INTEGER-VALUED POLYNOMIALS AND p-ADIC FOURIER THEORY
LAURENT BERGER AND JOHANNES SPRANG

ABSTRACT. The goal of this paper is to give a numerical criterion for an open question
in p-adic Fourier theory. Let F' be a finite extension of Q,. Schneider and Teitelbaum
defined and studied the character variety X, which is a rigid analytic curve over F
that parameterizes the set of locally F-analytic characters A : (op,+) — (C), x).
Determining the structure of the ring Ap(X) of bounded-by-one functions on X defined
over F' seems like a difficult question. Using the Katz isomorphism, we prove that
if ' = Qp2, then Ap(X) = opfop] if and only if the op-module of integer-valued
polynomials on o is generated by a certain explicit set. Some computations in SageMath
indicate that this seems to be the case.
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1. INTRODUCTION

Let F' be a finite extension of Q, with ring of integers op. Let C,, denote the completion
of an algebraic closure of Q,. In their work on p-adic Fourier theory [STO01], Schneider
and Teitelbaum defined and studied the character variety X. This character variety is
a rigid analytic curve over F' that parameterizes the set of locally F-analytic characters
At (or,+) = (C), x). Let Ap(X) denote the ring of functions on X defined over F
whose norms are bounded above by 1. If 41 € op[or] is a measure on o, then A — u(\)
gives rise to such a function X — C,. The resulting map op[or] — Ar(X) is injective.
We do not know of any example of an element of Ap(X) that is not in the image of the
above map.

Question. Do we have Ap(X) = op[or]?

This question seems to be quite difficult, and is extensively studied in [AB24]. The
goal of our paper is to give, for I’ = Q,2, a simple criterion for the above question, that
can be checked numerically. Numerical evidence then seems to indicate that the answer
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to the question is “yes” for F' = Q2. We now formulate this criterion. For the time
being, let F' # Q, be any finite proper extension of Q,, let m be a uniformizer of op
and let LT denote the Lubin—Tate formal group attached to 7. Once we have chosen a
coordinate X on LT, we have a formal addition law T®U € op[T, U] and endomorphisms
[a](X) € op[X] for all a € op.

Let Int denote the set of integer-valued polynomials on op, namely those polynomials
P(T) € F[T] such that P(or) C op. If f(X) € op[X], there exist polynomials ¢y, (1T") €
Int for all n > 0 such that f([a](X)) =D, 0 ¢rnla)X™

Definition. If M is a subset of op[X], let Pol(M) denote the sub op-module of Int
generated by the cy,, with f € M and n > 0.

In particular, the module Pol defined in §1.5 of [AB24] is equal to Pol({1, X, X?,...}) =
Pol(or[X]), and theorem 1.5.1 of [AB24] states that if Ap(X) = op[or], then Pol = Int.
However, the reverse implication is not true, and the goal of our paper is to provide an
analogous “if and only if” statement, at least when F' = Q2. The ring op[X] is equipped
with an operator ¢ defined by ¢(f)(X) = f([x](X)) and an operator ¢ given by

PO (X)) = = Tropxtwtor b (F(X)).

Note that ¢(f) = 0 if and only if 37 . 0o (X ®n) = 0.
The first result of this paper is the following criterion for the above question.

Theorem A. If F = Q,2, then Ap(X) = or[or] < Pol(op[X]¥=") = Int.

Let us remark that the question of whether Pol(or[X]¥=") = Int depends neither on the
choice of a coordinate on LT nor on the choice of the uniformizer 7 used in the definition of
LT (for instance, it is equivalent to Ap(X) = or[or] by the above theorem). The appendix
of [AB24] is devoted to checking numerically that Pol = Int for various fields F.. We adapt
these methods and give numerical evidence that Pol(og[X]¥=) = Int when F' = Q.
This is the first compelling evidence in favor of the fact that Ap(X) = op[or], at least
for F' = Q2. In addition, we prove theorem B below, which implies that Pol(or[X]*=°)
is p-adically dense in Int.

Theorem B. For all F, we have Pol(op[X]¥=°) + 7 - Int = Int.

The main ingedient for the proof of theorem A is the “Katz isomorphism” proved
in [AB24] for F' = Q,z2, which gives rise to an isomorphism Hom,, (0, 0r) ~ op[X]¥=°
where 0y, is (at least when m = p) the ring of integers of the field generated by the torsion
points of LT. We prove theorem B by using some results of [SI09] on Mahler bases and
coefficients of Lubin—Tate power series. Using these results, it is enough to show that
Pol(or[X]¥=0) is stable under multiplication. In order to do this, we prove that in some
sense, the coefficients of a power series FI(X,Y) € k[X,Y] (where k is the residue field
of op) can be recovered from the coefficients of F'(X, [b](X)) for sufficiently many b € op.
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We also sketch a completely different proof of theorem B, based on a similar unpublished

argument of Ardakov for proving that Pol(op[X]) + 7 - Int = Int.

Acknowledgements. We would like to thank Konstantin Ardakov, Sandra Rozensztajn
and Rustam Steingart for useful comments on a first draft of this paper.

