2), we see that for any i ≥ 0
we have

∞∑
n,m≥0

n+m≥i

λ(n,m; i)Zn1 Z
m
2 = (Z1 ⊕ Z2)i

≡ (Z1 + Z2)i =
∑

n+m=i

(
i

n

)
Zn1 Z

m
2 mod (Z1, Z2)i+1.

Equating the coefficient of Zn1 Z
i−n
2 shows that λ(n, i − n; i) =

(
i
n

)
whenever

0 ≤ n ≤ i:

λ(n,m;n+m) =

(
n+m

n

)
for any n,m ≥ 0.

Hence from (2) we see that the multiplication in grU(G) is given by

(grun) · (grum) =

(
n+m

n

)
grun+m.

The same formulas hold in gr(U(G)⊗oL L). Induction on n shows that we have
(gru1)n = n! grun for all n ≥ 0. Since L has characteristic zero, we see that
gr(U(G)⊗oL L) is generated by gru1 as an L-algebra. The result follows. �

We will henceforth identify U(G)⊗oLL with the polynomial ring L[s]. Recall
the polynomials Pn(Y ) ∈ L[Y ] from [28, Definition 4.1], which are defined by
the following formal expansion:

exp(Y logLT(Z)) =

∞∑
m=0

Pm(Y )Zm.

Lemma 3.2.3. For every n ≥ 0, we have un = Pn(u1) inside U(G)⊗oL L.
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Proof. The structure constants of Katz’s algebra Diff(G) are the same as the
ones in U(G) by [20, (1.2)] and Lemma 3.2.2(2). So the oL-linear map that
sends D(n) ∈ Diff(G) to un ∈ U(G) is an oL-algebra isomorphism. Compar-
ing [20, Corollary 1.8] with [28, Definition 4.1] shows that D(n) = Pn(D(1))
in Diff(G) ⊗oL L for all n ≥ 0. The result follows by applying the algebra
isomorphism Diff(G)→ U(G) established above. �

Of course in the context of affine group schemes, this isomorphism between
the algebra of left-invariant differential operators on the group scheme and
the distribution algebra of the group scheme is the well known ‘Invariance
Theorem’, [12, Chapter II, §4, Theorem 6.6].

Next, we consider the action of the monoid oL on the formal group G. The
covariant bialgebra construction is functorial in G: if ϕ : G → H is a morphism
of formal groups, then U(ϕ) : U(G)→ U(H) is the morphism of oL-bialgebras
which is the transpose to the oL-algebra homomorphism ϕ∗ : O(H) → O(G)
induced by ϕ. Using the evaluation pairing, we have the following formula
which defines this action:

(4) 〈U(ϕ)(f), F 〉 = 〈f, ϕ∗(F )〉 for all f ∈ U(G), F ∈ O(G).

Definition 3.2.4. Take a ∈ oL.

(1) Let [a] : G → G be the action of a on G.
(2) Write a · f := U([a])(f) for all f ∈ U(G).

The oL-algebra endomorphism U([a]) of U(G) extends to an L-algebra en-
domorphism U([a])⊗ 1 of U(G)⊗oL L = L[s]. What does this action do to the
generator s of L[s]?

Lemma 3.2.5. We have a · s = as for all a ∈ oL.

Proof. We know that [a](Z) ≡ aZ mod Z2oL[[Z]]. Hence

〈U([a])(u1), Zn〉 = 〈u1, [a](Z)n〉 = aδn,1 = 〈au1, Z
n〉 for all n ≥ 0

using Definition 3.2.1(5). Hence a · u1 = au1 and so a · s = as. �

Corollary 3.2.6. For each j ≥ i ≥ 0 and a ∈ oL there exists σij(a) ∈ oL such
that

a · uj = Pj(as) =

j∑
i=0

σij(a)Pi(s) =

j∑
i=0

σij(a)ui.

Proof. It follows from Lemma 3.2.5 that the L-algebra endomorphisms of L[s]
given by s 7→ as preserve the oL-subalgebra U(G) ⊂ L[s]. Hence a·uj = Pj(as)
lies in U(G) for all a ∈ oL and all j ≥ 0. But U(G) has {ui : i ≥ 0} as an oL-
module basis by Lemma 3.2.2(a), so Pj(as) must be an oL-linear combination
of these ui’s. On the other hand, Pj(s) is a polynomial of degree j in s,
therefore so is Pj(as); because degPi = i for each i it follows that Pj(as) is an
L-linear combination of P0(s), · · · , Pj(s) only. �
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We now introduce a coefficient ring S, which we assume to be a π-adically
complete oL-algebra. For every S-module M , let M∗ := HomS(M,S) be the
S-module of S-linear functionals on M . We will need to work with a larger
class of S-linear functionals on S[[Z]] than those arising from U(G), namely the
continuous ones.

Definition 3.2.7. We say that λ ∈ S[[Z]]∗ is continuous if it is continuous
with respect to the 〈π, Z〉-adic topology on S[[Z]], and the π-adic topology on
S. Let S[[Z]]∗cts denote the set of these continuous S-linear functionals on S[[Z]].

Explicitly λ ∈ S[[Z]]∗ is continuous if and only if for all n ≥ 0 there exists
m ≥ 0 such that λ(〈π, Z〉m) ⊆ πnS.

Consider now the base change U(GS) := U(G) ⊗oL S, and its π-adic com-
pletion

Û(GS) = lim←−U(G)⊗oL (S/πnS).

Since {um : m ≥ 0} is an oL-module basis for U(G) by Lemma 3.2.2(1), we see

that Û(GS) has the following description:

(5) Û(GS) =

{ ∞∑
m=0

amum : am ∈ S, lim
m→∞

am = 0

}
.

Here we equip S with the π-adic topology.

Lemma 3.2.8.

(1) The pairing 〈−,−〉 : U(G) × oL[[Z]] → oL extends to an S-bilinear
pairing

〈−,−〉 : Û(GS)× S[[Z]]→ S.

(2) For each u ∈ Û(GS), the S-linear map 〈u,−〉 : S[[Z]]→ S is continuous.

(3) The map Û(GS)→ S[[Z]]∗cts, u 7→ 〈u,−〉, is an S-linear bijection.

(4) The map S[[Z]]→ Û(GS)
∗
, F 7→ 〈−, F 〉, is an S-linear bijection.

Proof. (1) Let u =
∞∑
m=0

amum ∈ Û(GS), F =
∞∑
n=0

FnZ
n ∈ S[[Z]] and define

〈u, F 〉 =
∞∑
m=0

amFm. This series converges in S because am → 0 as m → ∞

and because S is assumed to be π-adically complete.

(2) Let n ≥ 0 and write u =
∞∑
m=0

amum with am → 0. Then for some r ≥ 0,

am ∈ πnS for all m ≥ r. Hence 〈u,−〉 sends the ideal 〈πn, Zr〉 of S[[Z]] into
πnS. Since 〈π, Z〉n+r ⊆ 〈πn, Zr〉, we conclude that 〈u,−〉 is 〈π, Z〉-adically
continuous.

(3) The injectivity of u 7→ 〈u,−〉 follows by evaluating on each Zn. Now
let λ ∈ S[[Z]]∗cts and define am := λ(Zm) ∈ S for each m ≥ 0. Since λ is
〈π, Z〉-adically continuous, for each n ≥ 0 we can find some r ≥ 0 such that
λ(〈π, Z〉r) ⊆ πnS. Then am ∈ πnS for all m ≥ r which implies that am → 0
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as m → ∞. Hence u :=
∞∑
m=0

amum is an element of Û(GS) and 〈u,−〉 − λ

vanishes on S[Z] by construction. Since this difference is continuous and since
S[Z] is dense in S[[Z]] with respect to the 〈π, Z〉-adic topology, we conclude
that λ = 〈u,−〉.

(4) Again, the injectivity of F 7→ 〈−, F 〉 follows from 〈um, F 〉 = Fm. Given

an S-linear map λ : U(GS)→ S, let F :=
∞∑
n=0

λ(un)Zn. Then 〈um, F 〉 = λ(um)

for all m ≥ 0. Since the um span U(GS) as an S-module, λ = 〈−, F 〉. �

As an immediate consequence of Lemma 3.2.8, we have the following

Corollary 3.2.9.

(1) For every continuous S-linear α : S[[Z]] → S[[Z]] there exists a unique

S-linear map α∗ : Û(GS)→ Û(GS) such that

〈α∗u, F 〉 = 〈u, αF 〉 for all u ∈ Û(GS), F ∈ S[[Z]].

(2) For every S-linear β : Û(GS) → Û(GS) there exists a unique S-linear
map β∗ : S[[Z]]→ S[[Z]] such that

〈u, βF 〉 = 〈β∗u, F 〉 for all u ∈ Û(GS), F ∈ S[[Z]].

We also extend this S-linear pairing to an SL := S ⊗oL L-linear pairing

〈−,−〉 : Û(GS)L × S[[Z]]L → SL

which we will use without further mention. Observe that there is a natural
oL-linear map Û → Û(GS) for any oL-algebra S.

Lemma 3.2.10. The restriction map Û(GS)
∗
→ HomoL(Û , S) is an S-linear

isomorphism.

Proof. Let λ : Û(GS) → S be an S-linear map whose restriction to Û is zero.
Then in particular λ(um) = 0 for all m ≥ 0, so λ vanishes on all finite sums of

the form
n∑

m=0
amum ∈ Û(GS) with am ∈ S. These sums are π-adically dense

in Û(GS) in view of (5), so for any x ∈ Û(GS), λ(x) ∈
∞⋂
n=0

πnS. Since we’re

assuming that S is π-adically complete, this intersection is zero, so λ = 0 and
the restriction map in question is injective.

Suppose now λ : Û → S is an oL-linear map. Using the description of Û(GS)

given in (5), we extend it to an S-linear map λ̃ : Û(GS) → S by setting for
every zero-sequence (am) in S

λ̃

( ∞∑
m=0

amum

)
:=

∞∑
m=0

amλ(um).
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Since lim
m→∞

am = 0 in S, the series on the right hand side converges in S because

S is assumed to be π-adically complete. So, λ̃ is a well-defined S-linear map
extending λ. �

3.3. Gal-continuous functions. Let C0(oL,Cp) be the Cp-Banach space of
all continuous Cp-valued functions on oL, equipped with the supremum norm.
The unit ball of this Cp-Banach space is the oCp -submodule C0(oL, oCp) of
continuous oCp -valued functions.

Definition 3.3.1. A function f ∈ C0(oL,Cp) is said to be Gal-continuous if

σ(f(a)) = f(aτ(σ)) for all a ∈ oL, σ ∈ GL.

We write C := C0
Gal(oL,Cp) for the set of all Gal-continuous Cp-valued func-

tions.

Evidently C := C0
Gal(oL, oCp) = C ∩ C0(oL, oCp) forms an oL-lattice in C.

Lemma 3.3.2. Let f ∈ C. Then im f ⊆ L∞, and im f ⊆ o∞ if f ∈ C.

Proof. By Definition 3.3.1, we have im f ⊆ Cker τ
p for all f ∈ C, and im f ⊆

oker τ
Cp for all f ∈ C. But Cker τ

p = L∞ and oker τ
Cp = o∞ by Lemma 2.7.2. �

Lemma 3.3.3. For each u ∈ Û , the function a 7→ K(u)(a) := 〈u,∆a〉 on oL
is Gal-continuous.

Proof. By definition, K(u) is the composition of µ|oL : oL → o∞[[Z]]× with

the restriction of the linear functional 〈u,−〉 : o∞[[Z]]→ o∞ to o∞[[Z]]×. This
linear functional is continuous by Lemma 3.2.8(3), so to establish the continuity
of K(u) it remains to show that µ|oL is continuous. Since µ|oL is a group
homomorphism, it is enough to show that it is continuous at the identity
element 0 of oL. Let n > 0 and consider the basic open neighbourhood 1 +
〈π, Z〉n of 1 ∈ o∞[[Z]]×. Since ϕn(Z) → 0 as n → ∞ in o∞[[Z]] by Lemma
3.1.7, we can find m ≥ 0 such that ϕm(Z) ∈ 〈π, Z〉n. Hence for any a ∈ oL,
using Lemma 3.1.5 we calculate

∆πma −∆0 = ϕm(∆a − 1) ∈ ϕm(Zo∞[[Z]]) ⊆ ϕm(Z)o∞[[Z]] ⊆ 〈π, Z〉n.

Hence µ|oL is continuous as required.
Now let σ ∈ GL; since ∆a ∈ o∞[[Z]] is invariant for the ∗-action of GL on

o∞[[Z]], we know that σ(∆a) = ∆a([τ(σ)](Z)) = ∆aτ(σ) for any a ∈ oL. Since

u ∈ Û , we have for any a ∈ oL
σ(K(u)(a)) = σ(〈u,∆a〉) = 〈u, σ(∆a)〉 = 〈u,∆aτ(σ)〉 = K(u)(aτ(σ)).

Hence K(u) is indeed Gal-continuous. �

Definition 3.3.4.

(1) Define the Katz map K : Û → C as follows:

K(u)(a) = 〈u,∆a〉 for any u ∈ Û , a ∈ oL.
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(2) Define K1 : Û → o∞ by K1 = ev1 ◦K.
(3) Define ψC : C → C by the rule

ψC(f)(a) = δa∈πoLf(a/π) for all a ∈ oL.
The operator ψC : C → C is by definition the restriction of ψC to C.

(4) Define ϕC : C → C by the rule

ϕC(f)(a) = f(πa) for all a ∈ oL.
The operator ϕC : C → C is by definition the restriction of ϕC to C.

Using his notation, Katz has already observed [19, p. 99] the following fact.

Lemma 3.3.5. The map K : Û → C is an oL-algebra homomorphism.

Proof. By the definition of the Lubin-Tate logarithm, we have

logLT (Z1 ⊕ Z2) = logLT (Z1) + logLT (Z2)

from which it follows that for all a ∈ oL we have

∆a(Z1 ⊕ Z2) = ∆a(Z1)∆a(Z2).

Using Definition 3.2.1(3), we can then compute that for any u, v ∈ U and any
a ∈ oL we have

K(u · v)(a) = 〈u · v,∆a(Z)〉 = (u⊗̂v)(∆a(Z1 ⊕ Z2))

= (u⊗̂v)(∆a(Z1)∆a(Z2)) = K(u)(a)K(u)(v).

Hence K(u · v) = K(u)K(v) for all u, v ∈ U and the result follows easily. �

Now we recall the coefficient ring S that was introduced before Definition
3.2.7. Applying the S-linear duality functor

(−)∗ := HomoL(−, S)

to the Katz map K : Û → C gives us the dual Katz map

K∗ : C∗ → Û∗

defined on the space of S-valued Galois measures C∗ = HomoL(C, S). We iden-

tify Û∗ = HomoL(Û , S) with S[[Z]] using Lemma 3.2.10 and Lemma 3.2.8(4);
then K∗ : C∗ → S[[Z]] is given explicitly by

(6) 〈um,K∗(λ)〉 = λ(Pm(−Ω))) for all λ ∈ C∗,m ≥ 0.

After Lemma 3.1.6 and Corollary 3.2.9 applied with S = oL, we have at our

disposal the dual oL-linear endomorphisms ψ∗Col and ϕ∗ of Û .

Lemma 3.3.6. We have Kϕ∗ = ϕCK and Kψ∗Col = qψCK.

Proof. Let u ∈ ÛL and a ∈ oL. Then using Lemma 3.1.5, we have

K(ψ∗Col(u))(a) = 〈ψ∗Col(u),∆a〉 = 〈u, ψCol(∆a)〉 = 〈u, qψq(∆a)〉
= q〈u, δa∈πoL∆a/π〉 = qδa∈πoLK(u)(a/π) = qψC(K(u))(a)
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which gives the second equation. The first equation is proved in a similar
manner. �

Corollary 3.3.7. We have K∗ϕ∗C = ϕK∗ and K∗ψ∗C = ψqK∗.

Proof. We apply the S-linear duality functor (−)∗ = HomoL(−, S) to the equa-
tions from Lemma 3.3.6. Using Lemma 3.2.8, we see that

K∗ϕ∗C = (ϕCK)∗ = (Kϕ∗)∗ = ϕ∗∗K∗ = ϕK∗,
and similarly,

qK∗ψ∗C = (qψCK)∗ = (Kψ∗Col)
∗ = ψColK∗ = qψqK∗.

Now divide both sides by q. �

Lemma 3.3.8. We have ψq ◦ K∗1 = 0.

Proof. Corollary 3.3.7 gives ψqK∗1 = ψqK∗ ev∗1 = K∗ψ∗C ev∗1 = (ev1 ψCK)∗.
But ev1 ψC(f) = ψC(f)(1) = 0 for any f ∈ C by Definition 3.3.4(3), because
δ1∈πoL = 0. �

Proposition 3.3.9. If K is injective and τ is surjective, then q kerK1 ⊆
ψ∗Col(Û).

Proof. In this proof we may assume S = oL. Suppose that ev1 ◦K(u) = 0

for some u ∈ Û . Then K(u) is zero on o×L because τ is surjective and be-
cause K(u) is Gal-continuous by Lemma 3.3.3. Hence K(u) = ψCϕCK(u).
But qψCϕCK(u) = qψCKϕ∗(u) = Kψ∗Colϕ

∗(u) by Lemma 3.3.6, so K(qu −
ψ∗Colϕ

∗(u)) = 0. Since K is injective by assumption, qu = ψ∗Col(ϕ
∗(u)) ∈

ψ∗Col(Û). �

Proposition 3.3.10. Suppose that τ : GL → o×L and K1 : Û → o∞ are both

surjective, and that K : Û → C is injective. Then

K∗1 : o∗∞ → S[[Z]]ψq=0

is an S-linear bijection.

Proof. The image of K∗ : o∗∞ → S[[Z]] is contained in S[[Z]]ψq=0 by Lemma

3.3.8. If K∗1(`) = 0 for some ` ∈ o∗∞, then ` ◦ K1 = 0 so `(K1(Û)) = 0. But

K1(Û) = o∞ by assumption, so ` = 0. Hence K∗1 is injective and it remains to
prove it is also surjective.

Take some F ∈ S[[Z]]ψq=0 and let ` := 〈−, F 〉 ∈ Û(GS)
∗ ∼= Û∗ be the S-

valued oL-linear functional on Û given by Lemma 3.2.10 and Lemma 3.2.8(4).
Then since ψCol(F ) = qψq(F ) = 0,

0 = 〈u, ψCol(F )〉 = 〈ψ∗Col(u), F 〉 = `(ψ∗Col(u)) for all u ∈ Û .

So, ` vanishes on ψ∗Col(Û) and hence also on q kerK1 by Proposition 3.3.9.
Since oL has no q-torsion, we see that ` is zero on kerK1. Hence ` descends to

an S-valued oL-linear functional on Û/ kerK1. But this quotient is isomorphic
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to o∞ by assumption. So, we get a well-defined oL-linear form ` : o∞ → S

such that `(K1(u)) = `(u) for all u ∈ Û . Then

〈u,K∗1(`)〉 = `(K1(u)) = `(u) = 〈u, F 〉 for all u ∈ Û
which implies that F = K∗1(`) by Lemma 3.2.8(4). Hence K∗1 is surjective. �

We make the following tentative

Conjecture 3.3.11. The map K1 : Û → o∞ is surjective and the map K :

Û → C is injective whenever τ is surjective.

3.4. The largest ψq-stable oL-submodule of oL[[Z]]. For brevity, we will
write

A := S[[Z]]

in this subsection. The ψq-operator is only defined on AL and it does not
preserve A, in general.

