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Introduction

The purpose of this paper is to explain the proofs of the results announced by Nick
Katz in 1977, namely a theory of “Galois measures for Tate modules of height two formal
groups over the ring of integers of a finite unramified extension of Qp”. As Katz writes
in the introduction of [Kat81], these results were announced in [Kat77] but “the details
of this general theory remain unpublished”.

In the author’s joint paper [AB24] with Konstantin Ardakov, Katz’ results were proved
in the case of a Lubin–Tate formal group attached to a uniformizer of Qp2 (theorem 1.6.1
of [AB24]). In the present paper, we simplify and clarify that proof, and extend it to all
height two formal groups. We now describe our results in more detail.
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Formal groups. — Let K be a finite unramified extension of Qp with ring of integers
OK and residue field k. Let Qp be an algebraic closure of K, let GK = Gal(Qp/K) and
let Cp be the completion of Qp. Let G be a formal group of dimension 1 and height 2
over OK . Let A(G) = OK [[X]] denote the coordinate ring of G.

Let H be the Cartier dual of G (denoted by G∨ in [Kat77]), so that (cf [Tat67]) H
is also a formal group of dimension 1 and height 2. The Tate module TpH parameterizes
all formal group homomorphisms G → Gm over OCp . They are given by power series
t(X) ∈ OCp ⊗̂A(G) = OCp [[X]] such that t(0) = 1 and t(X ⊕G Y ) = t(X) · t(Y ).

The covariant bialgebra of G. — Let U(G) be the covariant bialgebra of G (we use
U(G) instead of Katz’ algebra Diff(G) of translation-invariant differential operators on
G. We have U(G) ≃ Diff(G), see lemma 2.1). The set U(G) is the set of all OK-linear
maps A(G) → OK that vanish on some power of the augmentation ideal. If f, g ∈ U(G),
their product is defined by (f · g)(a(X)) = (f ⊗ g)a(X ⊕G Y ) if a(X) ∈ A(G).

Let Û(G) denote the set of OK-linear maps A(G) → OK that are continuous for
the (p,X)-adic topology, so that Û(G) is the p-adic completion of U(G). Let ⟨·, ·⟩ :
Û(G) × A(G) → OK denote the evaluation pairing.

The Katz map. — Let C0
Gal(TpH,OCp) denote the OK-module of Galois continu-

ous functions, namely those functions f : TpH → OCp that are continuous and GK-
equivariant: f(σ(t)) = σ(f(t)) for all t ∈ TpH and σ ∈ GK .

The evaluation pairing extends to ⟨·, ·⟩ : Û(G) × (OCp ⊗̂A(G)) → OCp . If u ∈ Û(G),
then t 7→ ⟨u, t(X)⟩ is a Galois continuous function TpH → OCp . The Katz map is

K : Û(G) → C0
Gal(TpH,OCp),

defined by K(u)(t) = ⟨u, t(X)⟩ (this is the map (∗) on page 59 of [Kat77]).

Galois measures. — Let S be a p-adically complete and separated flat OK-algebra.
Applying the functor HomOK

(·, S) to K : Û(G) → C0
Gal(TpH,OCp) gives an S-linear map

(the map (∗∗) on page 59 of [Kat77])

K∗ : HomOK
(C0

Gal(TpH,OCp), S) → S ⊗̂A(G).

If f(X) ∈ S ⊗̂A(G), let ψf ∈ S[1/p] ⊗̂A(G) be defined by (compare with §III of [Col79])

(ψf)([p]G(X)) = 1
p2 ·

∑
π∈G[p]

f(X ⊕G π).

We say that f(X) ∈ S ⊗̂A(G) is ψ-integral if ψnf ∈ S ⊗̂A(G) for all n ≥ 0. The main
result claimed by Katz (see page 60 of [Kat77]) is the following.
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Theorem A. — The map K∗ is injective, and its image is the set of ψ-integral power
series f(X) ∈ S ⊗̂A(G).

Moreover, a Galois measure µ is supported on T×
pH if and only if ψ(K∗(µ)) = 0.

Main results. — The main result of this paper is a proof of theorem B below. Choose
an element t = (t0, t1, . . .) ∈ T×

pH = TpH \ p · TpH and let Kt : Û(G) → OCp denote
the map u 7→ K(u)(t). Let K∞ denote the completion of the field generated over K by
the tn for n ≥ 1. Since K(u) is GK-equivariant, the Ax-Sen-Tate theorem implies that
K(u)(t) ∈ OK∞ for all t ∈ TpH.

