GALOIS MEASURES AND THE KATZ MAP

by

Laurent Berger

Abstract. — The purpose of this paper is to explain the proofs of the results announced
by Nick Katz in 1977, namely a description of “Galois measures for Tate modules of height
two formal groups over the ring of integers of a finite unramified extension of Q,”.
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Introduction

The purpose of this paper is to explain the proofs of the results announced by Nick
Katz in 1977, namely a theory of “Galois measures for Tate modules of height two formal
groups over the ring of integers of a finite unramified extension of Q,”. As Katz writes
in the introduction of [Kat81], these results were announced in [Kat77] but “the details
of this general theory remain unpublished”.

In the author’s joint paper [AB24] with Konstantin Ardakov, Katz’ results were proved
in the case of a Lubin-Tate formal group attached to a uniformizer of Q2 (theorem 1.6.1
of [AB24]). In the present paper, we simplify and clarify that proof, and extend it to all

height two formal groups. We now describe our results in more detail.
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Formal groups. — Let K be a finite unramified extension of Q, with ring of integers
Ok and residue field k. Let Q, be an algebraic closure of K, let Gx = Gal(Q,/K) and
let C, be the completion of Qp. Let G be a formal group of dimension 1 and height 2
over Ok. Let A(G) = Ok[X] denote the coordinate ring of G.

Let H be the Cartier dual of G (denoted by GV in [Kat77]), so that (cf [Tat67]) H
is also a formal group of dimension 1 and height 2. The Tate module T, H parameterizes
all formal group homomorphisms G — Gy, over Og,. They are given by power series
t(X) € Oc, ® A(G) = Oc, [ X] such that t(0) =1 and t(X ¢ Y) = t(X) - t(Y).

The covariant bialgebra of G. — Let U(G) be the covariant bialgebra of G (we use
U(G) instead of Katz’ algebra Diff(G) of translation-invariant differential operators on
G. We have U(G) ~ Diff(G), see lemma 2.1). The set U(G) is the set of all Og-linear
maps A(G) — Ok that vanish on some power of the augmentation ideal. If f,g € U(G),
their product is defined by (f - g)(a(X)) = (f @ g)a(X ®¢ Y) if a(X) € A(G).

Let U(G) denote the set of Og-linear maps A(G) — Ok that are continuous for
the (p, X)-adic topology, so that U(G) is the p-adic completion of U(G). Let (-,-) :

~

U(G) x A(G) = Ok denote the evaluation pairing.

The Katz map. — Let CQ,(T,H,Oc,) denote the Ox-module of Galois continu-
ous functions, namely those functions f : T,H — Oc, that are continuous and G-
equivariant: f(o(t)) = o(f(t)) for all t € T,H and o € Gk.
The evaluation pairing extends to (-,-) : U(G) x (Oc, ® A(G)) = Og,. Ifu e U(G),
then ¢ — (u, (X)) is a Galois continuous function T,H — Oc¢,. The Katz map is
K1 0(G) = (T, H, Oc,),

defined by IC(u)(t) = (u,t(X)) (this is the map (x) on page 59 of [Kat77]).

Galois measures. — Let S be a p-adically complete and separated flat Og-algebra.
Applying the functor Homoe, (-, S) to K : U(G) — C%, (T, H, Oc,) gives an S-linear map
(the map () on page 59 of [Kat77])

K* : Homo, (Cou(T,H, Og,), S) — S & A(G).
If f(X) € S®A(G), let ¥ f € S[1/p] ® A(G) be defined by (compare with §I1I of [Col79))
2

1
WHple(X)) == > f(Xegn).
TEGIp]
We say that f(X) € S® A(G) is y-integral if Y"f € S® A(G) for all n > 0. The main
result claimed by Katz (see page 60 of [Kat77]) is the following.
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Theorem A. — The map K* is injective, and its image is the set of Y-integral power
series f(X) € S® A(G).
Moreover, a Galois measure ju is supported on T*H if and only if (K*(u)) = 0.