Definition 3.4.1. Let Aψq-int be the largest S-submodule of A stable under
ψq.

Remark 3.4.2. We have Aψq-int = {F ∈ A : ψnq (F ) ∈ A for all n ≥ 0}.

Lemma 3.4.3. The image of K∗ : C∗ → A is contained in Aψq-int.

Proof. Let λ ∈ C∗. By Corollary 3.3.7, ψnq (K∗(λ)) = K∗((ψ∗C)n(λ)) lies in A
for all n ≥ 0. Now use Remark 3.4.2. �

Clearly, Aψq=0 is contained in Aψq-int; moreover this last is ϕ-stable in view
of Remark 3.4.2 and the fact that ψq ◦ ϕ = 1A by Corollary 3.1.4. Therefore

S +

∞∑
n=0

ϕn
(
Aψq=0

)
⊆ Aψq-int.

Our next result makes this relation more precise; first we need some more
notation.

Definition 3.4.4. We have the following truncation operators:

(1) s : C → C, given by s(f) = f − f(0)1, and
(2) t : A→ A, given by t(a) = a− a(0)1.

It will be helpful to observe that tϕ = ϕt as S-linear endomorphisms of A.

Proposition 3.4.5. There is a well-defined oL-linear bijection

1⊕
∞∑
n=0

ϕnt : oL ⊕
∞∏
n=0

Aψq=0 ∼=−→ Aψq-int.

Proof. Given any (an)n ∈
∏∞
n=0A

ψq=0, Lemma 3.1.7 implies that ϕn(t(an))→
0 as n→∞, because t(an) ∈ ZA for all n ≥ 0. Hence

(z, (an)n) 7→ z +

∞∑
n=0

ϕn(t(an))
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is a well-defined S-linear map γ : S⊕
∞∏
n=0

Aψq=0 → A. Now Aψq-int is a t-stable

S-submodule of A since ψq(1) = 1. Because an ∈ Aψq=0, this implies that
ϕn(t(an)) = tϕn(an) ∈ t(Aψq-int) ⊆ Aψq-int for any n ≥ 0. Since ψCol : A→ A
is continuous by Lemma 3.1.6 and since Aψq-int = {a ∈ A : ψnCol(a) ∈ qnA for
all n ≥ 0} by Remark 3.4.2, we see that Aψq-int is a closed S-submodule of A
with respect to the 〈π, Z〉-adic topology on A = S[[Z]]. Hence the image of γ
is contained in Aψq-int, and it remains to show that γ is bijective.

Suppose that γ(z, (an)n) = 0 so that z = −
∞∑
n=0

ϕn(t(an)). Since ZA is

closed in A, this infinite sum lies in ZA. Since S ∩ ZA = 0, we conclude that

z = 0. Hence a0 = −
∞∑
n=1

ϕn(t(an)) ∈ ϕ(A). But a0 ∈ Aψq=0 by definition,

and

Aψq=0 ∩ ϕ(A) = 0

because ψq ◦ϕ = 1A by Corollary 3.1.4. Hence a0 = 0. Proceeding inductively
on n, we quickly deduce that an = 0 for all n ≥ 0 in a similar manner. Hence
γ is injective.

Now let a ∈ Aψq-int; then by definition, ψnq (a) ∈ A for all n ≥ 0, so we can
define

an := ψnq (a)− ϕψn+1
q (a) ∈ A.

Since ψq ◦ ϕ = 1A by Corollary 3.1.4, we see that an ∈ Aψq=0 for all n ≥ 0.
Since tϕ = ϕt,

m∑
n=0

ϕn(t(an)) = t

(
m∑
n=0

ϕn(ψnq (a)− ϕψn+1
q (a))

)
= t(a− ϕm+1ψm+1

q (a))

for any m ≥ 0. Since tϕm+1ψm+1
q (a) = ϕm+1(tψm+1

q (a)) → 0 as m → ∞ by
Lemma 3.1.7,

γ(a(0), (an)n) = a(0) + t(a)− lim
m→0

ϕm+1(tψm+1
q (a)) = a.

Hence γ is surjective. �

Lemma 3.4.6. For each n ≥ 0, there is a commutative diagram

o∗∞
ev∗πn //

K∗1
��

C∗

K∗
��

s∗ // C∗

K∗
��

Aψq=0

ϕn
// Aψq-int

t
// Aψq-int.

Proof. To see that the square on the left commutes, we use Corollary 3.3.7:

ϕnK∗1 = ϕnK∗ ev∗1 = K∗ϕ∗C ev∗1 = K∗(ev1 ϕC)
∗ = K∗ ev∗πn .

Hence in view of Lemma 3.2.8(4), it remains to show that

〈um,K∗(s∗(λ))〉 = 〈um, t(K∗1(λ))〉 for all m ≥ 0, λ ∈ C∗.
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Since t kills the constant term of a power series in A, we have

〈um, t(a)〉 = δm≥1〈um, a〉 for all a ∈ A.
Now K(um)(0) = Pm(0) = δm,0 by [28, Lemma 4.2] and K(u0) = K(1) = 1, so

〈um,K∗(s∗(λ))〉 = λ(s(K(um))

= λ(K(um)−K(um)(0)1) = δm≥1λ(K(um)) = 〈um, t(K∗(λ))〉.

The result follows. �

Let c0(o∞) := {(xn)n ∈
∞∏
n=0

o∞ : lim
n→∞

xn = 0}.

Lemma 3.4.7. Suppose that τ is surjective. Then the map

η : C → oL ⊕ c0(o∞)

given by η(f) = (f(0), (f(πn)− f(0))n) is an oL-linear bijection.

Proof. Recall that any f ∈ C takes values in o∞ by Lemma 3.3.2. Since πn → 0
as n→∞ in oL and since f is continuous, f(πn)− f(0)→ 0 as n→∞ in o∞.
Thus η is well-defined.

Suppose η(f) = 0 for some f ∈ C. Then f(0) = 0 and f(πn) = 0 for
all n ≥ 0. Hence f(πnτ(σ)) = σ(f(πn)) = 0 for all σ ∈ GL, so f also
vanishes on πnτ(GL) for each n ≥ 0. Since τ is surjective, f vanishes on
∞⋃
n=0

πno×L ∪ {0} = oL, so f = 0. Hence η is injective.

To show η is surjective, let (z, (zn)n) ∈ oL⊕ c0(o∞) and define f : oL → o∞
by setting f(0) = z and f(πnτ(σ)) := z + σ(zn) for all n ≥ 0 and all σ ∈ GL.
This makes sense because τ is surjective, and if τ(σ) = τ(σ′) for some σ, σ′ ∈
GL then σ−1σ′ ∈ ker τ fixes o∞ by Lemma 2.7.2, so σ′(zn) = σ(σ−1σ′(zn)) =
σ(zn) for any n ≥ 0. It is easy to see that f : oL → o∞ is Gal-continuous and
that η(f) = (z, (zn)n). Hence η is surjective. �

Lemma 3.4.7 allows us to give an explicit description of the space of Galois
measures C∗.

Corollary 3.4.8. Suppose τ is surjective. Then

η∗ : oL ⊕
∞∏
n=0

o∗∞ → C∗

is an oL-linear bijection.

Proof. The functor (−)∗ = HomoL(−, S) from oL-modules to S-modules com-

mutes with finite direct sums and sends c0(o∞) to
∞∏
n=0

o∗∞. Now apply this

functor to the isomorphism η : C
∼=−→ oL ⊕ c0(o∞) from Lemma 3.4.7. �

Theorem 3.4.9. Suppose that τ is surjective and that K∗1 : o∗∞ → Aψq=0 is
an isomorphism. Then K∗ : C∗ → Aψq-int is an isomorphism as well.
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Proof. Using Corollary 3.4.8 and Proposition 3.4.5, we can build the following
diagram:

S ⊕
∞∏
n=0

o∗∞
η∗ //

1⊕
∞∏
n=0
K∗1
��

C∗

K∗

��
S ⊕

∞∏
n=0

Aψq=0

1⊕
∞∑
n=0

ϕnt

// Aψq-int.

Note that we can write η = ev0⊕(evπn ◦s)n. Lemma 3.4.6 implies that

K∗(evπn ◦s)∗ = K∗s∗ ev∗πn = tϕnK∗1 = ϕntK∗1 for any n ≥ 0.

Using Pm(0) = δm,0 again together with (6), we also have

K∗(η∗(1, (0)n)) = K∗(ev∗0(1)) =

∞∑
m=0

ev∗0(1)(Pm(−Ω))Zm =

∞∑
m=0

Pm(0)Zm = 1.

So the diagram is commutative. Now η∗ is an isomorphism by Corollary 3.4.8,
and the bottom map is an isomorphism by Proposition 3.4.5. Since K∗1 is an
isomorphism by assumption, the vertical map on the left is an isomorphism.
Hence K∗ is also an isomorphism by the commutativity of the diagram. �

Corollary 3.4.10. Let S be any π-adically complete oL-algebra. The dual
Katz map

K∗ : C∗ → S[[Z]]ψq-int

is an isomorphism if τ : GL → o×L and K1 : Û → o∞ are surjective, and

K : Û → C is injective.

Proof. Apply Theorem 3.4.9 together with Proposition 3.3.10. �

Remark 3.4.11. Katz claims on [19, p. 60] that it is easy to show that
the map that he denotes by (∗∗) on p.59, is injective. In our notation, this
map is K∗; at least when τ is surjective, the proof of Theorem 3.4.9 shows
that its injectivity is equivalent to the injectivity of K∗1, which is equivalent to

K1(Û) ·L = L∞ in view of the proof of Proposition 3.3.10. We were only able

to establish the equality K1(Û) = o∞ in the case where L = Qp2 by carrying
out an explicit computation — see Proposition 3.6.5 below.

3.5. The Newton polygon of ∆1(Z) − 1. In this section, we obtain some
estimates on vπ(Pk(Ω)), k ≥ 1. Recall that d and e and f denote the degree
and ramification and inertia indices of L/Qp, respectively.

Lemma 3.5.1. If k ≥ 0 and 1 ≤ r ≤ e, then we have an isomorphism of
abelian groups

oL/π
ek+roL ∼= (Z/pkZ)f(e−r) ⊕ (Z/pk+1Z)fr.

Münster Journal of Mathematics Vol. — (—), 999–999



Bounded functions on the character variety 1033

Proof. Note that poL = πeoL ⊆ πroL since e ≥ r by assumption, so oL/π
roL

is an elementary abelian p-group of order |oL/πroL| = pfr. Hence, using the
elementary divisors theorem, we can find v1, · · · , vd ∈ oL such that

oL = Zpv1 ⊕ · · · ⊕ Zpvd and πroL =

s⊕
i=1

Zpvi ⊕
d⊕

i=s+1

Zppvi

for some integer s with 1 ≤ s ≤ d. We deduce that fr = d− s, so s = f(e− r).
Since πek+roL = pkπroL, the result now follows easily. �

Lemma 3.5.2. In oL/π
ek+roL, the image of 1 has order pk+1.

Proof. This can be proved directly as pk · 1 ∈ πek · o×L 6= 0 in oL/π
ek+roL. �

Definition 3.5.3. Let m ≥ 0.

(1) Let km = b(m− 1)/ec, so that m = ekm + r with 1 ≤ r ≤ e.
(2) Define xm := qm/pkm+1.
(3) Define

y0 =
e

p− 1
− 1

q − 1
and ym =

e

p− 1
−
m−1∑
j=1

1

pkj+1
− q

pkm+1(q − 1)
.

For example, x0 = 1 and x1 = q/p. Note that if m = en+ r with 1 ≤ r ≤ e,
then

yen+r =
e

pn(p− 1)
− r

pn+1
− 1

(q − 1)pn+1
.

Theorem 3.5.4. The vertices of the Newton polygon of ∆1(Z) − 1 (using
the valuation vπ, and excluding the point (0,+∞)) are the points (xm, ym) for
m ≥ 0.

Proof. Via the Schneider-Teitelbaum isomorphism κ : B(Cp)
∼=−→ X(Cp), the

zeroes of the power series

∆1(Z)− 1 =

∞∑
m=1

Pm(Ω)Zm ∈ oCp [[Z]]

are the z ∈ mCp such that κ(z) is an L-analytic character satisfying κ(z)(1) = 1.

These characters are torsion3, and correspond to some of the torsion points of
the Lubin-Tate group G. There are precisely qm points in G[πm], and the
common valuation of each point z ∈ G[πm]\G[πm−1] is vπ(z) = 1/qm−1(q−1).

If we write m = ek + r as above, then in view of Lemma 3.5.1 and Lemma
3.5.2 there are xm = qm/pkm+1 elements z ∈ G[πm] such that κ(z)(1) = 1.

Let ((x′m, y
′
m))∞m=0 be the vertices of the Newton polygon, so that the first

vertex is (x′0, y
′
0) = (1, vπ(Ω)) = (x0, y0). The slope of the line segment between

(x′m−1, y
′
m−1) and (x′m, y

′
m) is minus the common valuation of the elements of

3Suppose that λ : oL → C×p is a locally L-analytic character such that λ(1) = 1. Then
λ(a) = 1 for all a ∈ Zp. Hence λ′(1) = 0. Since λ is locally L-analytic, λ′ is L-linear, and

hence λ′ = 0 so that λ is locally constant, and hence torsion.
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z ∈ G[πm]\G[πm−1] satisfying κ(z) = 1, that is 1/qm−1(q−1). Hence x′m = xm
for all m ≥ 0. Using the definitions of xm and ym, we have the formula

ym = y0 −
x1 − x0

q1−1(q − 1)
− · · · − xm − xm−1

qm−1(q − 1)

which implies that y′m = ym for all m ≥ 0. �

Remark 3.5.5. Note that ym → 0 as m → +∞. This is consistent with the
fact that ‖∆1(Z)− 1‖ = 1.

Corollary 3.5.6. We have the following formulas for vπ(Pk(Ω)).

(1) For all m ≥ 0, we have vπ(Pxm(Ω)) = ym.
(2) For all n ≥ 0, we have vπ(Ppn(d−1)(Ω)) = 1/pn · vπ(Ω).

Proof. Item (1) follows immediately from Theorem 3.5.4. Item (2) follows from
item (1) with m = en. Indeed, xen = qen/pn = pn(d−1) and

yen =
e

p− 1
− e
p
− e

p2
−· · ·− e

pn−1
− e− 1

pn
− q

pn(q − 1)
=

1

pn
·
(

e

p− 1
− 1

q − 1

)
.

�

Remark 3.5.7. If L/Qp is unramified, then item (2) of Corollary 3.5.6 gives all
the valuations of the Pk(Ω) that can be computed using the Newton polygon.
For n ≥ 0, we get

valp(Ppn(d−1)(Ω)) = 1/pn · vπ(Ω) =
1

pn−1(p− 1)
· q/p− 1

q − 1
.

Corollary 3.5.8. Suppose that L = Qp2 and π = p. Then we have

valp(Ppk(Ω)) =
1

pk−1(q − 1)
for all k ≥ 1,

and if k ≥ 1 and pk−1 ≤ m ≤ pk, then

valp(Pm(Ω)) ≥ 1

pk−1(q − 1)
+

pk −m
qk−1(q − 1)

=
1

pk−2(q − 1)
− m− pk−1

qk−1(q − 1)
.

3.6. Verifying Conjecture 3.3.11 in a special case.

Definition 3.6.1. Fix m ≥ 1.

(1) Let Gm = G[πm] be the finite flat oL-group scheme of πm-torsion points
in the Lubin-Tate formal group G.

(2) Let G′m be the Cartier dual of Gm.
(3) Let U(m) := O(G′m) = HomoL(oL[[Z]]/〈ϕm(Z)〉, oL).
(4) Let G′ := colimG′m be the dual p-divisible group to the p-divisible

group defined by the formal group G.

Recall that by Cartier duality — see [32, p. 177] — the period Ω ∈ Cp
corresponds to a choice of generator t′ ∈ TpG′ = TπG′ as an oL-module. We
recall how this correspondence works. First, the element

∆1 =

∞∑
n=0

Pn(Ω)Zn ∈ oCp [[Z]]
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gives a compatible system of group-like elements (∆1(m))∞m=1 ∈
∞∏
m=1
O(Gm),

where ∆1(m) is the image of ∆1 inO(Gm×oLoCp) = oCp [[Z]]/〈ϕm(Z)〉 under the
natural surjective homomorphism of oCp -algebras oCp [[Z]] � O(Gm ×oL oCp).
SinceO(Gm×oLoCp) can be identified with HomoCp

(O(G′m×oLoCp), oCp), ∆1(m)

can be viewed as an oCp -linear map U(m)⊗oLoCp → oCp which is in fact an oCp -
algebra homomorphism because ∆1(m) is group-like. This map is determined
by its restriction to U(m); this restriction is an oL-algebra homomorphism
t′m : U(m)→ oCp and is therefore an element of G′m(Cp).

Finally, the multiplication-by-π-maps G′m+1(Cp) → G′m(Cp) in the inverse
system defining the Tate module TπG′ are induced by the inclusions of oL-
algebras U(m) ↪→ U(m + 1), so t′m+1|U(m) = t′m for all m ≥ 1, and the

generator t′ ∈ TπG′ is given by t′ = (t′m)∞m=1 ∈
∞∏
m=1
G′m(Cp).

Lemma 3.6.2. Let m ≥ 1. The restriction of K1 to U(m) ⊂ Û is equal to t′m.

Proof. Recall that we have identified Û with oL[[Z]]∗cts using Lemma 3.2.8(3).

Let u ∈ U(m) and let ũ ∈ Û be the corresponding oL-linear map oL[[Z]]→ oL
which kills 〈ϕm(Z)〉. Then

t′m(u) = ∆1(m)(u) = 〈ũ,∆1〉 = K(ũ)(1) = K1(ũ)

and the result follows. �

For each m ≥ 1, let Lm be the finite Galois extension of L contained in
L∞ = Cker τ

p defined by Gal(L∞/Lm) = τ−1(1 + πmoL).

Lemma 3.6.3. Let m ≥ 1. Then t′m(U(m)) ⊆ oLm .

Proof. Let σ ∈ Gal(L∞/Lm) so that τ(σ) ∈ 1 + πmoL. Then by definition of
the character τ , σ acts trivially on G′m(Cp). In other words, σ(t′m(u)) = t′m(u)

for all u ∈ U(m) and hence t′m(U(m)) ⊆ L
Gal(L∞/Lm)
∞ = Lm. But U(m) is a

finitely generated oL-module so t′m(U(m)) is integral over oL and is therefore
contained in oLm . �

Recall from Definition 3.2.1(2) that U = U(G) is the covariant bialgebra of
the formal group G.

Definition 3.6.4. For each m ≥ 1, let U(m)k := im(U(m)→ Û/πÛ).

We will identify Uk := U/πU with Û/πÛ via the natural map U/πU →
Û/πÛ and we regard U(m)k as being naturally embedded into U(m+ 1)k.

Proposition 3.6.5. Suppose that t′m(U(m)) = oLm for all m ≥ 1. Then

K1 : Û → o∞ is surjective.

Proof. Consider oτ := L ∩ o∞. Since oτ is π-adically dense in o∞, to prove

that K1(Û) contains o∞, it is enough to prove that it contains oτ . Fix m ≥ 1.

By Lemma 3.6.2, the restriction of K1 : Û → oCp to U(m) is equal to t′m.

Münster Journal of Mathematics Vol. — (—), 999–999



1036 Laurent Berger and Konstantin Ardakov

Hence by assumption oLm = t′m(U(m)) = K1(U(m)), so oτ =
⋃
m≥1

oLm is also

contained in K1(Û). �

Lemma 3.6.6. For each m ≥ 1, we have U(m) + πÛ =
qm−1∑
r=0

oLur + πÛ .