Theorem B. — The map K is injective, and the map Kt : Û(G) → OK∞ is surjective.

Theorem A follows from theorem B by mostly formal arguments, that are carried out
in detail in [AB24] for the Lubin–Tate case, see in particular coro 3.4.10 of ibid (the
hypothesis “τ : GL → o×

L is surjective” is replaced here by “GK acts transitively on
T×

pH”, cf lemma 1.1 below). To keep this paper short, we focus on proving theorem B.
Besides clarifying the arguments of §3 of [AB24], our proof also shows that Û(G) has a

perfectoid-like nature. In particular, the injectivity of K is related to the following result
in p-adic Hodge theory (cf 5.1.4 of [Fon94], and its Lubin–Tate generalizations such as
prop 9.6 of [Col02]): {x ∈ Ã+ such that θ ◦ φn(x) = 0 for all n ≥ 0} = π · Ã+.

1. Preliminaries

In all this paper, we let q = p2. The multiplication-by-p map on G is given by a power
series [p]G(X) = ∑

i≥1 riX
i with r1 = p and ri ∈ pOK for i ≤ q − 1 and rq ∈ O×

K .

Lemma 1.1. — If t, u ∈ T×
pH, there exists σ ∈ GK such that u = σ(t).

Proof. — For all n ≥ 0, in the Weierstrass factorization of [pn+1]H(X)/[pn]H(X), the
distinguished polynomial is Eisenstein, as its constant term is p and K/Qp is unramified.

Its roots are therefore conjugate by GK .

Lemma 1.2. — There is a change of variables such that [p]G(X) = pX + O(Xq).

Proof. — If r(X) = ∑q−1
i=1 riX

i, then r(X) + Xq is a Lubin–Tate power series for the
uniformizer p, so by lemma 1 of [LT65] there exists a reversible power series h(X) such
that h−1 ◦ (r(X)+Xq)◦h = pX+Xq. We then have h−1 ◦ [p]G(X)◦h = pX+O(Xq).

A coordinate satisying the above conditions is said to be clean. Let logG(X) ∈ K[[X]]
denote the logarithm attached to the formal group G.
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Lemma 1.3. — If X is clean, then logG(X) = X+α·Xq/p+O(Xq+1) for some α ∈ O×
K.

Let t be an element of TpH = HomOCp
(G,Gm), and let t(X) = 1 + ∑

i≥1 ai(t)X i ∈
OCp [[X]] be the corresponding Hom from G to Gm.

Lemma 1.4. — If σ ∈ GK then an(σ(t)) = σ(an(t)) for all n ≥ 1.

Proof. — The isomorphism TpH = HomOCp
(G,Gm) is GK-equivariant.

Lemma 1.5. — We have an(t) = a1(t)n/n! if n ≤ q−1 and aq(t) = a1(t)q/q!+α·a1(t)/p.

Proof. — Since t(X) = exp(a1(t) · logG(X)), the claim follows from lemma 1.3.

Proposition 1.6. — If t ∈ T×
pH, the abscissa of the breakpoints of the Newton polygon

of t(X) − 1 are the pm with m ≥ 0, and valp(apm(t)) = 1/pm−1(q − 1) for all m ≥ 0.

Proof. — The Newton polygon of t(X) − 1 is independant of the choice of coordinate X,
and we choose a clean coordinate on G. We first prove that valp(a1(t)) ≤ p/(q − 1). Let
ζ be a primitive p-th root of 1. Since t ∈ T×

pH, there exists η ∈ G[p] such that t(η) = ζ.
We have valp(η) = 1/(q − 1) and valp(ζ − 1) = 1/(p − 1). Since X is a clean coordinate
on G, we have an(t) = a1(t)n/n! if n ≤ q − 1 by lemma 1.5. If valp(a1) > p/(q − 1), then
for n < q

valp(an(t)ηn) = valp
(
a1(t)nη

n

n!

)
>
np+ n

q − 1 − n− sp(n)
p− 1 = sp(n)

p− 1 ≥ 1
p− 1 ,

while valp(ηn) = n/(q−1) > 1 if n ≥ q. It is therefore not possible to have t(η)−1 = ζ−1,
so that valp(a1(t)) ≤ p/(q − 1).