Main results. — The main result of this paper is a proof of theorem B below. Choose

~

an element t = (to,t1,...) € T)H = T,H \ p-T,H and let K; : U(G) — Og, denote
the map u — K(u)(t). Let K denote the completion of the field generated over K by
the t,, for n > 1. Since K(u) is Gg-equivariant, the Ax-Sen-Tate theorem implies that
K(u)(t) € Ok, forallt e T,H.

~

Theorem B. — The map K is injective, and the map Ky : U(G) — Ok, is surjective.

Theorem A follows from theorem B by mostly formal arguments, that are carried out
in detail in [AB24] for the Lubin-Tate case, see in particular coro 3.4.10 of ibid (the

“r . G — of is surjective” is replaced here by “Gg acts transitively on

hypothesis
TYH”, cf lemma 1.1 below). To keep this paper short, we focus on proving theorem B.
Besides clarifying the arguments of §3 of [AB24], our proof also shows that U(G) has a
perfectoid-like nature. In particular, the injectivity of K is related to the following result
in p-adic Hodge theory (cf 5.1.4 of [Fon94], and its Lubin-Tate generalizations such as

prop 9.6 of [Col02]): {x € A such that 6o ¢"(z) =0 for all n > 0} = 7 - A¥.

1. Preliminaries

In all this paper, we let ¢ = p?>. The multiplication-by-p map on G is given by a power
series [pla(X) = Y51 1 X" with vy = p and r; € pOk for i < ¢ —1 and r, € Of.

Lemma 1.1. — Ift,u € T)H, there exists 0 € G such that u = o(t).

Proof. — For all n > 0, in the Weierstrass factorization of [p" ™|y (X)/[p"]z(X), the
distinguished polynomial is Eisenstein, as its constant term is p and K/Q,, is unramified.

Its roots are therefore conjugate by Gy . [
Lemma 1.2. — There is a change of variables such that [p]a(X) = pX + O(X9).

Proof — If 7(X) = Y2 X", then r(X) + X9 is a Lubin Tate power series for the
uniformizer p, so by lemma 1 of [LT65] there exists a reversible power series h(X) such
that h™'o (r(X)+ X9 oh = pX + X9 We then have h™'o[p]a(X)oh = pX +O(X?). O

A coordinate satisying the above conditions is said to be clean. Let log,(X) € K[X]
denote the logarithm attached to the formal group G.



4 LAURENT BERGER

Lemma 1.8. — If X is clean, thenlog,(X) = X+a-X?/p+0O(X9™) for some o € O

Let ¢ be an element of T,H = Homog (G,Gm), and let ¢(X) = 1+ X ai(t) X' €
Oc,[X] be the corresponding Hom from G to Gy,.

Lemma 1.4. — If o € Gk then a,(0o(t)) = o(an(t)) for alln > 1.

Proof. — The isomorphism T,H = Hom@CP(G, G.) is Gk-equivariant. O
Lemma 1.5. — We have a,,(t) = a1 (t)"/n! if n < ¢—1 and a,(t) = a1(t)?/q!+a-a.(t) /p.
Proof. — Since t(X) = exp(ai(t) - log(X)), the claim follows from lemma 1.3. O

Proposition 1.6. — Ift € T H, the abscissa of the breakpoints of the Newton polygon
of t(X) — 1 are the p™ with m > 0, and val,(aym(t)) = 1/p™ (¢ —1) for allm > 0.

Proof. — The Newton polygon of £(X) — 1 is independant of the choice of coordinate X,
and we choose a clean coordinate on G. We first prove that val,(a:(t)) < p/(¢ —1). Let
¢ be a primitive p-th root of 1. Since ¢ € T*H, there exists n € G[p] such that t(n) = ¢.
We have val,(n) = 1/(¢ — 1) and val,(( —1) = 1/(p — 1). Since X is a clean coordinate
on G, we have a,(t) = a;(t)"/n! if n < ¢—1 by lemma 1.5. If val,(a1) > p/(¢ — 1), then
for n < ¢

n! B

L (a,(t)n") = val / ,
val, (a, (8)7") = val, (et e I

while val,(n™) = n/(¢g—1) > 1if n > ¢. It is therefore not possible to have t(n)—1 = (—1,
so that val,(ai(t)) < p/(¢—1).