Proof. Let u ∈ U(m) and let ũ : oL[[Z]] → oL be the corresponding oL-linear

form which vanishes on 〈ϕm(Z)〉. Consider v := ũ −
qm−1∑
r=0

ũ(Zr)ur ∈ Û . For

each r < qm, ur sends 〈ϕm(Z)〉 into πoL because ϕm(Z) ≡ Zqm mod πoL[[Z]].
Since ũ kills 〈ϕm(Z)〉, we see that v also sends 〈ϕm(Z)〉 into πoL. By con-
struction, v is zero on 1, Z, · · · , Zqm−1. Since

(7) oL1⊕ oLZ ⊕ · · · ⊕ oLZq
m−1 ⊕ 〈ϕm(Z)〉 = oL[[Z]],

we conclude that v (oL[[Z]]) ⊆ πoL and hence v = πw for some oL-linear form
w : oL[[Z]]→ oL. Since v : oL[[Z]]→ oL is continuous for the weak topology on

oL[[Z]], so is w. Hence w ∈ Û and hence ũ ∈
qm−1∑
r=0

oLur + πÛ . This shows that

⊆ holds.
For the reverse containment, it is enough to show that ur ∈ U(m) + πÛ for

each r = 0, . . . , qm − 1. Using (7), define an oL-linear form wr : oL[[Z]] → oL
which is zero on 〈ϕm(Z)〉 and which sends Zi to δi,r for each 0 ≤ i < qm. Since
ur sends 〈ϕm(Z)〉 into πoL, the same is true of ur −wr. Since ur −wr is zero
on 1, Z, · · · , Zqm−1 by construction, we see that ur−wr sends all of oL[[Z]] into
πoL. Hence ur − wr = πvr for some oL-linear form vr : oL[[Z]] → oL. Since
ur −wr is continuous for the weak topology on oL[[Z]], so is vr. Because wr is

zero on 〈ϕm(Z)〉, it lies in U(m) and hence ur = wr + πvr ∈ U(m) + πÛ . �

Proposition 3.6.7. If L = Qp2 , then t′m(U(m)) = oLm for all m ≥ 1.

Proof. Fix m ≥ 1. By Lemma 3.6.6, for each 0 ≤ r < qm we can find wr ∈
U(m) such that wr − ur ∈ πÛ . Set r := p2m−1 = pqm−1 < qm. Note that
K1(ur) = K(ur)(1) = 〈ur,∆1〉 = Pr(Ω). Since L = Qp2 , Corollary 3.5.8
applied with k = 2m− 1 tells us that

valp(K1(ur)) = valp(Pr(Ω)) =
1

p2m−2(q − 1)
=

1

qm−1(q − 1)
= [Lm : L]−1 < 1.

Now πoL = poL since L = Qp2 , so K1(ur − wr) ∈ K1(πÛ) ⊆ poCp since K1

takes values in oCp . Hence valp(K1(ur) − K1(wr)) ≥ 1 and valp(K1(wr)) =

valp(K1(ur)) = [Lm : L]−1. Therefore K1(wr) is a uniformiser in Lm and the
result follows. �

Now we start to explore the injectivity of K : Û → C.

Lemma 3.6.8. For each m ≥ 1, we have U(m) ∩ πÛ = πU(m).
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Proof. Let g = πh ∈ U(m) for some h ∈ Û . Then π〈h, F 〉 = 〈πh, F 〉 = 0 for
any F ∈ 〈ϕm(Z)〉. Hence 〈h, F 〉 = 0 for all such F as well, so h ∈ U(m) and
g ∈ πU(m). �

Corollary 3.6.9. The map O(G′m ×oL k) = U(m)/πU(m) → U(m)k is an
isomorphism.

Since G′ forms a p-divisible group, we have a closed immersion G′m → G′m+1

for each m ≥ 1. The comorphism of this map O(G′m+1) → O(G′m) is the dual
of the oL-Hopf algebra map O(Gm)→ O(Gm+1) induced by ϕ : O(G)→ O(G).
Using Corollary 3.6.9, we obtain connecting maps ϕ∗k : U(m+ 1)k → U(m)k.

Lemma 3.6.10. The comorphisms ϕ∗k : U(m + 1)k → U(m)k are surjective
for all m ≥ 1.

Proof. By Corollary 3.6.9, U(m)k is isomorphic as a k-vector space to

O(G′m ×oL k) = Homk(O(Gm ×oL k), k).

Since ϕ(Z) ≡ Zq mod πoL[[Z]], we have O(Gm ×oL k) = k[[Z]]/〈Zqm〉 and the
k-algebra homomorphism ϕk : k[[Z]]/〈Zqm〉 → k[[Z]]/〈Zq(m+1)〉 which sends Z
to Zq is injective. Hence the dual map

ϕ∗k : Homk(k[[Z]]/〈Zq(m+1)〉, k)→ Homk(k[[Z]]/〈Zqm〉, k)

is surjective and the result follows. �

Next we consider an ideal I of Uk and we set I(m) := I ∩ U(m) for all
m ≥ 1. We assume that I is ϕ∗-stable, in the sense that ϕ∗(I) ⊆ I.

Proposition 3.6.11. Suppose that I is a ϕ∗-stable ideal of Uk such that

lim←−
U(m)k
I(m) is finite dimensional over k. Then Uk/I = colim U(m)

I(m) is also fi-

nite dimensional over k.

Proof. Let m ≥ 1 and consider the short exact sequence

0→ I(m)→ U(m)k → U(m)k/I(m)→ 0.

Since I is ϕ∗-stable by assumption, we get a short exact sequence of towers of
finite-dimensional k-vector spaces. Passing to the inverse limit therefore gives
an exact sequence

0→ I(∞) := lim←− I(m)→ lim←−U(m)k → lim←−
U(m)k
I(m)

→ 0.

By assumption, the term on the right is a finite dimensional k-vector space.
We see from Lemma 3.6.10 that the connecting maps U(m+ 1)k/I(m+ 1)→
U(m)k/I(m) induced by ϕ∗ are surjective. Therefore, for large m, all of these
maps are necessarily isomorphisms, and hence there exists m0 ≥ 1 such that

dim
U(m+ 1)k
I(m+ 1)

= dim
U(m)k
I(m)

for all m ≥ m0.
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Now the definition of I(m) shows that the natural connecting maps in the
opposite direction U(m)k/I(m) → U(m + 1)k/I(m + 1) is injective for any
m ≥ 1. So they are isomorphisms whenever m ≥ m0. The result follows. �

Proposition 3.6.12. Let J = kerK and let I := (J + πÛ)/πÛ be its image
in Uk. Then I is a ϕ∗-stable ideal in Uk such that dimUk/I =∞.

Proof. Since K is an oL-algebra homomorphism by Lemma 3.3.5, J is an ideal

in Û . Since Kϕ∗ = ϕCK by Lemma 3.3.6, this ideal is in fact ϕ∗-stable. Hence
its image I in Uk is also ϕ∗-stable.

Suppose that h ∈ Û and r ≥ 1 are such that πrh ∈ J . Then K(πrh) = 0

in C, so K(h) = 0 as well. So J ∩ πrÛ = πrJ for all r ≥ 1. Now consider the
short exact sequence

0→ J → Û → K(U)→ 0.

Equip both Û and K(U) with the π-adic filtrations. Then the above shows that

the subspace filtration on J induced by the π-adic filtration on Û coincides
with the π-adic filtration on J . Therefore we get a short exact sequence of
gr oL-modules

0→ gr J → gr Û → grK(U)→ 0.

So, if dimUk/I < ∞, then gr Û/ gr J ∼= (Uk/I)[grπ] is a finitely generated
module over gr oL, so grK(U) is a finitely generated gr oL-module. The π-
adic filtration on C is separated, hence the π-adic filtration on K(U) is also
separated. Therefore K(U) is a finitely generated oL-module by [22, Chap-
ter I, Theorem 5.7]. Hence dimLK(U [1/π]) < ∞. But this contradicts [28,
Theorem 4.7]: the space of locally L-analytic Gal-continuous functions is not
finite dimensional over L since it contains the subspace of locally constant
Gal-continuous functions, which is infinite dimensional over L. �

Corollary 3.6.13. If d := [L : Qp] = 2, then K : Û → C is injective.

Proof. By Proposition 3.6.12, I = (kerK + πÛ)/πÛ is a ϕ∗-stable ideal in
Uk of infinite codimension in Uk. Hence I(∞) := lim←−(I ∩ U(m)k) is an ideal

of infinite codimension in lim←−U(m)k by Proposition 3.6.11. By [18, Example

2.5.3], the Dieudonné module M(Gk) associated with the Lubin-Tate formal
group Gk = G ×oL k over the perfect field k has basis {γ, V γ, · · · , V d−1γ} over
the ring of p-typical Witt vectors W(k) for a certain element γ ∈M(Gk), and
satisfies V d = p. Hence the Verschiebung operator V on M(Gk) is topologically
nilpotent. Therefore the Cartier dual G′k is connected. Hence lim←−U(m)k ∼=
O(G′ ×oL k) is isomorphic to k[[X1, · · · , Xd−1]] by [32, Propositions 1 and 3].
Since d = 2, we conclude that I(∞) = 0. Hence I(m) = 0 for all m ≥ 1 and
hence I = 0. So kerK = 0 as well. �

Theorem 3.6.14. Suppose that L = Qp2 . Then

K∗1 : o∗∞ → oL[[Z]]ψq=0

is an oL-linear bijection.
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Proof. Since d = 2, we know that τ is surjective by Lemma 2.6.4. Then

K : Û → C is injective by Corollary 3.6.13 and K1 : Û → o∞ is surjective by
Proposition 3.6.5 and Proposition 3.6.7. Now apply Proposition 3.3.10. �

We can now prove Theorem 1.6.1 from the Introduction. In fact, we prove
the following more general version, from which Theorem 1.6.1 follows as a
special case by setting S = oK .

Theorem 3.6.15. Let L = Qp2 and let S be a π-adically complete oL-algebra.

(1) The map K∗ : HomoL(C0
Gal(oL, oCp), S)→ S[[Z]] is injective.

(2) Its image is equal to S[[Z]]ψq-int.

Proof. Since d = 2, τ is surjective by Lemma 2.6.4. By Theorem 3.6.14, the
map K∗1 : o∗∞ → oL[[Z]]ψq=0 is an isomorphism. Now apply Theorem 3.4.9. �

4. Integer-valued polynomials

4.1. The algebraic dual of O◦(XK). Recall from §2.1 that our coefficient
field K is a complete field extension of L contained in Cp. Pick a basis
{v1, · · · , vd} for oL as a Zp-module with v1 = 1. We view oL as a p-valued
group with p-valuation ω given by

ω

(
d∑
i=1

λivi

)
= 1 + min

1≤i≤d
valp(λi).

Let r be a real number in the range 1/p ≤ r < 1. Recall from [29, §4] that
DQp−an(oL,K) carries a norm || · ||r given by

(8) ||
∑
α∈Nd

dαbα||r = sup
α∈Nd

|dα|r|α|.

where bi := δvi − 1 ∈ DQp−an(oL,K) for i = 1, · · · , d, bα = bα1
1 · · · b

αd
d ∈

DQp−an(oL,K) and |α| = τα = α1 + · · ·+ αd for all α ∈ Nd.

Definition 4.1.1. Let 1/p ≤ r < 1.

(1) Let D
Qp−an
r (oL,K) denote the completion of DQp−an(oL,K) with re-

spect to || · ||r.
(2) Let X0(r)K := SpD

Qp−an
r (oL,K).

(3) Let X(r)K := XK ∩ X0(r)K = SpDL−an
r (oL,K), where DL−an

r (oL,K)

is the factor algebra of D
Qp−an
r (oL,K) by the ideal generated by

u2 − v2u1, u3 − v3u1, · · · , ud − vdu1

where ui := log(1 + bi) ∈ DQp−an(oL,K).

As r approaches 1 from below, the K-affinoid varieties X(r)K form an in-
creasing family of K-affinoid subvarieties of XK : whenever 1/p ≤ r < r′ < 1
we have

(9) 1 ∈ X(1/p)K ⊂ · · · ⊂ X(r)K ⊂ X(r′)K ⊂ · · · ⊂ XK =
⋃

1/p≤r<1

X(r)K .
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Here 1 ∈ XK is the trivial character : the ideal generated by b1, · · · , bd.

Lemma 4.1.2. The completed local ring ÔXK ,1 of X at 1 is isomorphic to a
power series ring in one variable b := b1 over K:

ÔX,1
∼= K[[b]].

Proof. We have O(X0(1/p)K) = K〈b1/p, · · · , bd/p〉 = K〈u1/p, · · · , ud/p〉.
Quotienting out by the ideal generated by the elements ui−viu1 shows that

O(X(1/p)K) = K〈u1/p〉 = K〈b/p〉. So X(1/p)K is isomorphic to the closed
disc of radius |p| = 1/p with local coordinate b; it is well known that the
completed local ring at b = 0 of such a disc is K[[b]]. The result follows since

1 ∈ X(1/p)K implies that ÔXK ,1 = ̂OX(1/p)K ,1 = K[[b]]. �

Applying the functor O◦ to the increasing chain of rigid K-varieties (9) and
using Lemma 4.1.2 yields a decreasing chain of oK-algebras

(10) K[[b]] ⊃ O◦(X(1/p)K) ⊃ · · · ⊃ O◦(X(r)K)

⊃ O◦(X(r′)K) ⊃ · · · ⊃ O◦(XK) ⊇ oK [[oL]].

Definition 4.1.3. LetA be an oK-subalgebra ofK[[b]] and letm ≥ 0. Them-th
infinitesimal neighbourhood of 1 in A is the image Am of A in K[[b]]/bm+1K[[b]]:

Am :=
A+ bm+1K[[b]]

bm+1K[[b]]
⊂ K[[b]]

bm+1K[[b]]
.

Remark 4.1.4. This construction respects inclusions and is compatible with
variation in m. More precisely, whenever A ⊆ B are two oK-subalgebras of
K[[b]], for every n ≥ m there is a commutative diagram of oK-algebras

An //

��

Bn

��
Am // Bm

with injective horizontal arrows and surjective vertical arrows.

Definition 4.1.5. Let A be an oK-subalgebra of K[[b]] and for each m ≥ 0,
let A∗m := HomoK (Am, oK). The algebraic dual of A is

A∗∞ := colim
m≥0

A∗m.

Lemma 4.1.6. Let oK [[oL]] ⊆ A ⊆ B be two oK-subalgebras of K[[b]] and let
n ≥ m ≥ 0.

(1) In the commutative square

A∗n B∗noo

A∗m

OO

B∗moo

OO

all arrows are injective.
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(2) The map B∗∞ → A∗∞ is injective.

Proof. (1) The vertical maps A∗m → A∗n are injective because An → Am is
surjective. Let C be the cokernel of the map An → Bn. Since An contains
oK [[oL]]n which is an oK-lattice in K[[b]]n, we see that C is a torsion oK-module.
The dual functor (−)∗ is left exact, so we have the exact sequence 0→ C∗ →
B∗n → A∗n. Since C is torsion, C∗ = 0 which shows the injectivity of the
horizontal arrows in our diagram.

(2) This follows by taking the colimit over all of the horizontal maps in part
(1) above. �

Thus we see that the connecting maps appearing in the colimit in Definition
4.1.5 are injective. Applying the contravariant algebraic dual functor (−)∗∞ to
the chain (10) and using Lemma 4.1.6(2) gives us a chain of algebraic duals

O◦(X(1/p)K)∗∞ ⊂ · · · ⊂ O◦(X(r)K)∗∞

⊂ O◦(X(r′)K)∗∞ ⊂ · · · ⊂ O◦(XK)∗∞ ⊆ oK [[oL]]∗∞.

We can now calculate the largest one of these, namely the algebraic dual of
the Iwasawa algebra oK [[oL]], but first we must introduce integer-valued poly-
nomials. Recall the following notion from [6].

Definition 4.1.7. A π-ordering for oL is a subset {α0, α1, α2, . . .} of oL such
that

(11) vπ

(
k−1∏
i=0

(αk − αi)

)
= inf
s∈o

vπ

(
k−1∏
i=0

(s− αi)

)
for all k ≥ 1.

Starting from an arbitrary element α0 ∈ oL, it is possible to construct a
π-ordering {α0, α1, . . .} of oL by induction on k, choosing at each stage αk to
minimise the expression appearing on the right hand side of (11). In particular,
π-orderings always exist, but are far from unique.

Definition 4.1.8. Let{α0, α1, . . .} be a π-ordering for oL.

(1) Define the Lagrange polynomials as follows: f0(X) := 1 and

fk(X) :=
(X − α0)(X − α1) · · · (X − αk−1)

(αk − α0)(αk − α1) · · · (αk − αk−1)
∈ L[X] for each k ≥ 1.

(2) Suppose that R is an oL-algebra which embeds into RL := R ⊗oL L.
Then we define the ring of R-valued polynomials on oL as follows:

Int(oL, R) := {g(X) ∈ RL[X] : g(oL) ⊂ R}

(3) For each m ≥ 0, let Int(oL, R)m denote the R-submodule of Int(oL, R)
consisting of all R-valued polynomials on oL of degree at most m.

The following result, closely related to de Shalit’s work on Mahler bases
[30], explains why we are interested in these Lagrange polynomials.

Lemma 4.1.9. The set {f0, f1, f2, . . .} is an R-module basis for Int(oL, R).
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Proof. It follows directly from Definition 4.1.7 that vπ(fk(s)) ≥ 0 for all s ∈ oL
and all k ≥ 0. Hence fk(oL) ⊂ oL ⊂ R for all k ≥ 0 which implies that

(12) Rf0 +Rf1 +Rf2 + · · ·+Rfn + · · · ⊆ Int(oL, R).

If g ∈ RL[X] has degree n and leading coefficient λ, then g−λ(αn−α0) · · · (αn−
αn−1)fn has degree strictly less than n. This implies that {f0, f1, f2, . . .}
generates RL[X] as an RL-module. Now let g ∈ Int(oL, R) and write g =
λ0f0 + · · · + λnfn for some λ0, · · · , λn ∈ RL as above. Setting X = α0

shows that λ0 = g(α0) ∈ R since g ∈ Int(oL, R). Assume inductively that
λ0, . . . , λt−1 ∈ R for some 1 ≤ t ≤ n. Setting X = αt shows that

λt = g(αt)− λ0f0(αt)− λ1f1(αt)− · · · − λt−1ft−1(αt)

and this lies in R because g(αt) ∈ R and fi(αt) ∈ R for all i. This completes the
induction and shows that we have equality in (12). Taking g = 0 in the above
argument also shows that the sum on the left hand side of (12) is direct. �

Using Lemma 4.1.9, we obtain the following

Corollary 4.1.10.

(1) The multiplication map

Int(oL, oL)⊗oL oK → Int(oL, oK)

is an isomorphism, which sends Int(oL, oL)m⊗oL oK onto Int(oL, oK)m
for any m ≥ 0.

(2) The Lagrange polynomials {f0(Y ), · · · , fm(Y )} associated with a choice
of π-ordering for oL form an oK-module basis for Int(oL, oK)m.

Proposition 4.1.11. The evaluation map ev : Int(oL, oK)m −→ oK [[oL]]∗m
defined by

ev(f(Y ))(λ) := λ(f(Y ))

for all f(Y ) ∈ Int(oL, oK)m, λ ∈ oK [[oL]] is an oK-module isomorphism.