For every m ≥ 1, t(X) − 1 has pm − pm−1 zeroes in G[pm] \G[pm−1] and they are all of
valuation 1/(qm − qm−1). Since ∑

m≥1(pm − pm−1)/(qm − qm−1) = p/(q − 1), the theory
of Newton polygons tells us that valp(a1(t)) = p/(q − 1), and then that t(X) − 1 cannot
have other zeroes.

The valuations of the apm(t) can then be read off the Newton polygon of t(X) − 1.

Remark 1.7. —

1. Compare with coro 3.5.8 of [AB24];
2. Compare with the proof of lemma 13 of [Box86];
3. Prop 1.6 applied to m = 0 gives us lemma 1 on page 62 of [Kat77];
4. Lemma 1.5 and the fact that valp(aq(t)) = 1/p(q − 1) imply that valp(a1(t) ·

(a1(t)q−1/q! + α/p)) = 1/p(q − 1) and hence valp(a1(t)q−1p/αq! + 1) = 1 − 1/p,
compare with lemma 2 on page 63 of [Kat77].
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2. The Katz map

Let C0
Gal(TpH,OCp) denote the set of Galois continuous functions f : TpH → OCp ,

namely those maps that are continuous and GK-equivariant: f(σ(t)) = σ(f(t)) for all
t ∈ TpH and σ ∈ GK . By lemma 1.1, any two elements of pn ·T×

pH are Galois conjugates,
so if we fix t ∈ T×

pH, a function f ∈ C0
Gal(TpH,OCp) is determined by {f(pnt)}n≥0. In

addition, we have f(pnt) → f(0) as n → +∞ by continuity, and f(0) ∈ OK by the
Ax-Sen-Tate theorem since f(0) is fixed by GK .

Write t = (t0, t1, . . .) ∈ TpH and let Kn denote the extension of K generated by
tn and let K∞ be the completion of ∪n≥0Kn. By the Ax-Sen-Tate theorem, we have
f(pnt) ∈ OK∞ for all n. Let ∏′

n≥0 OK∞ denote the OK-algebra of sequences {fn}n≥0 with
fn ∈ OK∞ and such that {fn}n≥0 converges to an element of OK as n → +∞. The map
f 7→ {f(pnt)}n≥0 gives an isomorphism C0

Gal(TpH,OCp) → ∏′
n≥0 OK∞ .

Recall that U(G) is the covariant bialgebra of G, namely the set of all OK-linear maps
A(G) → OK that vanish on some power of the augmentation ideal. If f, g ∈ U(G), their
product is defined by (f · g)(a(X)) = (f ⊗ g)a(X ⊕G Y ). In [Kat77] and [Kat81], Katz
introduces the algebra Diff(G) of translation-invariant differential operators on G.

Lemma 2.1. — If D ∈ Diff(G), then [f 7→ D(f)(0)] ∈ U(G), and this map gives rise
to an isomorphism between the OK-algebras Diff(G) and U(G).

Proof. — The proof is the same as that in §3.2 of [AB24] for the Lubin–Tate case: for
n ≥ 0, let un ∈ U(G) be the map un : A(G) → OK given by un(∑

i≥0 biX
i) = bn. We

have un · um = ∑
k≥0 sk,n,muk where (X ⊕G Y )k = ∑

n,m≥0 sk,n,mX
nY m for k ≥ 0, and we

get the same structure constants as in Diff(G), see for instance (1.2) of [Kat81].

Recall that Û(G) denotes the set of OK-linear maps A(G) → OK that are continuous for
the (p,X)-adic topology, so that Û(G) is the p-adic completion of U(G). The evaluation
pairing ⟨·, ·⟩ : Û(G) × A(G) → OK extends to ⟨·, ·⟩ : Û(G) × (OCp ⊗̂A(G)) → OCp .

Definition 2.2. — The Katz map is the map K : Û(G) → C0
Gal(TpH,OCp) defined by

K(u)(t) = ⟨u, t(X)⟩.

The map K(u) : TpH → OCp is Galois continuous by lemma 1.4. The Katz map K is an
OK-algebra homomorphism (the proof is the same as that of lemma 3.3.5 of [AB24]). Let
φC : C0

Gal(TpH,OCp) → C0
Gal(TpH,OCp) denote the map given by (φCf)(t) = f(pt). We

have a map U(φG) : Û(G) → Û(G) coming by duality from the map φG : A(G) → A(G)
given by a(X) 7→ a([p]G(X)).
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Lemma 2.3. — We have K ◦ U(φG) = φC ◦ K.