For every m > 1, t(X) — 1 has p™ — p™~! zeroes in G[p™] \ G[p™ '] and they are all of
valuation 1/(¢"™ — ¢™ ). Since Y5, (p™ —p™ )/ (¢™ — ¢ ') = p/(¢ — 1), the theory
of Newton polygons tells us that val,(a;(t)) = p/(¢ — 1), and then that ¢(X) — 1 cannot
have other zeroes.

The valuations of the a,m(t) can then be read off the Newton polygon of t(X) —1. [

n77n> >np+n_n—sp(n) _Sp(n) > 1

Remark 1.7 —
1. Compare with coro 3.5.8 of [AB24];
2. Compare with the proof of lemma 13 of [Box86];
3. Prop 1.6 applied to m = 0 gives us lemma 1 on page 62 of [Kat77];
4. Lemma 1.5 and the fact that val,(a,(t)) = 1/p(¢ — 1) imply that val,(a;(t) -
(a1(t)* /¢! + a/p)) = 1/p(q¢ — 1) and hence val,(a; ()7 'p/ag! + 1) = 1 — 1/p,
compare with lemma 2 on page 63 of [Kat77].
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2. The Katz map

Let C¢u(T,H,Oc,) denote the set of Galois continuous functions f : T,H — Oc,,
namely those maps that are continuous and Gk-equivariant: f(o(t)) = o(f(t)) for all
t € T,H and 0 € Gg. By lemma 1.1, any two elements of p" - T *H are Galois conjugates,
so if we fix t € TH, a function f € C@,(T,H, Oc,) is determined by {f(p"t)}n>0. In
addition, we have f(p"t) — f(0) as n — o0 by continuity, and f(0) € Ok by the
Ax-Sen-Tate theorem since f(0) is fixed by G.

Write ¢t = (t9,t1,...) € T,H and let K, denote the extension of K generated by
t, and let K, be the completion of U,>¢K,. By the Ax-Sen-Tate theorem, we have
f(p"t) € Ok, for all n. Let [T),5, Ok, denote the Og-algebra of sequences { f,, }n>0 with
fn € Ok, and such that {f,},>0 converges to an element of O as n — +oo. The map
f = {f(P"t)}nzo gives an isomorphism Cg,(T,H, Oc,) = 1,50 Ok..-

Recall that U(G) is the covariant bialgebra of G, namely the set of all Ok-linear maps
A(G) — Ok that vanish on some power of the augmentation ideal. If f, g € U(G), their
product is defined by (f - g)(a(X)) = (f ® g)a(X ®¢ Y). In [Kat77] and [Kat81], Katz

introduces the algebra Diff(G) of translation-invariant differential operators on G.

Lemma 2.1. — If D € Diff(G), then [f — D(f)(0)] € U(G), and this map gives rise
to an isomorphism between the Ok-algebras Diff (G) and U(G).

Proof. — The proof is the same as that in §3.2 of [AB24] for the Lubin—Tate case: for
n >0, let u, € U(G) be the map u, : A(G) — Ok given by 4, (X0 b:X") = b,. We
have y, - Up, = Yg>0 Skn,mUe Where (X O¢ Y)k = > om0 SkamX Y™ for k>0, and we

get the same structure constants as in Diff(G), see for instance (1.2) of [Kat81]. O

Recall that U(G) denotes the set of O-linear maps A(G) — O that are continuous for
the (p, X)-adic topology, so that U(G) is the p-adic completion of U(G). The evaluation
pairing (-,-) : U(G) x A(G) — Ok extends to (-,-) : U(G) x (Og, ® A(G)) — Og,.

Definition 2.2. — The Katz map is the map K : U(G) — C%,,(T,H, Oc,) defined by
K(u)(t) = (u, t(X)).