Proof. This is essentially a complicated-looking tautology, but we try to give
the details.

Note that oK [[oL]]m is an oK-lattice in K[[b]]m. We can therefore identify
oK [[oL]]∗m with an oK-submodule of V := HomK(K[[b]]m,K), a K-vector space
of dimension m + 1. The linear functionals ev(1), ev(Y ), · · · , ev(Y m) are lin-
early independent in V because if

∑m
i=0 ci ev(Y i) = 0 then ev(

∑m
i=0 ciY

i)(δa) =∑m
i=0 cia

i = 0 for all a ∈ oL and this forces c0 = · · · = cm = 0. It follows that
ev : K[Y ]m → V is injective and is therefore an isomorphism by the rank-
nullity theorem.

Hence ev : Int(oL, oK)m → oK [[oL]]∗m is injective. However if g ∈ oK [[oL]]∗m
then by the above we can find some f(Y ) ∈ K[Y ]m such that ev(f(Y )) = g.
Since δa ∈ oK [[oL]] for all a ∈ oL, we see that f(a) = ev(f(Y ))(δa) = g(δa)
must lie in oK for all a ∈ oL. �

Corollary 4.1.12. The map ev : Int(oL, oK)→ oK [[oL]]∗∞ is an isomorphism.
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Proof. This follows immediately from Proposition 4.1.11. �

Proposition 4.1.13. Suppose that K is discretely valued. Then

O◦(XK)∗∞ = colim
r<1

O◦(X(r)K)∗∞.

Proof. Since colimits commute with colimits, it is enough to show that for
every m ≥ 0,

O◦(XK)∗m = colim
r<1

O◦(X(r)K)∗m.

Fix m ≥ 0. Then O◦(X(r)K)m form a decreasing chain of oK-submodules
of the m + 1-dimensional K-vector space K[[b]]m, and all of them contain the
oK-lattice oK [[oL]]m. Since K is discretely valued, the oK-module (K/oK)m+1

satisfies the descending chain condition. Hence there exists r0 < 1 such that

(13) O◦(X(r)K)m = O◦(X(r0)K)m whenever r0 ≤ r < 1.

Following an argument of Schmidt [26, proof of Proposition 4.9], we will now
show that

O◦(XK)m = O◦(X(r0)K)m.

The forward inclusion is clear, so fix some ξ ∈ O◦(X(r0)K)m, choose a sequence
of real numbers r0 < r1 < r2 < · · · approaching 1 and consider the K-Banach
space

Aj := O(X(rj)K).

Let ϕj : A◦j → K[[b]]m be the obvious oK-linear map. Using (13) we see that
the convex subset

ϕ−1
j (ξ) ⊂ Aj

is non-empty. It was recorded in the proof of [29, Lemma 6.1] that the re-
striction maps Aj+1 → Aj are compact. We may therefore argue as in [16,
Proposition V.3.2] that

∞⋂
j=0

ϕ−1
j (ξ) ⊆ O◦(XK)

is non-empty. Then any element λ in this intersection satisfies λm = ξ, so ξ ∈
O◦(XK)m as required. Hence O◦(XK)∗m = O◦(X(r)K)∗m whenever r0 ≤ r < 1,
and the result follows. �

4.2. The matrix coefficients ρi,j(Y ). Let BCp be the rigid analytic open
unit disc of radius 1 defined over Cp, with global coordinate function Z. There
is a twisted GL = Gal(Cp/L)-action on O(BCp) given by F 7→ Fσ ◦ [τ(σ−1)],
which induces an L-algebra isomorphism

µ : O(XL)
∼=−→ O(BCp)GL,∗,

see [28, Corollary 3.8]. Inspecting the proof of this result, we see that it extends
naturally to give a description of O(XK) for more general closed coefficient
fields L ⊆ K ⊆ Cp as well:
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Lemma 4.2.1. There is a K-algebra isomorphism

µK : O(XK)
∼=−→ O(BCp)GK ,∗.

Since O◦(BCp) = oCp [[Z]], we deduce the following

Corollary 4.2.2. There is an isomorphism of oK-algebras

µK : O◦(XK)
∼=−→ oCp [[Z]]GK ,∗.

Until the end of §4.2, we assume that Ω is transcendental over K.

Definition 4.2.3. We call an oK-subalgebra R of K[Ω] ∩ oCp admissible if
Pn(Ω) ∈ R for all n ≥ 0, and if R is stable under the natural GL-action on
K[Ω] ∩ oCp (in particular, K itself is then stable under GL).

Example 4.2.4. The algebra K[Ω]∩oCp is itself an admissible oK-subalgebra
of K[Ω].

Proof. This follows from Corollary 4.2.2 together with [28, Lemma 4.2(5)]. �

Definition 4.2.5. Let R ⊂ K[Ω] be an admissible oK-subalgebra.

(1) Let K[Ω]n := {f(Ω) ∈ K[Ω] : deg(f) ≤ n} for each n ≥ 0.
(2) Let Rn := R ∩K[Ω]n for each n ≥ 0.
(3) {bn(Ω) : n ≥ 0} ⊂ R is a regular basis if

b0(Ω) = 1, and Rn = Rn−1 ⊕ oKbn(Ω) for all n ≥ 1.

Lemma 4.2.6. Suppose that K is discretely valued. Then a regular basis exists
for every admissible oK-subalgebra R of K[Ω] ∩ oCp .

Proof. Since Ω is assumed to be transcendental over K, the K-vector space
K[Ω]n has dimension n + 1. The restriction of the norm | · | on Cp to K[Ω]n
turns it into a normed vector space over K and by Definition 4.2.3(1), Rn is
contained in the unit ball with respect to this norm. Since any two norms on a
finite dimensional K-vector space are equivalent — see [27, Proposition 4.13]
— it follows that Rn ⊆ π−moK [Ω]n for sufficiently large m.

Since K is discretely valued, its valuation ring oK is Noetherian and this
forces Rn to be a free oK-module of rank n+1. Because the Rn’s form a nested
chain, we can now construct the desired oK-module basis for R by induction
on n. �

Example 4.2.7. Because Ω is assumed to be transcendental over K, Lemma

3.2.2(1) together with Lemma 3.2.3 implies that
∞∑
n=0

oKPn(Ω) is isomorphic

to U(G) ⊗oL oK as an oK-algebra. Abusing notation, we will write U :=
∞∑
n=0

oKPn(Ω) until the end of §4. Although this conflicts with Definition

3.2.1(2), we hope that no confusion will be caused by this abuse of notation.
Then U is an admissible subalgebra of K[Ω], and {Pn(Ω) : n ≥ 0} is a regular
basis for R: since degPj(Y ) = j, an element f(Ω) of Un is a K-linear combi-
nation of P0(Ω), · · · , Pn(Ω) lying in U , but {Pm(Ω) : m ≥ 0} is an oL-module
basis for U so all coefficients of f(Ω) must in fact lie in oL.
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Until the end of §4.2, we assume that

• K is a discretely valued intermediate subfield L ⊆ K ⊆ Cp,
• Ω is transcendental over K,
• R ⊆ K[Ω] ∩ oCp is an admissible oK-subalgebra, and
• {bn(Ω) : n ≥ 0} is a regular basis for R.

Lemma 4.2.8. Take j ≥ 0.

(1) There are unique ρ0,j(Y ), ρ1,j(Y ), · · · , ρj,j(Y ) ∈ K[Y ] such that

Pj(Y Ω) =

j∑
i=0

ρi,j(Y )bi(Ω).

(2) deg ρi,j(Y ) ≤ j whenever 0 ≤ i ≤ j.
(3) deg ρj,j(Y ) = j.
(4) ρi,j(a) ∈ oK whenever a ∈ oL and 0 ≤ i ≤ j.

Proof. (1) Ω is transcendental over K, and {bi(Ω) : i ≥ 0} is a K-vector space
basis for K[Ω] with deg bi(Ω) = i for each i. Hence it is also a K[Y ]-module
basis for the two-variable polynomial algebra K[Ω, Y ], so we can find unique
ρi,j(Y ) ∈ K[Y ] such that

Pj(Y Ω) =
∑
i≥0

ρi,j(Y )bi(Ω)

where ρi,j(Y ) = 0 for sufficiently large i. Now Pj(s) is a polynomial in s of
degree j by [28, Lemma 4.2(3)], so Ωj is the highest degree monomial in Ω
appearing in Pj(Y Ω). Since deg bi(Ω) = i, this means ρi,j(Y ) = 0 for i > j.

(2) Since the highest degree monomial in Y appearing in Pj(Y Ω) is Y j , this
means that deg ρi,j(Y ) ≤ j for each i ≤ j.

(3) The monomial Y jΩj appears in Pj(Y Ω) with a non-zero coefficient. This
monomial does not appear in ρi,j(Y )bi(Ω) for any i < j because deg bi(Ω) = i
for all i. So it must appear in ρj,j(Y )bj(Ω), and because of (2), this can only
happen if deg ρj,j(Y ) = j.

(4) Let a ∈ oL. We know that Pj(aΩ) ∈ oCp by [28, Lemma 4.2(5)]; in fact,
Pj(aΩ) is an oL-linear combination of the Pi(Ω) for 0 ≤ i ≤ j by Corollary
3.2.6, so Pj(aΩ) ∈ R. Setting Y = a in (1) shows that ρi,j(a) ∈ oK , since
{bi(Ω) : i ≥ 0} is a regular basis for R. �

Theorem 4.2.9. For each λ ∈ DL−an(oL,K) we have

µK(λ) =

∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj .
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In the case when λ = δa for some a ∈ oL, Lemma 4.2.8 implies that

µ(δa) =

∞∑
j=0

Pj(aΩ)Zj =

∞∑
j=0

(
j∑
i=0

ρi,j(a)bi(Ω)

)
Zj

=

∞∑
j=0

j∑
k=0

δa(ρk,j(Y ))bk(Ω)Zj

which explains where the formula comes from. We will now give a rigorous
argument to show that the formula is valid for any λ ∈ DL−an(oL,K).

Lemma 4.2.10. Let t := logLT (Z) be the Lubin-Tate logarithm. Then

µK(λ) =

∞∑
k=0

λ(Y k/k!)Ωktk for all λ ∈ DL−an(oL,K).

Proof. We may identify Cp[[t]] with Cp[[Z]], and we write µK(λ) =
∞∑
m=0

ci,mt
m

for some ci,m ∈ Cp. Then applying [28, Lemma 4.6(8)], we have

λ(Y k/k!) = {µK(λ), Y k/k!} =
(Ω−1∂t)

k

k!
(µK(λ))(0)

= Ω−kci,k for all k ≥ 0. �

Proposition 4.2.11. Let λ ∈ HomL(L[Y ],K). Then in Cp[[t]] = Cp[[Z]],

∞∑
k=0

λ(Y k/k!)Ωktk =

∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj .

Proof. For each k ≥ 0, write tk =
∞∑
j=k

d
(k)
j Zj ∈ L[[Z]]. Substituting this into

Lemma 4.2.10 gives

(14)

∞∑
k=0

λ(Y k/k!)Ωktk =

∞∑
k=0

λ(Y k/k!)Ωk
∞∑
j=k

d
(k)
j Zj

=

∞∑
j=0

(
j∑

k=0

1

k!
d

(k)
j Ωkλ(Y k)

)
Zj .

On the other hand, the identity
∞∑
j=0

Pj(Y Ω)Zj = exp(Y Ωt) =

∞∑
k=0

1

k!
tkΩkY k =

∞∑
k=0

Y kΩk

k!

∞∑
j=k

d
(k)
j Zj

together with Lemma 4.2.8 shows that for all j ≥ 0 we have

(15)

j∑
k=0

1

k!
d

(k)
j ΩkY k = Pj(ΩY ) =

j∑
k=0

ρk,j(Y )bk(Ω).
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Now, the L-linear form λ : L[Y ]→ K extends to a K[Ω]-linear form K[Ω, Y ]→
K[Ω]. Applying this extension to (15) gives

j∑
k=0

1

k!
d

(k)
j Ωkλ(Y k) =

j∑
k=0

λ(ρk,j(Y ))bk(Ω).

Substituting this equation into (14) gives the result. �

Proof of Theorem 4.2.9. Follows immediately from Lemma 4.2.10 and Propo-
sition 4.2.11. �

Definition 4.2.12. Let Ř be the oK-linear span of {ρk,j(Y ) : j ≥ k ≥ 0} in
the space I := Int(oL, oK) of oK-valued polynomials on oL.

We will see shortly that Ř does not depend on the choice of regular basis
for R.

Corollary 4.2.13. Let λ ∈ DL−an(oL,K). Then µK(λ) ∈ R[[Z]] if and only
if λ(Ř) ⊆ oK .

Proof. Theorem 4.2.9 tells us that µK(λ) belongs to R[[Z]] if and only if
j∑

k=0

λ(ρk,j(Y ))bk(Ω) ∈ R for all j ≥ 0. Since {bk(Ω) : k ≥ 0} is a regular

basis, this is equivalent to λ(ρk,j(Y )) ∈ oK for all j ≥ k ≥ 0. �

Proposition 4.2.14. Let λ ∈ HomK(K[Y ],K) be such that λ(Ř) ⊆ oK . Then

there exists λ̃ ∈ µ−1
K (R[[Z]]) ⊆ O◦(XK) such that λ̃|K[Y ] = λ.

Proof. The twisted GL-action on Cp[[Z]] preserves R[[Z]] since we assumed that
R ⊆ K[Ω] ∩ oCp is GL-stable in Definition 4.2.3. Therefore R[[Z]]GL,∗ makes
sense.

Define Fλ :=
∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj ∈ Cp[[Z]]. Then Fλ ∈ K[[Ωt]] =

Cp[[Z]]GK ,∗ by Proposition 4.2.11 and Fλ ∈ R[[Z]] because λ(Ř) ⊆ oK . Hence

Fλ ∈ R[[Z]]GK ,∗ ⊆ oCp [[Z]]GK ,∗, so Fλ = µK(λ̃) for some λ̃ ∈ O◦(XK) by

Corollary 4.2.2. In particular, λ̃ ∈ µ−1
K (R[[Z]]).

Next, applying [28, Lemma 4.6(8)] we see that for all m ≥ 0,

λ̃(Y m/m!) = {µK(λ̃), Y m/m!} = {Fλ, Y m/m!}

=

{ ∞∑
k=0

λ(Y k/k!)Ωktk, Y m/m!

}
= λ(Y m/m!).

Since the Y m/m! span K[Y ] as a K-vector space, we have λ̃|K[Y ] = λ. �

Recall the isomorphism ev : Int(oL, oK)→ oK [[oL]]∗∞ from Corollary 4.1.12.

Theorem 4.2.15. We have ev(Ř) = µ−1
K (R[[Z]])∗∞.
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Proof. The oK-module Ř contains the oK-submodule of K[Y ] generated by
{ρj,j(Y ) : j ≥ 0} and deg ρj,j(Y ) = j for each j ≥ 0 by Lemma 4.2.8(3). Hence

Ř spans K[Y ] as a K-vector space. On the other hand, Řn := Ř ∩ K[Y ]≤n
is contained in Int(oL, oK)n by Lemma 4.2.8(4), which is a finitely generated
oK-module by Remark 4.1.10(2). Since K is discretely valued, Řn is a finitely
generated oK-module for each n ≥ 0. So we can find an oK-module basis
{t0, t1, · · · , tn, · · · } for Ř such that {t0, · · · , tn} is an oK-module basis for Řn
for each n ≥ 0. It follows that the natural map Ř ⊗oK K → K[Y ] is an
isomorphism, and we may identify HomoK (Ř, oK) with {φ ∈ HomK(Ř,K) :
φ(Ř) ⊆ oK}.

Let {t∗m : m ≥ 0} ⊂ HomoK (Ř, oK) be determined by

t∗m(tn) = δm,n for all m,n ≥ 0.

Then by Proposition 4.2.14, t∗m extends to some λm ∈ µ−1
K (R[[Z]]) such that

λm|K[Y ] = t∗m. In particular, we have λm(tn) = δm,n for all m,n ≥ 0.

Now suppose that g ∈ µ−1
K (R[[Z]])∗∞ ⊆ oK [[oL]]∗∞. Then g = ev(h) for

some h ∈ Int(oL, oK)m by Proposition 4.1.11. Since h ∈ K[Y ]≤m and since
{t0, · · · , tm} is a K-vector space basis for K[Y ]m, we can write h =

∑m
n=0 cntn

for some cn ∈ K. But then

g(λn) = ev(h)(λn) = λn(h) = t∗n(h) = cn for all n ≥ 0.

Since λn ∈ µ−1
K (R[[Z]]) and g ∈ µ−1

K (R[[Z]])∗∞, we conclude that g(λn) ∈ oK
for all n ≥ 0. Hence h ∈

∑m
n=0 oKtn ⊆ Ř and g = ev(h) ∈ ev(Ř). Hence

µ−1
K (R[[Z]])∗∞ ⊆ ev(Ř).

Conversely, take λ ∈ µ−1
K (R[[Z]]). Then λ(Ř) ⊆ oK by Corollary 4.2.13 and

thus for all g ∈ Ř, ev(g)(λ) = λ(g) ∈ oK . Hence ev(Ř) ⊆ µ−1
K (R[[Z]])∗∞. �

Corollary 4.2.16. Let S ⊆ R be two admissible subalgebras of K[Ω]. Then
Ř ⊆ Š.

Proof. We have µ−1
K (S[[Z]]) ⊆ µ−1

K (R[[Z]]), so µ−1
K (R[[Z]])∗∞ ⊆ µ−1

K (S[[Z]])∗∞ by

Lemma 4.1.6(2). Hence ev(Ř) ⊆ ev(Š) by Theorem 4.2.15. Hence Ř ⊆ Š
because ev is an isomorphism by Corollary 4.1.12. �

Note that Theorem 4.2.15 implies that the oK-module Ř depends only on
the admissible subalgebra R and not the particular choice of regular basis
{bn(Ω) : n ≥ 0} for R.

Lemma 4.2.17. If λ ∈ DL−an(oL,K), then λ ∈ oK [[oL]] if and only if we have
λ(Int(oL, oK)) ⊆ oK .

Proof. Suppose that λ(Int(oL, oK)) ⊆ oK . The π-adic completion of I is nat-
urally isomorphic to the ring C0(oL, oK) of oK-valued continuous functions

on oL. Since λ(I) ⊆ oK , λ extends to an oK-linear form λ̃ : C0(oL, oK) →
oK which is automatically continuous. View λ̃ as an element of oK [[oL]] =

Dcts(oL,K). The restrictions of λ̃ and of λ ∈ DL−an(oL,K) to K[Y ] agree by
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construction. Since K[Y ] is dense in Can(oL,K), we conclude that λ lies in
oK [[oL]].

Conversely, if λ ∈ oK [[oL]] = C0(oL, oK)∗, then λ must take integer values
on Int(oL, oK) ⊂ C0(oL, oK). �

Theorem 4.2.18. Let R be an admissible subalgebra of K[Ω].
We have µ−1

K (R[[Z]]) = oK [[oL]] if and only if Ř = I.

Proof. (⇐). Suppose that Ř = I, and take λ ∈ µ−1
K (R[[Z]]). Then λ(Ř) ⊆ oK

by Corollary 4.2.13. Since Ř = I, this means that λ(I) ⊆ oK . Hence λ ∈
oK [[oL]] by Lemma 4.2.17.