Proof. — The proof is the same as that of lemma 3.3.6 of [AB24], where U(φG) is
denoted by φ∗.

Remark 2.4. — Since Û(G) = {∑
n≥0 λnun with {λn}n≥0 ∈ c0(OK)}, and un(t(X)) =

an(t), we can reformulate theorem B as follows.

1. If t ∈ T×
pH, every x ∈ OK∞ can be written as x = ∑

n≥0 λnan(t) with {λn} ∈ c0(OK);
2. If {λn} ∈ c0(OK) and ∑

n≥0 λnan(t) = 0 for all t ∈ TpH, then λn = 0 for all n.

3. Surjectivity

We now prove that Kt : Û(G) → OK∞ is surjective if t = (t0, t1, . . .) ∈ T×
pH.

For n ≥ 0, let Gn = G[pn] and Hn = H[pn] and recall that Kn = K(tn). The inclusion
Gn → Gn+1 is (§2.3 of [Tat67]) the Cartier dual of [p]H : Hn+1 → Hn (and vice versa).
We have A(Gn) = OK [[X]]/φn

G(X). Let U(Gn) = HomOK
(A(Gn),OK) ⊂ Û(G). Cartier

duality gives an isomorphism U(Gn) = A(Hn), so that U(Gn) = OK [[Yn]]/φn
H(Yn). On

U(Gn), we have U([p]G) = [p]H so that U(φG) = φH . The natural inclusion U(Gn) →
U(Gn+1) is the map A(Hn) → A(Hn+1) that comes from [p]H : Hn+1 → Hn. Its image is
φH(U(Gn+1)). If U(Gn)K = K ⊗OK

U(Gn), then

U(Gn)K = K ⊗OK
OK [[Yn]]/φn

H(Yn) = Kn ×Kn−1 × · · · ×K1 ×K0.

Fix t ∈ T×
pH. For n ≥ 0, let κn : Û(G) → OK∞ denote the map u 7→ K(u)(pnt).

Lemma 2.3 implies that κn(φH(u)) = κn+1(u) if u ∈ U(Gm) for some m,n ≥ 0.

Proposition 3.1. — For all n ≥ 1, the image of the map κ0 : U(Gn)K → K∞ is Kn.

Proof. — We first prove that the image of κ0 : U(Gn)K → K∞ is contained in Kn. By
Cartier duality, we have Hn = HomOCp

(Gn,Gm), and the map tn(X) ∈ HomOCp
(Gn,Gm)

corresponding to tn is given by t(X) mod φn
G(X). We then have

tn(X) ∈ OCp ⊗ A(Gn) = HomOCp
(OCp ⊗ U(Gn),OCp)

The resulting map U(Gn)K → Cp is given by u 7→ u(t(X) mod φn
G(X)) = u(t), namely

the restriction of κ0 to U(Gn)K . For all σ ∈ GKn , σ(tn) = tn and hence σ(tn(X)) = tn(X)
so that σ(κ0(u)) = κ0(u) if u ∈ U(Gn)K . By the Ax-Sen-Tate theorem, κ0(u) ∈ Kn.

We now prove that the image of κ0 is Kn. Let [pn]G(X) = f(X)u(X) be the Weierstrass
factorization of [pn]G(X), where f(X) is a distinguished polynomial of degree qn and u(X)
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is a unit. Thanks to Weierstrass division by f(X), we can write

OK [[X]] = (⊕qn−1
i=0 OKX

i) ⊕ f(X)OK [[X]].

For 0 ≤ r ≤ qn − 1, let wr ∈ U(Gn)K be the OK-linear form that maps X i to δir for
i ≤ qn − 1 and maps f(X)OK [[X]] to 0. It maps Xj+qn to pOK for all j ≥ 0 since
f(X) = fqnXqn + pg(X) with fqn ∈ O×

K and hence fqnXj+qn = Xjf(X) − pXjg(X).
By prop 1.6, we have valp(apm(t)) = 1/pm−1(q− 1) for all m ≥ 0. In particular, setting

m = 2n− 1, so that pm = qn/p ≤ qn − 1, we have valp(apm(t)) = 1/qn−1(q − 1). We have

κ0(wp2n−1) = wp2n−1(t(X)) ≡ apm(t) mod p,

so that κ0(U(Gn)K) contains a uniformizer of Kn and is therefore equal to Kn.

Remark 3.2. — Compare with (the proof of) prop 3.6.7 of [AB24].