The map K(u) : T,H — Og, is Galois continuous by lemma 1.4. The Katz map K is an
Ok-algebra homomorphism (the proof is the same as that of lemma 3.3.5 of [AB24]). Let
oo : Ceu(T,H, Og,) — Ceu(T,H, Oc,) denote the map given by (ocf)(t) = f(pt). We
have a map U(pg) : U(G) — U(G) coming by duality from the map ¢¢ : A(G) — A(G)
given by a(X) — a([pla(X)).
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Lemma 2.3. — We have K o U(pg) = ¢c o K.

Proof. — The proof is the same as that of lemma 3.3.6 of [AB24], where U(pg) is
denoted by *. O]

Remark 2.4. — Since U(G) = {350 Antn, with {X, }s0 € ?(Ok)}, and u, (¢(X)) =

a,(t), we can reformulate theorem B as follows.

1. Ift € T)H, every x € O, can be written as x = 3,59 Anan(t) with {A\,} € *(Ok);
2. If {\,} € (Ok) and 3,50 Anan(t) = 0 for all t € T,H, then A, = 0 for all n.

3. Surjectivity

~

We now prove that C; : U(G) — Ok, is surjective if t = (t,t1,...) € TH.

For n > 0, let G,, = G[p"] and H,, = H[p"] and recall that K,, = K (t,). The inclusion
G, — Gpy s (§2.3 of [Tat67]) the Cartier dual of [p|y : Hyy1 — H, (and vice versa).
We have A(G,) = Ox[X]/¢4(X). Let U(G,) = Homp, (A(Gy), Ox) C U(G). Cartier
duality gives an isomorphism U(G,) = A(H,), so that U(G,) = Ok[Y.]/¥k(Ys). On
U(G,), we have U([plg) = [p|u so that U(pg) = ¢u. The natural inclusion U(G,,) —
U(Gpy1) is the map A(H,,) — A(H,1) that comes from [p|g : H,41 — H,. Its image is
o (U(Gnt1)). HU(GL)k = K ®0, U(Gy,), then

U(Gn)k = K @0, Ok[Yal/eh(Yn) = Ky X Kjq X -+ X Ky X K.

Fix t € T)H. Forn > 0, let r, : U(G) — Ok denote the map u — K(u)(p™t).
Lemma 2.3 implies that x,(vp(u)) = kpy1(u) if uw € U(G,,) for some m,n > 0.

Proposition 3.1. — For alln > 1, the image of the map ko : U(G,)x — Koo is K.

Proof. — We first prove that the image of ko : U(G,)x — K is contained in K,. By
Cartier duality, we have H,, = Homog (G, Gm), and the map ¢,(X) € Homog (Grn, Gm)
corresponding to ¢, is given by ¢(X) mod ¢%(X). We then have

tn(X) S Ocp X A(Gn) = HOIIl@Cp (Ocp X U(Gn), Ocp)

The resulting map U(G,)x — C, is given by u — u(t(X) mod ¢ (X)) = u(t), namely
the restriction of kg to U(G)k. Forall 0 € G, , o(t,) = t, and hence o(t,(X)) = t,,(X)
so that o(ko(u)) = ko(u) if u € U(G,)k. By the Ax-Sen-Tate theorem, ro(u) € K.

We now prove that the image of k¢ is K,,. Let [p"]¢(X) = f(X)u(X) be the Weierstrass
factorization of [p"]c(X), where f(X) is a distinguished polynomial of degree ¢" and u(X)
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is a unit. Thanks to Weierstrass division by f(X), we can write
Ox[X] = (BLy Ok X") @ f(X)Ok[X].

For 0 < r < ¢"—1, let w, € U(G,)x be the Og-linear form that maps X* to ;. for
i < ¢" — 1 and maps f(X)Og[X] to 0. It maps X/T" to pOg for all j > 0 since
FX) = fp X7 + pg(X) with fn € OF and hence fn X7+ = XJ f(X) — pXJg(X).