(⇒). Suppose that Ř < I. Since K is discretely valued, K/oK is an injective
cogenerator of the category of oK-modules. Hence HomoK (I/Ř,K/oK) is non-
zero. So there exists an oK-linear map λ : I → K such that λ(Ř) ⊆ oK , but
λ(I) * oK . Regard λ as an element of HomK(K[Y ],K); then by Proposition

4.2.14, λ extends to some λ̃ ∈ O◦(XK) such that λ̃|K[Y ] = λ. Since λ(Ř) ⊆ oK ,

using Theorem 4.2.9 we see that µK(λ̃) ∈ R[[Z]]. However, λ̃ /∈ oK [[oL]] by

Lemma 4.2.17 because λ̃(I) * oK , so λ̃ ∈ µ−1
K (R[[Z]])\oK [[oL]]. �

We will now see what implications the above general results have for par-
ticular choices of the admissible subalgebra R. Let B = K[Ω] ∩ oCp be the

largest possible admissible subalgebra of K[Ω], and let U :=
∞∑
n=0

oKPn(Ω) be

the smallest possible one. Recall from Example 4.2.7 that {Pn(Ω) : n ≥ 0}
forms a regular basis for U .

Corollary 4.2.19.

(1) Ǔ = Int(oL, oK) if and only if µ−1
K (U [[Z]]) = oK [[oL]].

(2) oK [[oL]] = ΛK(X) if and only if B̌ = Int(oL, oK).

Proof. (1) This is an immediate consequence of Theorem 4.2.18 with R = U .
(2) Theorem 4.2.18 tells us that B̌ = I if and only if oK [[oL]] = µ−1

K (B[[Z]]).

However µ−1
K (B[[Z]]) = µ−1

K (Cp[[Z]]GL,∗ ∩ B[[Z]]) since µK(O(X)K) is fixed

by the twisted GL-action on Cp[[Z]] by Lemma 4.2.1. Hence µ−1
K (B[[Z]]) =

µ−1
K (oCp [[Z]]GL,∗) = ΛK(X) by Corollary 4.2.2, and the result follows. �

Recall the matrix coefficients σi,j(a) from Corollary 3.2.6.

Lemma 4.2.20. Let R = U and let bn := Pn for each n ≥ 0. Then

(1) ρij(Y ) = σi,j(Y ) for all j ≥ i ≥ 0, and

(2) [a](Z)i =
∞∑
j=i

σi,j(a)Zj for any a ∈ oL, i ≥ 0.

Proof. (1) This follows by comparing Corollary 3.2.6 with Lemma 4.2.8(1).
(2) Using Definition 3.2.1(5) and Lemma 3.2.3 we see that 〈Pk(s), Zi〉 = δki

for all i, k ≥ 0. By Corollary 3.2.6 we have Pj(as) =
j∑

k=0

σkj(a)Pk(s). Fix
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i ≥ 0 and apply 〈−, Zi〉 to this equation: using equation (4) we then have

σi,j(a) =

〈
j∑

k=0

σkj(a)Pk(s), Zi

〉
= 〈Pj(as), Zi〉 = 〈Pj(s), [a](Z)i〉.

Hence σi,j(a) is precisely the coefficient of Zj in the power series [a](Z)i. �

This justifies the definition of the polynomials σi,j(Y ) which was given in
§1.5. We can now give the proof of Theorem 1.5.1 from the Introduction.

Theorem 4.2.21. If ΛL(X) = oL[[oL]], then Pol = Int.

Proof. Note that Pol = Ǔ , in view of Lemma 4.2.20(1) and Definition 4.2.12.
Now ΛL(X) = O◦(XL), so if this is equal to oL[[oL]], then B̌ = Int(oL, oL) by
Corollary 4.2.19(2). But U ⊆ B, so B̌ ⊆ Ǔ ⊆ Int(oL, oL) by Corollary 4.2.16.
Hence Ǔ = Int(oL, oL) as claimed. �

4.3. Calculating the matrix coefficients σi,j(Y ). Here we will assume that
the coordinate Z on the Lubin-Tate formal group is chosen in such a way that

logLT (Z) =

∞∑
n=0

Zq
n

πn
.

It turns out that the polynomials Pj(s) are sparse: the coefficient of si in Pj(s)
is non-zero only if i ≡ j mod (q− 1). We will obtain more information about
these coefficients; this will require developing some notation to deal with this
sparsity. The calculations that follow rest on the following observation.

Proposition 4.3.1. For every n ≥ 0, we have

Pn(Y ) =
∑

k0+qk1+···+qdkd=n

Y k0+···+kd

k0! · · · kd! · π1·k1+2·k2+···+d·kd
.

Proof. If logLT(Z) =
∑∞
k=0 Z

qk/πk and exp is the usual exponential, then

∞∑
n=0

Pn(Y )Zn = exp(Y · logLT(Z)) =
∏
`≥0

exp(Y · Zq
`

/π`)

=
∏
`≥0

∑
k≥0

(Y · Zq
`

/π`)k/k!

The coefficient of Zn in this product is the sum of Y k0+···+kd/k0! · · · kd! ·
π1·k1+2·k2+···+d·kd over all tuples (k0, · · · , kd) of positive integers such that
k0 + qk1 + · · ·+ qdkd = n. �

The following formula for the derivative d
dY Pn(Y ) will be very useful in the

calculations.

Proposition 4.3.2. For every n ≥ 0, we have d
dY Pn(Y ) =

∑
k≥0 π

−k ·
Pn−qk(Y ).
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Proof. We have Pn(Y + Z) = Pn(Y ) +
∑n
j=1 Pj(Z)Pn−j(Y ) by [28, Lemma

4.2(4)]. Hence it is enough to determine which Pj(Z) have a term of degree
1 in them, and what the corresponding coefficient is in this case. The answer
now follows from Proposition 4.3.1. �

We fix m ∈ {0, 1, 2, · · · , q − 2} from now on. We will use the convenient
notation

i := m+ i(q − 1) for all i ≥ 0.

Definition 4.3.3. For each j ≥ i ≥ 0, we define

Qm(i, j) :=

{
k ∈ N∞ :

∞∑
`=0

k` = i,

∞∑
`=1

k`

(
q` − 1

q − 1

)
= j − i

}
, and

r
(m)
i,j :=

∑
k∈Qm(i,j)

(
i

k0; k1; k2; · · ·

)
· π
−
∞∑̀
=1

`·k`
.

Here
(

i
k0;k1;k2;···

)
= (i)!

k0!·k1!·k2!··· is the multinomial coefficient.

Lemma 4.3.4. We have r
(m)
jj = 1 for all j ≥ 0.

Proof. If i = j, then the second condition on a vector k ∈ N∞ to lie in Qm(i, j)

forces k1 = k2 = · · · = 0 because q`−1
q−1 > 0 for all ` ≥ 1. But then k0 = i = j

from the first condition, so the formula for r
(m)
jj collapses to give 1. �

Proposition 4.3.5. Let n = j for some j ≥ 0. Write

Pn(s) =

n∑
k=0

b
(n)
k sk

with b
(n)
k ∈ L for k = 0, . . . , n.

(1) We have b
(n)
k = 0 if k 6≡ n mod (q − 1).

(2) For each 0 ≤ i ≤ j, we have b
(j)

i =
r
(m)
i,j

i! .

Proof. By Proposition 4.3.1, the coefficient b
(n)
k of sk in Pn(s), is given by

b
(n)
k =

∑
k

1

(k0!k1!k2! · · · )π0·k0+1·k1+2·k2+··· ,

where the sum runs over all possible sequences k = (k0, k1, k2, · · · ) of non-
negative integers satisfying the following two conditions:

k0 + k1 + k2 + · · · = k, and k0 + qk1 + q2k2 + · · · = n.

Of course given any such sequence, necessarily k` must be zero for all suffi-
ciently large ` depending only on n and k, and the set of solutions to these
equations is always finite, so the sum of all these fractions makes sense.
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Next note that if k0, k1, · · · satisfies these two conditions, then necessarily

n ≡ k mod (q − 1).

This implies part (1). For part (2), let k = i and n = j, and suppose that
the non-negative integers k0, k1, · · · satisfy k0 + k1 + · · · = k; then subtracting
gives

k0+qk1+q2k2+· · · = m+(q−1)j ⇔ (q−1)k1+(q2−1)k2+· · · = (q−1)(j−i).
In this way, we see that Qm(i, j) is precisely the set of sequences that contribute
to the coefficient of si in Pj(s). This coefficient is then

b
(n)
k =

1

k!

∑
k∈Qm(i,j)

k!

k0!k1! · · ·
· π
−
∞∑̀
=1

`·k`
=
r

(m)
i,j

k!
. �

Lemma 4.3.6. Suppose that j ≥ i ≥ 0. Then r
(m)
ij is the coefficient of Zj in

logLT (Z)i.

Proof. Write logLT (Z)k =
∑∞
n=k d

(k)
n Zn. Then

∞∑
n=0

Pn(Y )Zn = exp(Y logLT (Z)) =

∞∑
k=0

1

k!
logLT (Z)kY k

=

∞∑
k=0

1

k!

∞∑
n=k

d(k)
n ZnY k .

Equating the coefficent of ZnY k shows that

b
(n)
k =

1

k!
d(k)
n for 1 ≤ j ≤ n.

Applying Proposition 4.3.5(2), we have r
(m)
i,j = i!b

(j)

i = d
(i)
j . �

Corollary 4.3.7. Define polynomials R
(m)
j (t) ∈ L[t] for j ≥ 0 by the formula

R
(m)
j (t) :=

j∑
i=0

r
(m)
i,j

(i)!
ti.

Then for all j ≥ 0 we have Pj(s) = sm ·R(m)
j (sq−1).

Lemma 4.3.8. For each j ≥ i ≥ 0 there exist σi,j(Y ) ∈ Int(oL, oL) such that

Pj(Y s) =

j∑
i=0

σi,j(Y )Pi(s).

Proof. By Example 4.2.7, {Pn(Ω) : n ≥ 0} forms a regular basis for the ad-

missible subalgebra
∞∑
n=0

oKPn(Ω) of L[Ω]. Apply Lemma 4.2.8 and use the

transcendence of Ω over L. �
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Of course this is just another way of rephrasing Corollary 3.2.6. We will
now see that the matrix of polynomials (σi,j(Y ))i,j is sparse as well.

Proposition 4.3.9. Let j ≥ 0 and suppose that 0 ≤ k ≤ j.
(1) σk,j(Y ) = 0 if k 6≡ m mod (q − 1).

(2) For each i = 0, . . . , j there exists τ
(m)
i,j (X) ∈ L[X] such that

σi,j(Y ) = Y m · τ (m)
i,j (Y q−1).

Proof. Using Lemma 4.3.8, we have

Pj(Y s) =

j∑
k=0

σk,j(Y )Pk(s).

Dividing both sides by Y msm we obtain an equality of Laurent polynomials

(16) R
(m)
j (Y q−1sq−1) =

j∑
k=0

Y −mσk,j(Y ) · s−mPk(s).

The left hand side of (16) is a polynomial in sq−1 with coefficients in L[Y ]. The
Laurent polynomial s−mPk(s) lies in sk−mL[sq−1, s1−q] by Proposition 4.3.5.
Since

L[Y ][s, s−1] =

q−2⊕
c=0

scL[Y ][sq−1, s1−q],

looking at the component of the right hand side of (16) that lies in the space
scL[Y ][sq−1, s1−q] for c ∈ {1, · · · , q − 2} and then looking at the leading coef-
fiicent of s−mPk(s) implies (1).

Using Corollary 4.3.7, we can now rewrite (16) as follows:

(17) R
(m)
j (Y q−1sq−1) =

j∑
i=0

Y −mσi,j(Y ) ·R(m)
i (sq−1).

Since the left hand side of (17) is now a polynomial in Y q−1 with coefficients
in L[sq−1], we deduce by looking at the right hand side of (17) that the a
priori Laurent polynomial Y −mσi,j(Y ) in Y in fact lies in L[Y q−1]. Part (2)

follows. �

Setting t = sq−1 and X = Y q−1, we deduce the following

Corollary 4.3.10. The polynomials R
(m)
j (tX) satisfy

R
(m)
j (tX) =

j∑
i=0

τ
(m)
i,j (X) R

(m)
i (t).

Definition 4.3.11. Consider the following infinite upper-triangular matrices.

(1) [r(m)]ij = r
(m)
ij for j ≥ i ≥ 0,

(2) T (m)
ij = τ

(m)
i,j (X), and
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(3) DX := diag(1, X,X2, · · · ).

Lemma 4.3.12. We have the matrix equation

r(m) · T (m) = DX · r(m).

Proof. Note that each matrix appearing on the right hand side has infinitely
many rows and columns, but each one is also upper triangular, so matrix

multiplication makes sense. Moreover, as r
(m)
jj = 1 for all j ≥ 0 by Lemma

4.3.4, the matrix r(m) is invertible, with inverse matrix having entries in L.

Substitute the definition of R
(m)
j (t) from Corollary 4.3.7 into Corollary

4.3.10 to obtain
j∑
`=0

r
(m)
`,j

(`)!
t`X` =

j∑
i=0

τ
(m)
i,j (X)

i∑
`=0

r
(m)
`,i

(`)!
t`.

Equate the coefficients of t` to get

r
(m)
`,j X

` =

j∑
i=0

τ
(m)
i,j (X) · r(m)

`,i .

The right hand side is the (`, j)-th entry of r(m) · T (m). The left hand side is
the (`, j)-th entry of DX · r(m). The result follows. �

The following two results on the coefficients r
(m)
i,j are strictly speaking not

needed for the calculations appearing in Appendix A, but they are nevertheless
interesting in their own right.

Lemma 4.3.13. For each j ≥ i ≥ 0, we have

r
(m)
i,j =

 ∑
k∈Qm(i,j)

(
i

k0; k1; · · ·

)
π

∞∑̀
=1

k`

(
q`−1
q−1 −`

) · πi−j .
Proof. Let k ∈ Qm(i, j). Then

∑∞
`=1 k`

(
q`−1
q−1

)
= j − i, and therefore

π

∞∑̀
=1

k`

(
q`−1
q−1 −`

)
· πi−j = πj−i · π

−
∞∑̀
=1

`k`
· πi−j = π

−
∞∑̀
=1

`k`
.

The result now follows from Definition 4.3.3. �

Proposition 4.3.14. Let j ≥ i ≥ 0. Then

(1) πj−i · r(m)
i,j ∈ oL, and

(2) πj−i · r(m)
i,j ≡

(
i
j−i
)

mod πq−1oL.

Proof. (1) Note that for every ` ≥ 1 we have

α` := q`−1
q−1 − ` = (1+(q−1))`−1

q−1 − ` =
1+`(q−1)+(`2)(q−1)2+···+(q−1)`−1

q−1 − `
=

(
`
2

)
(q − 1) +

(
`
3

)
(q − 1)2 + · · ·+ (q − 1)`−1.

.
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Thus α` ≥ 0 always. Hence the expression in the big brackets in Lemma 4.3.13
lies in oL.

(2) The exponent of π appearing in the term in the sum corresponding to k ∈
Qm(i, j) is equal to

∑∞
`=1 k`α`. It follows from the formula for α` established

above that α1 = 0. Hence this exponent is a positive multiple of q − 1, unless
k` = 0 for all ` ≥ 2. In this case, the exponent is 0 and the corresponding term

is equal to
(
i
j−i
)

because in this case k1 =
∞∑̀
=1

k`
q`−1
q−1 = j − i. �

5. Consequences of the Katz isomorphism

5.1. Equivariant endomorphisms of L∞. Throughout this §, we assume
that L = Qp2 and that π = p. In particular, L∞ is the completion of L(G[p∞]).
We recall the statement of the Katz isomorphism (Theorem 3.6.15): if S is a
π-adically complete oL-algebra, then the map

K∗ : HomoL(C0
Gal(oL, oCp), S)→ S[[Z]]ψq-int

is an isomorphism. Recall ([19], page 58), that µ is said to be supported in o×L
if and only if µ(f) = 0 for all f such that f = 0 on o×L . We have the following
criterion.

Lemma 5.1.1. A measure µ ∈ HomoL(C0
Gal(oL, oCp), S) is supported in o×L if

and only if ψq(K∗(µ)) = 0.

Proof. Note that f ∈ C0
Gal(oL, oCp) is zero on o×L if and only if f = ψC(g) for

some g ∈ C0
Gal(oL, oCp). Indeed, ψC(g)(a) = 0 if a ∈ o×L by definition, and if

f = 0 on o×L , then f = ψCϕC(f).
The map K∗ is injective by Theorem 3.6.15. By Corollary 3.3.7, we have

ψqK∗ = K∗ψ∗C . Hence ψqK∗(µ) = 0 ⇔ K∗ψ∗C(µ) = 0 ⇔ ψ∗C(µ) = 0 ⇔
µ(ψC(g)) = 0 for all g ⇔ µ is supported in o×L . �

There is the usual GL, ∗ action on oCp [[Z]], and on HomoL(C0
Gal(oL, oCp), oCp)

it is given by g∗(µ)(f) = g(µ(g−1(f))) = g(µ(a 7→ f(τ(g)−1 · a)) since f is Gal
continuous. In particular, Theorem 3.6.15 applied with S = oCp implies the
following.

Corollary 5.1.2. We have

(1) HomoL(C0
Gal(oL, oCp), oCp)GL,∗ = ΛL(X)ψq-int.

(2) HomoL(C0
Gal(o

×
L , oCp), oCp)GL,∗ = ΛL(X)ψq=0.

Since L = Qp2 , the map τ is surjective. Let ΓL = Gal(L(G[p∞])/L).

Lemma 5.1.3. The map C0
Gal(o

×
L , oCp) → o∞ given by f 7→ f(1) is an iso-

morphism of oL-modules.

Proof. Since d = 2, we know that τ is surjective by Lemma 2.6.4. Now, if
x ∈ o∞, let fx ∈ C0

Gal(o
×
L , oCp) be given by fx(1) = x and fx(τ(g)) = g(x).

Every element of C0
Gal(o

×
L , oCp) is of this form. �
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Theorem 3.6.15 applied with S = oL now gives us the following

Theorem 5.1.4. The map K∗ gives rise to an oL-linear isomorphism o∗∞ '
oL[[Z]]ψq=0.

Proposition 5.1.5. The space HomoL(C0
Gal(o

×
L , oCp), oCp)GL,∗ is naturally iso-

morphic to the space of ΓL-equivariant oL-linear maps o∞ → o∞.

Proof. If x ∈ o∞, let fx ∈ C0
Gal(o

×
L , oCp) be as in the proof of Lemma 5.1.3

above. If µ ∈ HomoL(C0
Gal(o

×
L , oCp), oCp)GL,∗, we define a map T : o∞ → o∞

by T (x) = µ(fx). We have fx+y = fx + fy and fax = afx if a ∈ oL so that
T is oL-linear. In addition, T is ΓL-equivariant because µ is fixed under the
GL, ∗-action. Indeed, g(T (x)) = g(µ(fx)) = µ(g(fx)) and g(fx)(1) = g(x) so
that g(fx) = fg(x). Therefore, g(T (x)) = T (g(x)).

Conversely, a ΓL-equivariant oL-linear map T : o∞ → o∞ as above gives an
element µ ∈ HomoL(C0

Gal(o
×
L , oCp), oCp)GL,∗ via µ(fx) = T (x). �

Combining Corollary 5.1.2 and Proposition 5.1.5, we get the following.

Theorem 5.1.6. We have EndGLoL (o∞) ' ΛL(X)ψq=0.

Corollary 5.1.7. We have ΛL(X) = oL[[oL]] if and only if every ΓL-equivariant
oL-linear map o∞ → o∞ comes from an element of oL[[ΓL]].