Proposition 3.3. — Take n ≥ 1 and fix an isomorphism U(Gn) = OK [[Y ]]/φn
H(Y ).

There exists (un, un−1, . . . , u1, u0) with uk ∈ K∞ and [p]H(uk) = uk−1 for 1 ≤ k ≤ n and
u1 ̸= 0 and u0 = 0 such that the map κj : U(Gn)K → K∞ is given by P (Y ) 7→ P (un−j)
if j ≤ n, and by P (Y ) 7→ P (0) if j ≥ n.

Proof. — For all j, there exists a root un−j of φn
H(Y ) in mK∞ such that the K-algebra

map κj : K ⊗OK
OK [[Y ]]/φn

H(Y ) → K∞ is given by P (Y ) 7→ P (un−j). In addition, we
have κj−1(φH(Y )) = κj(Y ) so that [p]H(un−j+1) = un−j.

We have κn(Y ) = κ0(φn
H(Y )) = 0 so that u0 = 0, and finally since κ0 : U(G1)K → K1

is surjective by prop 3.1, and

κn−1(U(Gn)K) = φn−1
C ◦ κ0(U(Gn)K) = κ0(φn−1

H (U(Gn))K) = κ0(U(G1)K),

the element u1 generates K1 over K and so u1 ̸= 0.

Corollary 3.4. — The map κ0 : U(Gn) → OKn is surjective for all n ≥ 0.

Proof. — The map κ0 : U(Gn) → OK∞ is given by P (Yn) 7→ P (un) as in prop 3.3, so
that its image is OKn since un is a uniformizer of Kn.

Corollary 3.5. — The map κ0 : Û(G) → OK∞ is surjective.

This proves the surjectivity part of Theorem B since κ0 = Kt.
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4. Injectivity

We now prove the injectivity of the Katz map K : Û(G) → C0
Gal(TpH,OCp). Recall that

U(Gn) = HomOK
(OK [[X]]/φn

G(X),OK) and that we have an injection U(Gn) → Û(G).

Lemma 4.1. — The OK-module ∪n≥1U(Gn) is p-adically dense in Û(G).

Proof. — Take k, d ≥ 0 and u ∈ Û(G) such that u(XdOK [[X]]) ⊂ pkOK , and n ≥ 1 such
that [pn]G(X) ∈ (Xd, pk). Let [pn]G(X) = f(X)u(X) be the Weierstrass factorization of
[pn]G(X), where f(X) is distinguished of degree qn and u(X) is a unit. Write OK [[X]] =
(⊕qn−1

i=0 OKX
i)⊕f(X)OK [[X]]. Define w ∈ U(Gn) by w = u on 1, X, . . . , Xqn−1 and w = 0

on f(X)OK [[X]]. If j ≥ 0, then Xj+qn ∈ f(X)OK [[X]] + (⊕qn+j−1
i=d+j OKX

i) + pkOK [[X]]. By
induction on j, we have w(Xj+qn) ∈ pkOK for all j ≥ 0 and therefore w−u ∈ pkÛ(G).

The group GK acts transitively on T×
pH by lemma 1.1, so that in the isomorphisms

U(Gn) = OK [[Yn]]/φn
H(Yn), it is possible to change the coordinates Yn to get a common

u = (. . . , u1, u0) for all U(Gn)K in prop 3.3. We can then write U(Gn) = OK [[φ−n
H (Y )]]/Y

for each n, with each transition map U(Gn−1) → U(Gn) sending Y to Y and the map κj

sending φ−n
H (Y ) to un−j. Lemma 4.1 and the fact that U(Gn) ∩ p · Û(G) = p · U(Gn) for

all n ≥ 0 imply that Û(G) is the p-adic completion of ∪n≥0OK [[φ−n
H (Y )]]/Y .

Let A be the p-adic completion of ∪n≥0OK [[φ−n
H (Y )]] and let θ : A → OK∞ be the OK-

linear ring homomorphism that sends φ−n
H (Y ) to un so that Û(G) = A/Y and κ0 = θ.

Let E denote the ring ∪n≥0k[[φ−n
H (Y )]]. The valuation valY is compatibly defined on each

k[[φ−n
H (Y )]] and hence on E (indeed, φH(Y ) ∈ Y q · k[[Y ]]× so that if x ∈ k[[Yn]] ⊂ k[[Yn+1]]

with Yn = φH(Yn+1), then valYn+1(x) = q · valYn(x)).