By prop 1.6, we have val,(a,n(t)) = 1/p™ (¢ —1) for all m > 0. In particular, setting
m = 2n — 1, so that p™ = ¢"/p < ¢" — 1, we have val,(a,m= (t)) =1/¢"'(qg —1). We have

Ko(Wpzn—1) = wpzn—1(t(X)) = apm (t) mod p,

so that ko(U(G,)k) contains a uniformizer of K, and is therefore equal to K. O
Remark 3.2. — Compare with (the proof of) prop 3.6.7 of [AB24].

Proposition 3.3. — Take n > 1 and fix an isomorphism U(G,) = Ok[Y]/e%(Y).

There exists (Up, Up_1, - - -, U1, Ug) withuy € Koo and [ply(ug) = up_1 for 1 <k <n and
w # 0 and ug = 0 such that the map k; : U(G,)x = K is given by P(Y') — P(u,_;)
if § <n, and by P(Y) — P(0) if j > n.

Proof. — For all j, there exists a root u,_; of ¢%(Y) in mg_ such that the K-algebra
map k; : K ®o, Ox[Y]/¢H(Y) — Ky is given by P(Y) — P(u,—;). In addition, we
have k;_1(pu(Y)) = £;(Y) so that [p|g(un—jt1) = Un—;.

We have k,(Y) = ko(¢(Y)) = 0 so that ug = 0, and finally since kg : U(G1)x — K
is surjective by prop 3.1, and

kn-1(U(Gn)x) = @& 0 ko(U(Gn)i) = ko9l (U(Gn))x) = ko(U(G1)k),

the element u; generates K; over K and so u; # 0. O
Corollary 3.4. — The map ko : U(G,) — Ok, is surjective for all n > 0.

Proof. — The map ko : U(G,) — Ok, is given by P(Y,) — P(u,) as in prop 3.3, so

that its image is Ok, since u,, is a uniformizer of . O

~

Corollary 3.5. — The map kg : U(G) — Ok, is surjective.

This proves the surjectivity part of Theorem B since kg = ;.
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4. Injectivity

We now prove the injectivity of the Katz map K : U(G) — C,,(T,H, Oc,). Recall that
U(G,) = Home, (Ox[X]/¢(X), Ok) and that we have an injection U(G,,) — U(G).

Lemma 4.1. — The Ox-module U,>1U(G,) is p-adically dense in U(G).

Proof. — Take k,d > 0 and u € U(G) such that u(XOx[X]) C p*O, and n > 1 such
that [p"]g(X) € (X9, pF). Let [p"]a(X) = f(X)u(X) be the Weierstrass factorization of
[p"]q(X), where f(X) is distinguished of degree ¢" and u(X) is a unit. Write Og[X] =
(BL Ok XN @ f(X)Ok[X]. Definew € U(G,) byw =uon1,X,..., X" and w =0
on f(X)Ok[X]. Tt j > 0, then X7+0" & f(X)Ox[X] + (8L 5 Ok X7) + p* Ok [X]. By
induction on j, we have w(X79") € p*Ox for all j > 0 and therefore w—u € pkﬁ(G). ]

The group Gk acts transitively on T*H by lemma 1.1, so that in the isomorphisms
U(G,) = Ok[Y.]/¢%(Ys), it is possible to change the coordinates Y, to get a common
u=(...,uy,up) for all U(G,)k in prop 3.3. We can then write U(G,,) = Ok[eg (Y)]/Y
for each n, with each transition map U(G,—1) = U(G,) sending Y to Y and the map &;
sending o7 (Y) to u,_;. Lemma 4.1 and the fact that U(G,) Np-U(G) = p- U(G,) for
all n > 0 imply that U(G) is the p-adic completion of U,>oOx[¢5"(Y)]/Y.

Let A be the p-adic completion of U,>oOk[py" (V)] and let 6 : A — Ok_ be the Ok-
linear ring homomorphism that sends ¢7"(Y) to u, so that U(G) = A/Y and ko = 6.