Proof. We have ΛL(X) = oL[[oL]] if and only if ΛL(X)ψ=0 = Λ(o×L ) by Lemma
5.1.9 below. If µ ∈ ΛL(X)ψ=0, then by Corollary 5.1.2 it corresponds to an
element of HomoL(C0

Gal(o
×
L , oCp), oCp)GL,∗. By Proposition 5.1.5, the element

µ ∈ ΛL(X)ψ=0 comes from an element ν ∈ oL[[ΓL]]. The element µ then
corresponds to the image of ν in Λ(o×L ) via τ . Indeed, if g ∈ ΓL and T is given
by x 7→ g(x), then it corresponds to µ : fx 7→ g(x) and g(x) = fx(τ(g)) so that
µ = δτ(g). �

Using Corollary 5.1.7, we get the following

Theorem 5.1.8. We have ΛL(X) = oL[[oL]] if and only if every continuous L-
linear and GL-equivariant map f : L∞ → L∞ comes from the Iwasawa algebra
L⊗oL oL[[ΓL]].

Proof. Indeed, by Corollary 2.10.11, ΛL(X) ∩ (L⊗oL oL[[oL]]) = oL[[oL]]. �

Lemma 5.1.9. If ΛL(X)ψ=0 = Λ(o×L ), then ΛL(X) = oL[[oL]].

Proof. If f ∈ ΛL(X), then δ1 · ϕ(f) ∈ ΛL(X)ψ=0. So ϕ(f) ∈ oL[[oL]] and
f = ψqϕ(f) ∈ oL[[oL]]. �

The following proposition implies that there are no “Tate trace maps” L∞ →
L or L∞ → Ln (recall that L∞ is the completion of L(G[p∞])).

Proposition 5.1.10. Let f : L∞ → L∞ be a continuous, ΓL-equivariant
and L-linear map. If f(L∞) is included in a finite field extension of L, then
f(1) = 0.
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Proof. We have log Ω ∈ L∞ and (g − 1) log Ω = log τ(g) if g ∈ ΓL. Hence

(g − 1)f(log Ω) = f((g − 1) log Ω) = f(log τ(g)) = log τ(g) · f(1).

Hence if f(1) 6= 0, then f(log Ω) cannot belong to a finite extension of L. �

Note that a similar result was proved by Fourquaux, see for instance [14,
Prop 2.2.1]. Proposition 5.1.10 can be strengthened: almost the same proof

gives us the following proposition. Recall that L
ΓLn∞ = Ln by the Ax-Sen-Tate

theorem, see Theorem 1 on page 176 of [32].

Proposition 5.1.11. Let f : L∞ → L∞ be a continuous, ΓL-equivariant and
L-linear map. If f 6= 0, then there exists a1 6= 0, a0 ∈ L(G[p∞]) such that
f(L∞) contains a1 log Ω + a0.

Proof. We have log Ω ∈ L∞ and (g − 1) log Ω = log τ(g) if g ∈ ΓL. Take
x ∈ L(G[p∞]) such that f(x) 6= 0, and choose (note that f(Ln) ⊂ Ln by the
Ax-Sen-Tate theorem) some n such that x, f(x) ∈ Ln. If g ∈ Γn, then

(g − 1)f(x · log Ω) = f((g − 1)(x · log Ω)) = f(x · log τ(g)) = log τ(g) · f(x).

Therefore (g − 1)(f(x · log Ω) − f(x) · log Ω) = 0 for all g ∈ Γn, so that f(x ·
log Ω)− f(x) · log Ω ∈ Ln by Ax-Sen-Tate.

We can now take a1 = f(x) and a0 = f(x · log Ω)− f(x) · log Ω. �

This can be strengthened even further. Let Lalg
∞ denote the vectors in L∞

that are locally algebraic for the action of the Lie group ΓL. Let c(g) =
log τ(g) = logχσp (g). The set Lalg

∞ is the set of x ∈ L∞ such that there exists
an open subgroup Γx of ΓL and d ≥ 0 and x0 = x, x1, . . . , xd ∈ L∞ such that
g(x) = x0 + x1c(g) + · · · + xdc(g)d if g ∈ Γx. Note that technically, these are
the locally σ-analytic locally algebraic vectors in L∞. However since L = Qp2 ,
every locally analytic vector of L∞ is locally σ-analytic (see [4]).

Lemma 5.1.12. We have Lalg
∞ = L(G[p∞])[log Ω].

Proof. One inclusion is easy. Now take x ∈ Lalg
∞ and write g(x) = x0 +x1c(g)+

· · · + xdc(g)d if g ∈ Γx. On Lalg
∞ we have the derivative ∇ : x 7→ x1 and we

know (from the theory of locally analytic vectors) that ∇j(x)/j! = xj for all

j. In particular, ∇(xd) = 0, so that xd ∈ L(G[p∞]). The element x− xd logd Ω
is then in Lalg

∞ and it is of degree ≤ d− 1, which allows us to prove the Lemma
by induction. �

We see that ∇ = d
d log Ω . For all n, the map ∇ : Ln[log Ω] → Ln[log Ω] is

surjective, and its kernel is Ln. If f : L∞ → L∞ is a continuous, ΓL-equivariant
and L-linear map, then f(Lalg

∞ ) ⊂ Lalg
∞ . In addition, ∇ = limg→1(g − 1)/c(g)

so that f ◦ ∇ = ∇ ◦ f .

Proposition 5.1.13. Let f : L∞ → L∞ be a continuous, ΓL-equivariant and
L-linear map. If f 6= 0, there exists n ≥ 0 such that Ln · f(Ln[log Ω]) contains
Ln[log Ω].
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Proof. Take x ∈ L(G[p∞]) such that f(x) 6= 0 and let n ≥ 0 be such that
x, f(x) ∈ Ln. We prove by induction on d that Ln · f(Ln[log Ω]) contains

Ln[log Ω]deg≤d. In order to do this, we prove that f(x · logd Ω) is a polynomial
(in log Ω) of degree d. The case d = 0 follows from the fact that f(x) 6= 0.
Now assume that the result holds for d− 1. We have

∇f(x · logd Ω) = f(x · ∇ logd Ω) = f(dx · logd−1 Ω),

so that f(x · logd Ω) is a polynomial of degree d. This implies the claim. �

5.2. The dual of the ring of integers of a p-adic Lie extensions. Recall
that π ∈ oL is a uniformiser and kL := oL/πoL is the residue field of L. In this
§, L∞/L is an infinite Galois extension with Galois group Γ = Gal(L∞/L).
We fix a chain

Γ ⊇ Γ1 ⊇ Γ2 ⊇ · · ·

of open normal subgroups of Γ such that
∞⋂
n=1

Γn = 1.

Definition 5.2.1. Let n ≥ 1.

(1) Ln := LΓn
∞ , a finite Galois extension of L with Galois group Γ/Γn.

(2) on is the integral closure of oL in Ln.
(3) o∗n := HomoL(on, oL).
(4) kn := on/πon.
(5) k∨n := HomkL(kn, kL).

Note that on and o∗n are naturally oL[Γ/Γn]-modules, both free of finite rank
as an oL-module, and kn and k∗n are kL[Γ/Γn]-modules, both finite dimensional
over kL.

Remark 5.2.2. Let n ≥ 1.

(1) o∗n can be identified with the inverse different d−1
Ln/L

of the extension

Ln/L.
(2) Applying the duality functor (−)∗ = HomoL(−, oL) to the natural

inclusion of oL-modules on → on+1, we obtain a natural connecting
map o∗n+1 → o∗n. This map is surjective, because the on+1/on is a
finitely generated and torsion-free oL-module.

Lemma 5.2.3. For each n ≥ 1, there is a short exact sequence of oL[Γ/Γn]-
modules

0→ o∗n
π−→ o∗n → k∨n → 0.

Proof. Let M be an oL-module and consider the complex of oL-modules

0→M∗
π−→M∗

ηM−→ (M/πM)∨ → 0

where M∗ := HomoL(M,oL), (M/πM)∨ = HomkL(M/πM, kL) and where
ηM (f)(m + πM) = f(m) + πoL ∈ kL. This complex commutes with finite
direct sums and is exact in the case when M = oL. So the complex is exact
whenever M is a finitely generated free oL-module. If M also happens to be
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an oL[G]-module for some group G, then the maps in the complex are oL[G]-
linear. The result follows when we set M = on, an oL[Γ/Γn]-module which is
free of finite rank as an oL-module. �

We now pass to the limit as n→∞.

Definition 5.2.4. Recall the Iwasawa algebras Λ(Γ) = lim←− oL[Γ/Γn] and

Ω(Γ) = lim←− kL[Γ/Γn].

(1) o∞ := colim on, an oL[Γ]-module.
(2) o∗∞ := lim←− o

∗
n, a Λ(Γ)-module.

(3) k∞ := colim kn, a kL[Γ]-module.
(4) k∨∞ := lim←− k

∨
n , an Ω(Γ)-module.

Lemma 5.2.5. There is a short exact sequence of Λ(Γ)-modules

0→ o∗∞
π−→ o∗∞ → k∨∞ → 0.

Proof. The short exact sequences from Lemma 5.2.3 are compatible with vari-
ation in n, in other words we get a short exact sequence of towers of Λ(Γ)-
modules. Applying the inverse limit functor gives a long exact sequence

0→ o∗∞
π−→ o∗∞ → k∨∞ → lim←−

(1)o∗n.

The lim←−
(1) term on the right vanishes in view of Remark 5.2.2(2), whence the

result. �

Remark 5.2.2(2) also implies that the natural maps o∗∞ → o∗n are surjective.

Proposition 5.2.6. The Λ(Γ)-modules o∞ and o∗∞ are faithful.

Proof. Suppose ξ ∈ Λ(Γ) kills o∞. Then its image ξn ∈ o[Γ/Γn] kills on.
Therefore ξn ∈ L[Γ/Γn] kills Ln = on⊗oL L. But Ln is a free L[Γ/Γn]-module
of rank 1 by the Normal Basis Theorem. So, ξn = 0 for all n ≥ 0 and therefore
ξ = 0 as well.

Suppose now ξ ∈ Λ(Γ) kills o∗∞. Then ξ kills each the quotients o∗n of o∗∞.
But the action of Λ(Γ) on o∗n factors through oL[Γ/Γn], so the image ξn of ξ
in oL[Γ/Γn] kills o∗n. Since ξn also kills on ∼= (o∗n)∗, we deduce from the above
that ξn = 0 for all n. Hence ξ = 0. �

Proposition 5.2.7. Suppose that p - |Γ/Γ1|. Then k∨1 is a free kL[Γ/Γ1]-
module of rank 1.

Proof. The field extension L1/L is tamely ramified by our assumption on
|Γ/Γ1|. Now it follows from Noether’s Theorem on rings of integers in tamely
ramified extensions that o1 is a free oL[Γ/Γ1]-module of rank one — see, e.g.
[33, Proposition 2.1]. Hence o1/πo1 is a free kL[Γ/Γ1]-module of rank one, and
we can apply Lemma 5.2.3 to conclude. �
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Lemma 5.2.8. Suppose that Γ is a p-adic Lie group. Let M = lim←−Mn be an

inverse limit of a tower of Ω(Γ)-modules, where each Mn is finite dimensional
over kL. Then the natural map on Γ-coinvariants

MΓ → lim←−(Mn)Γ

is an isomorphism.

Proof. The Iwasawa algebra Ω(Γ) is Noetherian, so its augmentation ideal
J = (Γ − 1)Ω(Γ) is finitely generated. Let u1, · · · , ur ∈ J be generators and
let N be an Ω(Γ)-module; then

NΓ = N/(Γ− 1) ·N = N/JN = N/(u1N + · · ·+ urN).

In other words, we have the short exact sequence of kL-vector spaces

(18) Nr (u1,··· ,ur)−→ N → NΓ → 0.

Applying this to each Mn, we obtain an exact sequence of towers of Ω(Γ)-
modules

Mr
n

(u1,··· ,ur)−→ Mn → (Mn)Γ → 0

where each term is a finite dimensional kL-vector space. The inverse limit
functor is exact on such towers, since they all satisfy the Mittag-Leffler condi-
tion. So passing to the inverse limit we obtain the exact sequence of kL-vector
spaces

Mr (u1,··· ,ur)−→ M → lim←−(Mn)Γ → 0.

Comparing this with (18) applied with N = M gives the result. �

Theorem 5.2.9. Suppose that

• Γ is abelian,
• p - |Γ/Γ1|,
• Γ1 is a torsionfree pro-p group of finite rank.

Then o∗∞ is a free Λ(Γ)-module of rank 1 if and only if the map k1 → kΓ1
∞ is

an isomorphism.

Proof. (⇐) Note that the connecting maps kn → kn+1 in the colimit k∞ :=
colim kn are injective: if x + πon ∈ kn maps to zero in kn+1 then there is
y ∈ on+1 such that x = πy; but then y ∈ Ln ∩ on+1 = on and hence x =
πy ∈ πon. Under our hypothesis that k1 → kΓ1

∞ is an isomorphism, it follows

that for each n ≥ 1, the map kΓ1
n → kΓ1

n+1 is an isomorphism. Applying the
(−)∨ = HomkL(−, kL) functor, we deduce that for each n ≥ 1, the map on
Γ1-coinvariants

(k∨n+1)Γ1 → (k∨n )Γ1

is an isomorphism. Now, Lemma 5.2.8 tells us that

(k∨∞)Γ1
∼= lim←−(k∨n )Γ1

.
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Since the maps in the tower of Γ1-coinvariants are all isomorphisms, we con-
clude that the natural map of k[Γ/Γ1]-modules

(k∨∞)Γ1 → k∨1

must be an isomorphism. Now k∨1 is a cyclic kL[Γ/Γ1]-module by Proposition
5.2.7 and the ideal JΩ(Γ) generated by the augmentation ideal J of Ω(Γ1) is
topologically nilpotent in the sense that Jn → 0 as n → ∞, because Γ1 is
assumed to be pro-p. In this situation we can apply the Nakayama Lemma for
compact Λ-modules — see [3, Corollary to Theorem 3] — to deduce that k∨∞
is a cyclic Ω(Γ)-module: any lift of a kL[Γ/Γ1]-module generator for k∨1 to k∨∞
will generate it as an Ω(Γ)-module.

Now o∗∞/πo
∗
∞
∼= k∨∞ by Lemma 5.2.5. The Λ(Γ)-module o∗∞ is profinite

and πn → 0 as n → ∞ in Λ(Γ), so applying the Nakayama Lemma again, we
conclude that o∗∞ is a cyclic Λ(Γ)-module.

Since o∗∞ is a faithful Λ(Γ)-module by Proposition 5.2.6 and since Γ is
abelian, we deduce that o∗∞ must be a free Λ(Γ)-module of rank 1.

(⇒) We reverse the argument above. Assume o∗∞ is a free Λ(Γ)-module
of rank 1. Then Lemma 5.2.5 implies that k∨∞ is a free Ω(Γ)-module of rank
1. Hence (k∨∞)Γ1

is a free k[Γ/Γ1]-module of rank 1. By Lemma 5.2.8 we
have (k∨∞)Γ1

∼= lim←−(k∨n )Γ1
and the connecting maps in the tower (k∨n )Γ1

are

surjective, with the bottom term being (k∨1 )Γ1
= k∨1 . Since this is a free

kL[Γ/Γ1]-module of rank 1 by Proposition 5.2.7, the natural map (k∨∞)Γ1 → k∨1
from the inverse limit to the bottom term is a surjection between two free
kL[Γ/Γ1]-modules of rank 1. So it is also an isomorphism. Dualising shows
that k1 → kΓ1

∞ is an isomorphism as well. �

Lemma 5.2.10. In the situation of Proposition 5.2.9, suppose that o∗∞ is a
free Λ(Γ)-module of rank 1. Then Ln/L is tamely ramified for all n ≥ 1.

Proof. Consider the Γn-coinvariants of o∗∞. These coinvariant must be a free
rank 1 oL[Γ/Γn]-module by assumption. On the other hand, by construction,
there’s a surjective oL[Γ/Γn]-linear map

(o∗∞)Γn → o∗n

(see the remark just before Proposition 5.2.6). Both sides are free oL-modules
of rank [Ln : L], so this surjective map must actually be an isomorphism by
the rank-nullity theorem. So, o∗n is a free rank 1 oL[Γ/Γn]-module. But then
using, for example [2, Lemma 5.4], we see that

on = HomoL(o∗n, oL) = HomoL[Γ/Γn](o
∗
n, oL[Γ/Γn])

must also be a free rank 1 oL[Γ/Γn]-module. In other words, on has an integral
normal basis, so by [33, Proposition 2.1] Ln/L must be tamely ramified. �

The following result, which may be of independent interest, shows that the
hypothesis that the action map ρ : Ω(Γ) → EndΩ(Γ)(k

∨
∞) is an isomorphism

has strong implications about ramification behaviour in the tower L∞/L.
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Lemma 5.2.11. Suppose Γ is a torsionfree abelian pro-p group of finite rank,
and that the action map ρ : Ω(Γ)→ EndΩ(Γ)(k

∨
∞) is an isomorphism. Assume

that Γ1 = Γ. Then Ln/L is tamely ramified for all n ≥ 1.

Proof. Let a ∈ kΓ1
∞ and consider the multiplication-by-a map `a : k∞ → k∞.

Since a is fixed by Γ = Γ1, this map is Ω(Γ)-linear. By our assumption on ρ,
we can find some b ∈ Ω(Γ) such that ρ(b) = a. Now a is algebraic over kL and
ρ is injective by assumption, so b ∈ Ω(Γ) must be algebraic over kL as well.
Since Γ = Γ1, the mod-p Iwasawa algebra Ω(Γ) is a power series ring over kL
in finitely many variables. The only elements of such a power series ring that
are algebraic over kL are constants. Hence b ∈ kL and so a ∈ kL = k1 since
Γ = Γ1. Hence kΓ1

∞ = k1. Now the result follows from Theorem 5.2.9 and
Lemma 5.2.10. �

Returning to the setting of §1.7, we have the following conclusion.

Corollary 5.2.12. Suppose that L = Qp2 and π = p, and let G be the

Lubin-Tate formal group attached to π. Let ΓLTL = Gal(L(G[p∞])/L). Then
oL[[Z]]ψq=0 is not a free oL[[ΓLT

L ]]-module of rank 1.

Proof. It is well known that Ln/L is not tamely ramified for any n ≥ 2. Hence
o∗∞ is not a free Λ(ΓLTL )-module of rank 1 by Lemma 5.2.10. Since G is self-
dual, the tower L∞/L coincides with the one defined at Definition 2.7.1(1).
The result now follows from Theorem 1.7.1. �

5.3. The operator ψ and the span of the Pn. We now turn to some
consequences of the Katz isomorphism for the span of the Pn, where Pn is
the element of C0

Gal(oL, oCp) given by a 7→ Pn(a · Ω). The Katz map K∗ :

HomoL(C0
Gal(oL, oCp), S)→ S[[Z]]ψq-int is then given by µ 7→

∑
n≥0 µ(Pn)Zn.

Proposition 5.3.1. The L-span of the Pn is dense in the L-Banach space
C0

Gal(oL,Cp).