Lemma 4.2. — If x ∈ E, then x ∈ Y · E if and only if valY (x) ≥ 1.

Let θ : E → OK∞/p be the k-linear ring homomorphism that sends φ−n
H (Y ) to un so

that E = A/pA with compatible θ.

Lemma 4.3. — We have ker(θ : E → OK∞/p) = Y/φ−1
H (Y ) · E.

Proof. — It is enough to prove that for all n ≥ 1, ker(θ : k[[φ−n
H (Y )]] → OK∞/p) is

generated by Y/φ−1
H (Y ). Let Qn(X) be the minimal polynomial of un over K, so that

Qn(X) ∈ OK [X] is monic of degree qn−1(q − 1). If P (X) ∈ OK [[X]], we can write it as
P = SQn + R with degR < qn−1(q − 1). If P (un) ∈ p · OKn , then R(un) ∈ p · OKn

and since valp(un) = 1/qn−1(q − 1), this implies that R(X) ∈ p · OK [X]. The claim now
follows from this, and from the fact that θ(φ−n

H (Y )) = un so that ker(θ) is generated by
φ−n

H (Y )qn−1(q−1) and hence by Y/φ−1
H (Y ) since φH(Y ) = Y q ·f(Y ) with f(Y ) ∈ k[[Y ]]×.
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Proposition 4.4. — We have ker(θ : A → OK∞) = Y/φ−1
H (Y ) · A.

Proof. — If x ∈ ker(θ), then x ∈ E is also killed by θ and is divisible by Y/φ−1
H (Y ) in

E by lemma 4.3. We can therefore write x = Y/φ−1
H (Y ) · x1 + py1 with x1, y1 ∈ A and

θ(y1) = 0. By induction, we can write x = Y/φ−1
H (Y ) · xk + pkyk with xk, yk ∈ A and

θ(yk) = 0 for all k ≥ 1. Since A is p-adically complete, this implies the claim.

Proposition 4.5. — We have {x ∈ A, θ ◦ φn
H(x) = 0 for all n ≥ 0} = Y · A.

Proof. — One inclusion is clear, since θ ◦ φn
H(Y ) = 0 for all n ≥ 0. We now prove the

reverse inclusion. Prop 4.4 shows that ker(θ) = Y/φ−1
H (Y ) · A and therefore that for

all j ≥ 0, ker(θ ◦ φj
H) = φ−j

H (Y )/φ−j−1
H (Y ) · A. For n ≥ 0, let In denote the set of

x ∈ A such that (θ ◦ φj
H)(x) = 0 for 0 ≤ j ≤ n. Since (θ ◦ φℓ

H)(φ−j
H (Y )/φ−j−1

H (Y )) ̸= 0
if ℓ < j, and Y/φ−1

H (Y ) · φ−1
H (Y )/φ−2

H (Y ) · · ·φ−(n−1)
H (Y )/φ−n

H (Y ) = Y/φ−n
H (Y ), we have

In = Y/φ−n
H (Y ) · A. Let I = ∩n≥0In = {x ∈ A, θ ◦ φn

H(x) = 0 for all n ≥ 0}.
The above reasoning and lemma 4.2 imply that in E, we have I = Y · E. Hence if

x ∈ I, then x ∈ Y · E. We can therefore write x = Y · x1 + py1 with x1 ∈ A and y1 ∈ I.
By induction, we can write x = Y · xk + pkyk with xk ∈ A and yk ∈ I for all k ≥ 1. Since
A is p-adically complete, this implies the claim.

Remark 4.6. — Compare with prop 9.6 of [Col02] (and 5.1.4 of [Fon94]), noting how-
ever that our E is not complete for the Y -adic topology. We could actually replace E
and A above with their Y -adic completions, since in any case Û(G) = A/Y . In the
Lubin–Tate case, we would then have E = Ẽ+

K and A = Ã+
K in the notation of ibid.

In general, φH(Y ) = f(Y q) in k[[Y ]] for some reversible f(Y ) so that E is still perfect.

Corollary 4.7. — The map K : Û(G) → C0
Gal(TpH,OCp) is injective.

Proof. — If we write C0
Gal(TpH,OCp) = ∏′

n≥0 OK∞ , then K : Û(G) → C0
Gal(TpH,OCp)

comes from {θ ◦φn
H}n≥0 : A → ∏′

n≥0 OK∞ and the claim results from prop 4.5 above and
the fact that Û(G) = A/Y by lemma 4.1.

This finishes the proof of Theorem B.
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