Let E denote the ring U,>0k[¢g" (Y)]. The valuation valy is compatibly defined on each
kleg"(Y)] and hence on E (indeed, ¢y (Y) € Y- k[Y]* so that if x € k[Y,,] C k[Yn11]
with Y, = ¢ (Yy41), then valy, , (z) = ¢ - valy, (2)).

Lemma 4.2. — Ifz € E, then x € Y - E if and only if valy (z) > 1.

Let 6 : E — Og_ /p be the k-linear ring homomorphism that sends ¢;"(Y') to u, so
that E = A/pA with compatible 6.

Lemma 4.3. — We have ker(6 : E — Ok /p) = Y/o5 (V) - E.

Proof. — It is enough to prove that for all n > 1, ker(6 : kJp"(Y)] — Ok, /p) is
generated by Y/p;'(Y). Let Q,(X) be the minimal polynomial of u, over K, so that
Qn(X) € Ok[X] is monic of degree ¢"*(q — 1). If P(X) € Ok[X], we can write it as
P = SQ, + R with degR < ¢""'(¢ —1). If P(u,) € p- Ok,, then R(u,) € p- Ok,
and since val,(u,) = 1/¢" (g — 1), this implies that R(X) € p - Ox[X]. The claim now
follows from this, and from the fact that 0(¢;"(Y')) = u, so that ker(f) is generated by
0 (V)7 @1 and hence by Y /o5t (Y) since o (Y) = Y- f(Y) with f(Y) € k[Y]*. O
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Proposition 4.4. — We have ker(6 : A — O ) =Y /og' (Y) - A.

Proof. — If x € ker(f), then T € E is also killed by # and is divisible by Y/¢z'(Y) in
E by lemma 4.3. We can therefore write = Y/ (Y) - 21 + py, with 21,5, € A and
0(y1) = 0. By induction, we can write x = Y/ ' (Y) - 21, + p*yp with zp, v, € A and
O(yr) = 0 for all £ > 1. Since A is p-adically complete, this implies the claim. ]

Proposition 4.5. — We have {z € A, O o o} (z) =0 foralln >0} =Y - A.

Proof. — One inclusion is clear, since 6 o % (Y) = 0 for all n > 0. We now prove the
reverse inclusion. Prop 4.4 shows that ker(§) = Y/og'(Y) - A and therefore that for
all j > 0, ker(f o ¢ly) = ¢ (Y) /o '(Y)-A. For n > 0, let I, denote the set of
z € A such that (6o ¢})(z) =0 for 0 < j < n. Since (8 0 ©%) (0 (V) /o5 "(Y)) # 0
if £ < j, and Y/ (V) - 05 (V)/or? (V) - 05"V (V) Joi (V) = Y/ (Y), we have
IL,=Y/o"(Y)-A. Let I =Ny>ol, ={x €A, 0o¢}(xz)=0 for all n > 0}.

The above reasoning and lemma 4.2 imply that in E, we have I = Y - E. Hence if
x €1, then T € Y - E. We can therefore write xt =Y - 1 + py; with ;1 € A and y; € .
By induction, we can write z = Y -z, + p*y;, with 7, € A and y, € I for all kK > 1. Since
A is p-adically complete, this implies the claim. O

Remark 4.6. — Compare with prop 9.6 of [Col02] (and 5.1.4 of [Fon94]), noting how-
ever that our E is not complete for the Y-adic topology. We could actually replace E
and A above with their Y-adic completions, since in any case U (G) = A/Y. In the
Lubin-Tate case, we would then have E = Ef and A = A% in the notation of ibid.

In general, pg(Y) = f(Y?) in k[Y] for some reversible f(Y) so that E is still perfect.
Corollary 4.7. — The map K : U(G) — C%,\(T,H, Oc,) is injective.

Proof. — 1If we write C2,\(T,H,Oc,) = [T\s0 Ok... then K : U(G) — Cou(T,H,Oc,)
comes from {0 o 9} }n>0 : A = 1,50 Ok, and the claim results from prop 4.5 above and
the fact that U(G) = A/Y by lemma 4.1. O

This finishes the proof of Theorem B.
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