Proof. Let W denote the closure of the L-span of the Pn in C0
Gal(oL,Cp). If

W 6= C0
Gal(oL,Cp), then it has a closed complement in C0

Gal(oL,Cp) and we can
find a measure µ 6= 0 that is zero on W (and hence on all of the Pn). This is
a contradiction. �

Remark 5.3.2. There is another proof of this result. Indeed, locally analytic
functions are dense in C0(oL,Cp) and for locally analytic functions, we have
the generalized Mahler expansion of [28, Theorem 4.7]. So it is enough to prove
that locally analytic and Gal continuous functions are dense in C0

Gal(oL,Cp).
A Gal-continuous function is determined by (f(pn))∞n=0 where each f(pn) ∈

L∞ and f(0) ∈ L and f(pn)→ f(0) (see also §§3.3-3.4). We can approximate
each f(pn) by an element of L∞ and this way, we can show that Gal-continuous
locally constant functions are dense in the Gal-continuous functions. More
precisely, given a sequence {fn} as above and some k ≥ 0, we have fn − f∞ ∈
pkoCp for all n ≥ n(k), so we replace these fn by f∞, and approximate the

others to within p−k.

Münster Journal of Mathematics Vol. — (—), 999–999



Bounded functions on the character variety 1063

We now choose a coordinate X on LT such that [p]LT(X) = pX + Xq.
The polynomials Pi depend on the choice of coordinate. However, the oL-
module Un = ⊕ni=0oL · Pi is independent of the coordinate. Given this choice
of coordinate, we have formulas and estimates for ψq in [15, §2A].

Lemma 5.3.3. If k ≥ 1, then ψq(X
k) ∈ L[X]k−1.

Proof. See [15, Proposition 2.2]. �

Let c0(A) denote the set of sequences {cn}n≥0 with cn ∈ A and cn → 0
(with A = oL or L).

Corollary 5.3.4. The map c0(oL)→ C0
Gal(oL, oCp) given by {ci}i≥0 7→

∑
ciPi

is injective, as well as the same map c0(L)→ C0
Gal(oL,Cp).

Proof. Lemma 5.3.3 implies that for all k ≥ 0, there exists n = n(k) such
that pnXk ∈ oL[[X]]ψq-int. Let µ be the corresponding measure. We have
µ(
∑
i≥0 ciPi) = pnck hence if

∑
i≥0 ciPi = 0, then ck = 0. The second assertion

follows from the first. �

Lemma 5.3.5. If k ≥ 1, then ψq(p
k · oL[X]qk) ⊂ pk−1 · oL[X]qk−1 .

Proof. This follows from [15, Proposition 2.2]. �

Let Hn ⊂ L[Ω] denote the set of P (Ω) such that degP ≤ n and P (aΩ) ∈ oCp
for all a ∈ oL. Obviously, Un = ⊕ni=0oL ·Pi(Ω) ⊂ Hn. Let µi : C0

Gal(oL, oCp)→
L be the measure corresponding to Xi, so that µi(Pj) = δij .

Proposition 5.3.6. If Q(Ω) =
∑n
i=0 ciPi(Ω) ∈ Hn, then ci ∈ p−moL if i ≤

qm.

Proof. We have Q(Ω) ∈ C0
Gal(oL, oCp). By Lemma 5.3.5, pmXi ∈ oL[[X]]ψq-int if

i ≤ qm, and hence pmµi ∈ HomoL(C0
Gal(oL, oCp), oL) for all 0 ≤ i ≤ qm. Hence

pmci ∈ oL. �

Corollary 5.3.7. We have Hqk ⊂ p−kUqk .

Let ψp = p · ψq so that ψp(oL[[X]]) ⊂ oL[[X]].

Lemma 5.3.8. ψp(X
qk+(q−1)) = Xk mod p and ψp(X

m) = 0 mod p if m 6=
−1 mod q.

Proof. This follows from [15, Proposition 2.2]. �

Corollary 5.3.9. The map c0(L)→ C0
Gal(oL,Cp) is not surjective.

Proof. By Corollary 5.3.4, it is injective. If it is a bijection, then the continuous
dual of C0

Gal(oL,Cp) is naturally isomorphic to oL[[X]][1/p] via the map µ 7→∑
n≥0 µ(Pn)Xn. However by the Katz isomorphism, the image of this map is

oL[[X]]ψq-int[1/p].

Take f(X) = 1 + Xq−1 + Xq2−1 + · · · . Lemma 5.3.8 implies that ψp(f) =
f mod p and hence ψnp (f) = f mod p. We therefore have ψnq (f) ∈ p−nf +

p−(n−1)oL[[X]] for all n ≥ 1, so that f(X) is not in oL[[X]]ψq-int[1/p]. Hence
oL[[X]][1/p] 6= oL[[X]]ψq-int[1/p]. �
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In order to say more using Katz’ result, we need to produce more elements
of oL[[X]]ψq-int. There is oL[[X]]ψq=0, which contains Xi for 1 ≤ i ≤ q − 2 and

pXq−1+(q−1) and hence (⊕q−2
i=1X

i ·ϕq(oL[[X]]))⊕(pXq−1+(q−1))·ϕq(oL[[X]]).
If fn(X) ∈ (X · oL[[X]])ψq-int and the bn are in oL, then

∑
n≥0 bnϕ

n
q (fn) ∈

oL[[X]]ψq-int as well (the sum converges for the weak topology, and ψq is con-
tinuous for that topology). For example, if f(X) ∈ (X · oL[[X]])ψq=0, then∑
n≥0 ϕ

n
q (f) ∈ oL[[X]]ψq=1.

Remark 5.3.10. We have

(1) ψq(X
i) = 0 if 1 ≤ i ≤ q−2 and q+1 ≤ i ≤ 2q−3 and 2q+1 ≤ i ≤ 3q−4

(2) ψq(1) = 1 and ψq(X
q−1) = (1− q)/p and ψq(X

q) = X
(3) ψq(X

2q−2) = q − 1 and ψq(X
2q−1) = X(1/p− 2p) and ψq(X

2q) = X2

(4) More generally, ψq(X
k) = Xψq(X

k−q)− pψq(Xk+1−q)

Lemma 5.3.11. We have pkXqk−1 ∈ oL[[X]]ψq-int, but not pk−1Xqk−1.

Proof. Recall that ψq(X
q−1) = (1 − q)/p. This implies that ψq(1/X) =

ψq((X
q−1 + p)/ϕq(X)) = 1/pX. If k ≥ 1, then(

qk−1

i

)
· pi =

(
qk−1 − 1

i− 1

)
· qk−1pi/i ∈ pkoL.

This implies that ϕq(X
qk−1

) ∈ Xqk + pkXoL[X]qk−1. By Lemma 5.3.5, we
have

ψq(X
qk−1) = ψq

(
ϕq(X

qk−1

) +Xqk − ϕq(Xqk−1

)

X

)
∈ Xqk−1−1

p
+ oL[[X]]ψq-int.

This implies the Lemma by induction on k. �

Corollary 5.3.12. There is an h ∈ H in which the coefficient of Pqk−1 is in

p−ko×L .

Proof. Let cqk−1 ∈ C0
Gal(oL,Cp)∗ be the linear form corresponding to Xqk−1.

There is an f ∈ C0
Gal(oL, oCp) such that cqk−1(f) ∈ p−ko×L (if it was in p1−koL

for all f , then pk−1cqk−1 would be an integral linear form, and we’d have

pk−1Xqk−1 ∈ oL[[X]]ψq-int. This is not the case by Lemma 5.3.11). By Corol-
lary 5.3.1, the L-span of the Pn is dense in C0

Gal(oL,Cp). Therefore there is an
h ∈ H such that ‖f − h‖ ≤ p−1. We then have cqk−1(h) ∈ p−ko×L . �

6. Other criteria

We indicate how to prove Theorems 1.8.1 and 1.8.2.

6.1. The Lubin-Tate derivative. As we said in the Introduction, Theorem
1.8.1 follows from Theorem 1.4.1 and Proposition 6.1.2 below.

Lemma 6.1.1. The sum
∑

[p](ω)=0 ω
n is q if n = 0, it is 0 if (q − 1) - n, and

it is (q − 1)(−p)k if n = (q − 1)k with k ≥ 1.
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Proof. Since [p](T ) = pT + T q, the sum is over 0 and the roots of T q−1 = −p.
If λ is one of the roots, the set of all the roots is {ηλ}ηq−1=1. The result follows
(for n = 0 it is a convention). �

Proposition 6.1.2. Assume that L = Qp2 and that π = p. Let λ = Ωq−1/p(q−
1)! ∈ o×Cp . If f(Z) ∈ oCp [[Z]], then ϕψq(f)− λ ·Dq−1(f) ∈ oCp [[Z]].

Proof. Recall from [20, p. 667] that f(Z⊕Y ) =
∑
n≥0 Y

nPn(∂)f(Z). We have

ϕψq(f)(Z) = 1/q ·
∑

[p](ω)=0 f(Z ⊕ ω), so that

ϕψq(f)(Z) =
1

q

∑
[p](ω)=0

∑
n≥0

ωnPn(∂)f(Z) =
1

q

∑
n≥0

 ∑
[p](ω)=0

ωn

Pn(∂)f(Z).

By Lemma 6.1.1, the
∑
ωn for n not divisible by q− 1 are zero, and the

∑
ωn

for n = (q − 1)k are divisible by q except when k = 1. Hence

ϕψq(f)− 1

q
(q − 1)(−p)Pq−1(∂)(f) ∈ oCp [[Z]].

The proposition now follows from the fact that

Pq−1(∂) =
∂q−1

(q − 1)!
= pDq−1 · Ωq−1

p(q − 1)!
= pDq−1 · λ. �

6.2. Changing the base field. We now turn to Theorem 1.8.2. If K is a
subfield of L, we also have a character variety X for K; write XK and XL.
An L-analytic character η : oL → C×p can be restricted to oK , and it is then
K-analytic. This gives a rigid analytic map XL → XK . This map in turn gives
rise to a map resL/K : OCp(XK) → OCp(XL), which sends bounded functions
to bounded functions, and OM (XK) to OM (XL) for all closed subfields L ⊂
M ⊂ Cp.

Lemma 6.2.1. On bounded functions, resL/K : ObCp(XK) → ObCp(XL) is in-
jective.

Proof. Suppose that f ∈ ObCp(XK) is zero on the restriction to oK of every

L-analytic character of oL. Since oK is a direct summand of oL, every torsion
character of oK extends to a torsion character of oL. Hence f is zero on all
torsion characters of oK . This implies that f = 0 as f is bounded. �

If µ is a distribution on oK , we define a distribution resL/K(µ) on oL as
follows: if f ∈ Can(oL), we let resL/K(µ)(f) = µ(f |oK ). This is compatible

with the above map if we view elements of OCp(X) as distributions.

Lemma 6.2.2. If µ is a distribution on oK , whose image under resL/K(µ) is
a measure on oL, then there exists a measure µ̃ on oK such that µ = µ̃ on
LC(oK).

Proof. Let f be a locally constant function on oK . Since oK is a direct sum-
mand in oL, we can extend f to a locally constant function f̃ on oL, in a way
that the sup norm of f̃ on oL is the sup norm of f on oK . Since resL/K(µ) is a
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measure, there exists C such that ‖ resL/K(µ)(g)‖oL ≤ C · ‖g‖oL for all locally
constant functions g on oL. We then have

‖µ(f)‖oK = ‖resL/K(µ)(f̃)‖oL ≤ C · ‖f̃‖oL = C · ‖f‖oK .
We can now let µ̃(f) = µ(f) for any f ∈ LC(oK). The above estimate shows
that µ̃ extends continuously to C0(oK). �

Proposition 6.2.3. If ObL(XL) = L⊗oL Λ(oL), then ObL(XK) = L⊗oK Λ(oK).

Proof. If µ ∈ ObL(XK), then µ can be seen as a distribution on oK , and it
gives rise via resL/K to an element of L⊗oL Λ(oL). By Lemma 6.2.2, there is
a measure µ̃ on oK such that µ = µ̃ on LC(oK). The image of the distribution
µ − µ̃ under resL/K belongs to L ⊗oL Λ(oL) and is zero on locally constant
functions, hence resL/K(µ− µ̃) = 0. By Lemma 6.2.1, µ = µ̃ and hence µ is a
measure on oK . �

Theorem 6.2.4. If L/K is finite and if ΛL(XL) = oL[[oL]], then ΛK(XK) =
oK [[oK ]].

Appendix A. An algorithm for whether the σi,j’s span Int(oL, oL)

Dragos, Cris,an and Jingjie Yang
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A.1. Introduction. Let Qp ⊆ L ( Cp be a field of finite degree d over Qp, oL
the ring of integers of L, π ∈ oL a fixed prime element, and q := |oL/πLoL| the
dimension of the residue field. For an oL-submodule S of L[Y ] and an integer
n, let Sn = {f ∈ S : deg(f) < n}.

Recall that the polynomials Pn(Y ) are defined by

exp(Y · logLT(Z)) =

∞∑
n=0

Pn(Y )Zn.

We choose the coordinate Z such that logLT(Z) =
∑∞
k=0 π

−kZq
k

.
Define the upper-triangular matrix (σi,j)i,j≥0 with entries in L[Y ] by

Pj(Y s) =

j∑
i=0

σi,j(Y )Pi(s).

By Lemmas 4.3.8 and 4.2.8, we know that σi,j(Y ) ∈ Int(oL, oL) and that
deg(σi,j(Y )) ≤ j. The question that we consider is whether the oL-linear
span of {σi,j(Y ) : 0 ≤ i ≤ j} equals Int(oL, oL). In this write-up we develop an
algorithm to check whether

(
Int(oL, oL)

)
n

is contained in the oL-linear span of

{σi,j(Y ) : 0 ≤ i ≤ j < N} for some fixed N , where for convenience we require
q − 1 | N .
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A.2. Theory.

A.2.1. Reduction to τ
(a)
i,j . To ease notation, for a fixed a ∈ {0, 1, . . . , q − 2}, we

denote i = a + (q − 1)i. By Proposition 4.3.9(2), there exist upper-triangular

matrices τ
(a)
i,j (Y ) such that

σi,j(Y ) = Y a · τ (a)
i,j (Y q−1).(19)

Definition A.2.1. For a polynomial P (x), we denote by γn(P ) the coefficient
of xn in P .

Definition A.2.2. Let M be the oL-linear span of {σi,j(Y ) : 0 ≤ i ≤ j}. For

a fixed a, let M (a) be the oL-linear span of
{
σi,j(Y ) : 0 ≤ i ≤ j

}
. Let S(a) be

the oL-linear span of
{
τ

(a)
i,j (Y ) : 0 ≤ i ≤ j

}
.

Lemma A.2.3. Let (f
(a)
b )b≥0 be a regular basis for S(a) — that is, each f

(a)
b

has degree b. Then, M = Int(oL, oL) if and only if for all a ∈ {0, 1, . . . q − 2}
and b ≥ 0, we have

νπ(γb(f
(a)
b )) = −wq(a+ b(q − 1)).

Proof. For a fixed a ∈ {0, 1, . . . q−2}, by (19), we have γs(σi,j(Y )) = 0 if s 6≡ j
(mod q − 1). So, by definition, M =

⊕q−2
a=0M

(a).

We write S(a)(Y q−1) = {f(Y q−1) : f ∈ S(a)}. Equation (19) shows that

M (a) = Y a ·N (a)(Y q−1).

Having chosen a regular basis (f
(a)
b )b≥0, these give rise to regular bases(

f
(a)
b (Y q−1)

)
b≥0

for S(a)(Y q−1).

So, we get regular bases
(
Y af

(a)
b (Y q−1)

)
b≥0

for M (a) and thus a regular

basis {Y af (a)
b (Y q−1) : a ∈ {0, 1, . . . q − 2}, b ≥ 0} for M .

Then, M = Int(oL, oL) is equivalent to νπ(γa+b(q−1)(Y
af

(a)
b (Y q−1))) =

−wq(a+ b(q−1)), which is equivalent to νπ(γb(f
(a)
b )) = −wq(a+ b(q−1)). �

Let n = a+ b(q − 1), where a, b are integers, with a ∈ {0, 1, . . . q − 2}. The
proof above shows that a polynomial of degree n with π-valuation of leading
term equal to −wq(n) exists in MN if and only a polynomial of degree b with

the same valuation of leading term exists in S
(a)
N/(q−1). So, the strategy will be

to compute regular bases for S
(a)
N/(q−1).

A.2.2. A formula for τ
(a)
i,j . One advantage of this approach is that the matrices

τ
(a)
i,j (Y ) can be computed quickly. Recall Definition 4.3.3 (where we merely

change notation, calling m by a instead):
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Definition A.2.4. For each j ≥ i ≥ 0, let

Qa(i, j) :=

{
k ∈ N∞ :

∞∑
`=0

k` = i,

∞∑
`=1

k`

(
q` − 1

q − 1

)
= j − i

}
;

r
(a)
i,j :=

∑
k∈Qa(i,j)

(
i

k0; k1; . . .

)
· π−

∑∞
`=1 `·k` .

Define the upper triangular matrix (Di,j)i,j of coefficients as follows:

Definition A.2.5. Let Di,j = i!γiPj(Y ).

This does not depend on a. From Proposition 4.3.2, we obtain the following
recursion formula, valid for i ≥ 1:

Di,j =
∑
r≥0

π−rDi−1,j−qr ,

with the initial conditions being D0,j = δ0,j .

Now, by Proposition 4.3.5(2) it follows that r
(a)
i,j = Di,j . To tie this back to

τ
(a)
i,j , we recall from Definition 4.3.11(3) the notation DY := diag(1, Y, Y 2, . . .).

Then, Lemma 4.3.12 gives τ (a) = (r(a))−1 ·DY ·r(a). This gives a fast algorithm
to compute the matrices τ (a), as the recurrence relation for D allows us to
compute r(a) easily.

A.2.3. Gaussian elimination over a (discrete) valuation ring. Let R be a (dis-
crete) valuation ring and let A be an m×n matrix with entries in R. We define
notions of elementary row operations and row echelon form over R, similarly
to the definitions over a field.

Definition A.2.6. Given a matrix A as above, the elementary row operations
are as follows.

(1) Swap two rows.
(2) Multiply an entire row by a unit in R.
(3) Add an R-multiple of a row to another row.

Lemma A.2.7. Performing elementary row operations on a matrix preserves
its R-row span.

Proof. For each elementary row operation on A, we define an m×m matrix B
with entries in R such that the result of applying the elementary row operation
on A is BA. Observe that in each case, B is invertible, so BA has the same
R-row span as A. �

Lemma A.2.8 (Gaussian Elimination). Let A be a matrix as above. Assume
that m ≥ n and that A has rank n. Then, one can perform a sequence of
elementary row operations on A to produce an upper-triangular matrix of rank
n.
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Proof. We will exhibit an algorithm that puts A in the required form.
We start with the leftmost column. As A has rank n, there is a non-zero

entry on column 1. Pick the one with minimal valuation and swap rows, so
that the entry on column 0 with minimal valuation is on position (0, 0). Let
the new matrix be B.

Then, for each row i ≥ 1, subtract bi0
b00
× (row 0) from row i. After all of

these operations, the matrix has block form:[
b00 ∗
0 A′

]
where ∗ denotes some 1× (n−1) matrix, and A′ is an (m−1)× (n−1) matrix.
Observe that, as A had rank n and the elementary row operations don’t change
the rank, A′ will have rank n− 1.

Now, we can inductively apply the same procedure to A′. Observe that all
row operations on A′ extend to row operations on the whole matrix that don’t
change the block structure (as the corresponding entries in the first column are
all 0’s). By construction, the end result is an upper-triangular matrix, which
has the same rank as the initial matrix A. �

A.3. Implementation. We focus on two fields L: the totally ramified exten-
sion Qp(p1/d), and the unramified extension of degree d, where we take the
prime p, the degree d, and the cutoff N as input parameters.

Fix a ∈ {0, 1, . . . , q−2}. First, we compute the matrices (τ (a))0≤i≤j<N/(q−1)

following the method discussed in Section A.2.2. Then, for s = 0, . . . , N/(q −
1) − 1, we will appeal to the following result to inductively compute a basis

(g
(a),s
b )0≤b≤s for the oL-span of {τ (a)

i,j : 0 ≤ i ≤ j ≤ s}, with each g
(a),s
b having

degree b.

Proposition A.3.1. Fix s ≥ 0, and let (g
(a),s−1
b )0≤b≤s−1 be a basis for the

oL-span of {τ (a)
i,j : 0 ≤ i ≤ j ≤ s− 1} such that each g

(a),s−1
b has degree b.

Record the coefficients of these polynomials g
(a),s−1
∗ in s row vectors, and

append s + 1 new row vectors obtained from the coefficients of τ
(a)
∗,s to obtain

the (2s+ 1)× (s+ 1) matrix

B :=

Y s Y s−1 1



• ∗ · · · ∗ τ
(a)
s,s

• · · · ∗ g
(a),s−1
s−1

. . .
...

• g
(a),s−1
0

∗ ∗ · · · ∗ τ
(a)
0,s

...
...

...

∗ ∗ · · · ∗ τ
(a)
s−1,s
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with coefficients in L. The •’s are non-zero (where Bs,0 6= 0 because σs,s = Y s

by Lemma 4.3.8 which by Equation 19 implies that τ
(a)
s,s = Y s), so B has rank

s+ 1.
Bring the full-rank matrix B to upper-triangular form B′ using Gaussian

elimination over the discrete valuation ring oL as per Lemma A.2.8. Then

(i) we can define the new polynomials g
(a),s
s , g

(a),s
s−1 , . . . , g

(a),s
0 by reading off

the first s+1 rows of B′, so that each g
(a),s
b has degree b and (g

(a),s
b )0≤b≤s

form a basis for the oL-span of {τ (a)
i,j : 0 ≤ i ≤ j ≤ s};

(ii) for each b = 0, . . . , s−1, the π-adic valuation of the leading coefficient in

the new polynomial g
(a),s
b is at most that of the old polynomial g

(a),s−1
b .

Proof. By Lemma A.2.8 the upper-triangular matrix B′ still has rank s+1, so it
has only non-zero elements on its main diagonal. Hence for each b = 0, 1, . . . , s,

the polynomial g
(a),s
b obtained by reading off the b-th row has degree b. Then of

course these polynomials are linearly independent. Also they are the only non-
zero rows in B′, so by Lemma A.2.7 their oL-span is the same as that of the rows

of B, which by construction is precisely the oL-span of {τ (a)
i,j : 0 ≤ 1 ≤ j ≤ s},

giving (i).
Now fix 0 ≤ b ≤ s − 1, and consider what happens to the b-th column

when we reduce B to B′. Observe that in the proof of Lemma A.2.8, when we

operate on the j-th column for j = 0, . . . , s−b−1, as the row for g
(a),s−1
b has a

0 entry in the j-th column, it is neither chosen to be the pivot row nor altered
as we subtract off multiples of the pivot row. Thus when we operate on the
(s−b)-th column to determine the (s−b)-th row and column of B′, the leading

coefficient of g
(a),s−1
b must be a candidate for the pivot. But the pivot B′s−b,s−b

is chosen to have minimal valuation, so νπ(γb(g
(a),s−1
b )) ≥ νπ(B′s−b,s−b). Now

B′s−b,s−b = γb(g
(a),s
b ) by definition, giving (ii). �

For b fixed, it follows that νπ(γb(g
(a),s
b )), s = b, b+ 1, . . . is a non-increasing

sequence. Moreover, as g
(a),s
b ∈ S(a) can be written as an oL-linear combination

of the f
(a)
i ’s and each f

(a)
i is of degree i, we must have g

(a),s
b =

∑
0≤i≤b λif

(a)
i

for some λi ∈ oL; by looking at the leading coefficient, it follows that

νπ(γb(g
(a),s
b )) ≥ νπ(γb(f

(a)
b )) ≥ −wq(a+ b(q − 1)).

These observations motivate us to look at the following

Definition A.3.2. For n = a+ b(q − 1), let s0(n) be the minimal s ≥ b such

that (g
(a),s
b )0≤b≤s satisfies νπ(γb(g

(a),s
b )) = −wq(n), if such s exists; otherwise

set s0(n) =∞.

Then whenever s ≥ s0(n) in the computations, we can immediately conclude

that the equality νπ(γb(f
(a)
b )) = −wq(a + b(q − 1)) in Lemma A.2.3 holds for

this n = a+ b(q − 1).
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We may thus make a small optimisation: at any stage s, if s ≥ s0(a+b(q−1))
for all 0 ≤ b < d then we can just drop the last d columns when carrying out
Gaussian elimination. Indeed for all s′ > s it is unnecessary to compute

(g
(a),s′

b )0≤b<d as the π-adic valuation of each leading term has already hit the

desired minimum, and to compute the leading terms of (g
(a),s′

b )d≤b≤s′ we do
not need the lower-order terms in the last d columns.

Figure 1. extension = "3,2,800,ram" — s0(n) in the qua-

dratic ramified extension Q3(
√

3) for n < 800. Red points are
the n’s for which s0(n) ≥ 800.

A.4. Data. For reference, the computations in Figure 1 took

• 227.04 seconds for D;
• 616.45 seconds for τ (0) and 616.43 seconds for τ (1);
• 0.20 seconds for s = 50, 1.89 seconds for s = 100, 6.15 seconds for
s = 150, 12.09 seconds for s = 200, etc. for a = 0, and slightly less for
a = 1.

We see that s0(n) − b seems to depend on the p-adic digits of n; we only
managed to prove a special case of this pattern, which we will discuss below.
Nonetheless, the data do suggest that s0(n) is finite for every n and hence that
Int(oL, oL) is spanned by the σi,j ’s as an oL-module.

A similar pattern emerges for larger p and unramified extensions: see Fig-
ures 2 and 3 below.

More data and plots can be found at our GitHub repository https://

github.com/Team-Konstantin/Bounded-Functions-on-Character-Varieties/

tree/writeup.
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Figure 2. extension = "17,2,3216,ram" — s0(n) in the

quadratic ramified extension Q17(
√

17) for n < 3216. Note
that red points are the n’s for which s0(n) ≥ 3216 — not
enough computation was done to unveil the pattern for the
larger n’s!

Figure 3. extension = "5,3,12524,unram" — s0(n) in the
cubic unramified extension of Q5 for n < 12524. Again, note
how the red points — the n’s for which s0(n) ≥ 12524 — give
the illusion of s0(n)− b decreasing.

A.5. Some results.

Definition A.5.1. Given a natural number n, let sq(n) be the sum of digits
of n in base q.
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Recall Definition A.3.2:

Definition. For n = a + b(q − 1), let s0(n) be the minimal s ≥ b such that

(g
(a),s
b )0≤b≤s satisfies νπ(γb(g

(a),s
b )) = −wq(n), if such s exists; otherwise set

s0(n) =∞.

We define the following more intuitive quantity:

Definition A.5.2. For n = a+b(q−1), let Cap(n) = a+bs0(n). Alternatively,
Cap(n) is the minimal N ≥ n such that the oL-span of {σi,j : 0 ≤ i ≤ j ≤ N}
contains a polynomial of degree n and π-valuation of the leading term −wq(n).

Here, the equivalence of the two definitions follows from the definition of s0(n).
Let n = a + b(q − 1). Analysing the computational results, we are led to

believe that, if sq(n) < p, then s0(n) = b. This is made clear by the following:

Theorem A.5.3. Let n be a positive integer such that sq(n) < p. Let j = n
and i = sq(n). Then σi,j is a polynomial of degree n, with π-valuation of
leading term equal to −wq(n).

Recall the definition of the polynomials cn(Y ) from [31]:

[Y ](t) =

∞∑
n=1

cn(Y )tn

Translating the definition of the polynomials σi,j(Y ) and using Lemma 4.3.8,
we get:

([Y ](t))i =

( ∞∑
n=1

cn(Y )tn

)i
=

∞∑
j=i

σi,j(Y )tj .

Using the binomial theorem, this gives:

σi,j =
∑

n1+n2+...+ni=j

cn1cn2 . . . cni

Of course, for i = 1 we obtain σ1,j = cj . So, the proof of the Theorem 3.1
in [31] shows that Cap(n) = n for n equal to some power of q. We will extend
this result to all n that have sq(n) < p, where sq(n) is the sum of digits of n,
written in base q. For this, we need the following lemma:

Lemma A.5.4. Let n1, n2, . . . , ni be positive integers. Then, wq(n1)+wq(n2)+
. . . + wq(ni) ≤ wq(n1 + n2 + . . . + ni). Equality holds if and only if sq(n1) +
sq(n2) + . . .+ sq(ni) = sq(n1 + n2 + . . .+ ni), that is, if there is ”no carrying”
in the sum n1 + n2 + . . .+ ni.

Proof. Direct calculations show that

wq(n) =
n− sq(n)

q − 1
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Substituting into our inequality, we need to prove

sq(n1) + sq(n2) + . . .+ sq(ni) ≥ sq(n1 + n2 + . . .+ ni)

which can be checked by direct calculations or by induction. Equality holds in
the initial inequality if and only if it holds here, which is to say there is ”no
carrying” in the sum n1 + n2 + . . .+ ni. �

Now, we are ready for:

Proof of Theorem A.5.3. Recall that

σi,j =
∑

n1+n2+...+ni=j

cn1cn2 . . . cni

where each ck is a polynomial of degree at most k, with π-valuation of the
leading term at least −wq(n) (as it is in Int(oL, oL)).

Let’s look at each of the terms cn1cn2 . . . cni . As each ck has degree at most
k, this contributes to the coefficient of Y k in σi,j if and only if deg(cn1

) =
n1,deg(cn2

) = n2, . . . ,deg(cni) = ni. For the moment, assume this is the case.
Then, the coefficient of Y n in this product is the product of leading coefficients
of the cni ’s, which has π-valuation at least −(wq(n1) +wq(n2) + . . .+wq(ni)).
Now, using Lemma A.5.4, this is at least −wq(n1 + n2 + . . . + ni) = −wq(n),
with equality if and only if sq(n1)+sq(n2)+. . .+sq(ni) = sq(n) = i, so the ni’s
are powers of q. That is, the only contribution to the coefficient of Y n in σi,j
that has small enough valuation comes from permutations of the unique way of
writing n as a sum of i powers of q. In other words, if n = brbr−1 . . . b1b0(q) is
the writing of n in base q, then the only terms that have a possible contribution
are obtained when (n1, n2, . . . , ni) is a permutation of (q0, q0, . . . , q1, . . . , qr),
where each qk appears bk times.

But, by [31], when k is a power of q, ck is a polynomial of degree exactly k,
with π-valuation of leading term exactly −wq(k). So, when (n1, n2, . . . , ni) is
a permutation as above, the product cn1cn2 . . . cni is a polynomial of degree n,
with π-valuation of leading term equal to −wq(n). Moreover, as proved before,
if (n1, n2, . . . , ni) is not such a permutation, the product cn1

cn2
. . . cni has the

coefficient of Y n either 0 or of π-valuation larger than −wq(n).

As there are
(

i
b0,b1,...,br

)
such permutations, with p -

(
i

b0,b1,...,br

)
(because

i < p by the initial assumption on n), the final sum σi,j has degree n, with
π-valuation of leading term −wq(n). �

Definition A.5.2 then gives:

Corollary A.5.5. Let n be a positive integer such that sq(n) < p. Then
Cap(n) = n.

A.6. SageMath Code. (tested on Sage 9.4)

1 extension = "3,2,100,ram" # Choose the extension to compute with

2 precision = 1000 # Choose the precision that Sage will use

3

4 parse = extension.split(’,’)
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5 p = int(parse [0]) # Prime to calculate with

6 d = int(parse [1]) # Degree to calculate with

7 N = int(parse [2]) # Cutoff; must be divisible by q-1

8 ram = parse [3]

9

10

11 # Python imports

12 from time import process_time

13 import matplotlib.pyplot as plt

14 import numpy as np

15

16 # Definitions

17 from sage.rings.padics.padic_generic import ResidueLiftingMap

18 from sage.rings.padics.padic_generic import ResidueReductionMap

19 import sage.rings.padics.padic_extension_generic

20

21 power = p^d - 1

22 t_poly = ""

23

24 if ram == "ram":

25 t_poly = f"x^{d}-{p}"

26 else:

27 # generate poly for unramified case

28 Fp = GF(p)

29 Fp_t.<t> = PolynomialRing(Fp)

30 unity_poly = t^(power) - 1

31 factored = unity_poly.factor ()

32 factored_str = str(factored)

33 start = factored_str.find("^"+str(d))

34 last_brac_pos = factored_str.find(")",start)

35 first_brac_pos = len(factored_str) \

36 - factored_str [:: -1]. find("(",len(factored_str)-start)

37 t_poly = factored_str[first_brac_pos:last_brac_pos ]. replace(’t’,’x’)

38

39

40 # Define the polynomial to adjoin a root from

41 Q_p = Qp(p,precision)

42 R_Qp.<x> = PolynomialRing(Q_p)

43 f_poly = R_Qp(t_poly)

44

45 # Define the p-adic field , its ring of integers and its residue field

46 # These dummy objects are a workaround to force the precision wanted

47 dummy1.<y> = Zp(p).ext(f_poly)

48 dummy2.<y> = Qp(p).ext(f_poly)

49

50 o_L.<y> = dummy1.change(prec=precision)

51 L.<y> = dummy2.change(prec=precision)

52 k_L = L.residue_field ()

53 print(L)
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54

55 # Find the generator of the unique maximal ideal in o_L.

56 Pi = o_L.uniformizer ()

57

58 # Find f, e and q

59 f = k_L.degree () # The degree of the residual field extension

60 e = L.degree ()/k_L.degree () # The ramification index

61 q = p^f

62

63 # Do linear algebra over the ring of polynomials L[X]

64 # in one variable X with coefficients in the field L:

65 L_X.<X> = L[]

66 L_Y.<Y> = L[]

67

68 v = L.valuation ()

69

70 # The subroutine Dmatrix calculates the following sparse matrix of coefficients .

71 # Let D[k,n] be equal to k! times the coefficient of Y^k in the polynomial P_n(Y).

72 # I compute this using the useful and easy recursion formula

73 # D[k,n] = \sum_{r \geq 0} \pi^{-r} D[k-1,n-q^r]

74 # that can be derived from Proposition 4.3.2.

75 # The algorithm is as follows: first make a zero matrix with S rows and columns

76 # (roughly , S is (q -1)* Size), then quickly populate it one row at a time ,

77 # using the recursion formula.

78 def Dmatrix(S):

79 D = matrix(L, S,S)

80 D[0,0] = 1

81 for k in range(1,S):

82 for n in range(k,S):

83 r = 0

84 while n >= q^r:

85 D[k,n] = D[k,n] + D[k-1,n-q^r]/Pi^r # the actual recursion

86 r = r+1

87 return D

88

89

90 # \Tau ^{(m)} in Definition 4.3.11:

91 def TauMatrix(Size , m, D=None):

92 if D is None:

93 D = Dmatrix ((q - 1) * (Size + 1))

94 R = matrix(L, Size ,Size , lambda x,y: D[m + (q-1)*x, m + (q-1)*y])

95

96 # Define a diagonal matrix:

97 Diag = matrix(L_X , Size ,Size , lambda x,y: kronecker_delta(x,y) * X^x)

98

99 # Compute the inverse of R:

100 S = R.inverse ()

101

102 # Compute the matrix Tau using Lemma 4.3.12:
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103 Tau = S * Diag * R

104

105 return Tau

106

107 def underscore(m, i):

108 return m + i*(q-1)

109

110 def w_q(n):

111 return (n - sum(n.digits(base=q))) / (q-1)

112

113 def compute_s(N, filename=None):

114 assert N%(q-1) == 0

115

116 t_start = process_time ()

117 D = Dmatrix(N)

118 t_end = process_time ()

119 print(f"D matrix: {t_end -t_start : .2f} sec")

120

121 s0_s = [-1 for _ in range(N)]

122

123 for a in range(q-1):

124 t_start = process_time ()

125 Tau_a = TauMatrix(N//(q-1), a, D)

126 t_end = process_time ()

127 print(f"a={a}, Tau matrix: {t_end -t_start : .2f} sec")

128

129 B_old = Matrix (0,0)

130 d = 0

131 for s in range(N // (q-1)):

132 t_start = process_time ()

133

134 # 1. Use the non -zero rows from previous calculations

135 # 2. Add a 0 column to its left

136 # 3. Add rows corresponding to entries from the j_th column of Tau_a

137 B = Matrix(L, 2*s-d+1, s-d+1)

138 B[0,0] = 1 # Tau_a[s, s]

139 B[1:s-d+1, 1:] = B_old

140 for i in [0 .. s-1]:

141 coeffs = Tau_a[i, s].list()

142 B[s-d+1+i, B.ncols()-len(coeffs )+d:] = vector(L, reversed(coeffs[d:]))

143

144 # Perform Gaussian elimination

145 i0 = 0

146 ks = []

147 for k in range(B.ncols ()):

148 valuation_row_pairs = [

149 (v(B[i,k]), i) for i in range(i0, B.nrows ()) if B[i,k] != 0]

150

151 if not valuation_row_pairs:
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152 raise ValueError("B is not full -rank")

153 minv , i_minv = min(valuation_row_pairs)

154 ks.append(k)

155

156 # Swap the row of minimum valuation with the first bad row

157 B[i0, :], B[i_minv , :] = B[i_minv , :], B[i0, :]

158

159 # Divide the top row by a unit in o_L

160 u = B[i0, k] / Pi^int(e * v(B[i0, k]))

161 B[i0, :] /= u

162

163 # Cleave through the other rows

164 for i in range(i0 + 1, B.nrows ()):

165 if v(B[i, k]) >= v(B[i0, k]):

166 B[i, :] -= B[i, k]/B[i0, k] * B[i0, :]

167

168 i0 += 1

169

170 d_is_updated = False

171 for b in [d .. s]:

172 n = a + b*(q-1)

173 if v(B[s-b, s-b]) * e == -w_q(n):

174 if s0_s[n] == -1:

175 s0_s[n] = s

176 else:

177 if not d_is_updated:

178 d = b

179 d_is_updated = True

180 B_old = B[:s-d+1, :s-d+1]

181

182 t_end = process_time ()

183 print(f"a={a}, s={s}: {t_end -t_start : .2f} sec", end=’\r’)

184 if filename is not None:

185 with open(filename , ’w’) as f:

186 f.write("n,s0\n")

187 for n, s0 in enumerate(s0_s):

188 f.write(f"{n},{s0}\n")

189 print()

190

191 plt.style.use(’bmh’)

192 fig = plt.figure(figsize =(15,6), dpi =300)

193 for n, s0 in enumerate(s0_s):

194 if s0 != -1:

195 b = n // (q-1)

196 plt.plot(n, s0 -b, ’x’, c=’C0’)

197 else:

198 plt.plot(n, 0, ’x’, c=’C1’)

199 plt.xlabel(r"$n = a + b(q-1)$")

200 plt.ylabel("$s_0(n) - b$")
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201 plt.title(str(L))

202 plt.minorticks_on ()

203 plt.grid(which=’both’)

204 plt.grid(which=’major ’, linestyle=’-’, c=’grey’)

205

206 return s0_s , fig

207

208

209 s0_s = compute_s(N);
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