2. NOTATION

We use the notation of the introduction: F'is a finite extension of Q, of degree d > 1
and ramification index e, with ring of integers or. The residue field k of or has cardinality
g = p/ and 7 is a uniformizer of op. Let Int denote the set of integer-valued polynomials
on op, namely those polynomials P(T") € F[T] such that P(or) C op. Let LT denote the
Lubin-Tate formal group attached to m (see [LT65]) and let X be a coordinate on LT.
We have a formal addition law T'@® U € op[T', U], endomorphisms [a](X) € op[X] for all
a € op, alogarithm log;r(X) € F[X] and a Lubin-Tate character x : Gal(Q,/F) — 0.
Let Xcye denote the cyclotomic character, and let 7 : G — oy denote the character
T = Xeye " Xa o If F' # Q,, the image of 7 is open in 0}, compare [AB24, Lemma 2.6.3].

The monoid (op, x) acts on op[X] by a - f(X) = f([a](X)). The map ¢ is defined by
e(f)(X) = f([x](X)) and ¢ is given by @(¢(f(X))) = 1/7 - Trou[x1/0(0x1x1) (f (X))-

If f(X) € op[X], there exist polynomials c¢f,(7) € Int for all n > 0 such that
f([a](X)) = >, s0csn(a)X™. If M is a subset of op[X], let Pol(M) denote the sub
op-module of Int _generated by the ¢y, with f € M andn > 0. If ¢ > 0, we let ¢;, = csp,
with f(X) = X% Note that Pol({1, X, X?,...}) = Pol(op[X]).

3. p-ADIC FOURIER THEORY

Recall (see §3 and §4 of [STO01] for what follows) that Hom, (LT, Gy) is a free op-
module of rank 1. Choosing a generator of this module gives a power series G(X) €
X - oc,[X] such that G(X) = Q- X 4 ---, where Q € o¢, is such that g(Q2) = 7(g) - Q
if g € Gal(Q,/F) and val,(Q) = 1/(p — 1) — 1/e(q — 1). In particular, 1 + G(X) =
exp(Q - logip(X)) = > ,50 Pu(2)X™ where P,(Y) € F[Y] is a polynomial of degree n
such that P,(Q2-op) C OC;.

Let F, = Clge” and let o, denote the ring of integers of F,,. Note that by §2.7 of

[AB24], we have I, = F(£2). We have (see §3.3 of [AB24] as well as [Kat77]) a map
K : Homy,,, (0o, 0r) — op[X] that sends h € Hom,,. (000, 0F) t0 D, 50 h(FP(2)) X™.

Theorem 3.1. The map K is injective, its image is included in op[X]¥=°, and if F =
Q,2 then it gives rise to an isomorphism Hom,, (00, 0F) — o[ X]¥=0.

Proof. If h € Hom,,, (0o, 0F), then h extends to a continuous F-linear map h : F, — F.
If h(P,(2)) = 0 for all n > 0, then h = 0 on F[Q2]. By prop 6.2 of [APZ98|, F[Q] is
p-adically dense in F'(2) = F... This proves the injectivity of Kj. The fact that the image
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of K} is included in op[X]¥=" is lemma 3.3.8 of [AB24]. The last assertion is theorem
3.6.14 of [AB24)]. O

We now assume that F' = Q2. We use the map Kj to define a pairing (-,-) : 05 X
or[X]¥=% — oF, given by the formula (z, f(X)) = h(z) where h € Hom,,, (0, or) is such
that Kj(h) = f(X). By definition, we have (P,(2), ;50 fiX") = fa.

Lemma 3.2. If P(T) € F[T] is such that P(Q) € o0s, and f(X) € op[X]¥=°, then
(P(Q), f([a](X))) = (P(af2), f(X)).

Proof. See §3.2 of [AB24], in particular equation (3) above definition 3.2.4. O

Let B = F[Q2] N o and pick a regular basis (definition 4.2.5 of [AB24]) {b,,(2)}n>0
for B. Recall (lemma 4.2.8 of [AB24]) that the polynomials p; (7' € Int are defined by
Pr(af2) = Zf:o pir(a)bi(Q). As in §4.2 of [AB24], let B C Int denote the op-span of the
pix(T) with i,k > 0. We then have (corollary 4.2.19 of [AB24]) the following criterion.

Proposition 3.3. We have Ap(X) = op[or] if and only if B = Int.
Given this criterion, theorem A results from the following claim.
Proposition 3.4. If ' = Q,2, then Pol(or[X]*=°) = B.

Proof. Recall that if f(X) € op[X]*=%, we write f([a](X)) = >_,5q¢rn(a)X™. We first
prove that each ¢y, is in B. By lemma 3.2, (P(Q), f([a](X))) = (P(af), (X)), so that

crr(a) = (Pe(Q), f([a](X))) = (Pe(af), f(X))
k k
= <Z pie(@)bi(Q2), f(X)) = Zpik(a><bi<ﬂ)af(x>>v

=0
and each (b;(Q2), f(X)) belongs to or since b;(Q) € 0s. Hence Pol(ox[X]¥=°) C B.
To show equality, the above computation implies that it is enough to show that given
k>0 and j <k, there exists f(X) € op[X]¥=° with (b;(Q2), f(X)) = &;; for 0 <i < k.
Let N = op - bp(2) + -+ 4+ 0op - bp(Q) = F[Q]x N 0s. The op-module N is a finitely
generated and pure submodule of the op-module 0., hence a direct summand (see §16
of [Kap69], in particular exercise 57). The map N — op that sends b;(£2) to d; ; therefore
extends to an op-linear map h : 0, — op. We can now take f(X) = K (h). O

Remark 3.5. If F' # Q,2, let M denote the image of the map K5 : Hom,, (00, 0r) —
or[X]¥=°. The proof of prop 3.4 shows that Pol(M) = B and hence that Ap(X) = or[or]
if and only if Pol(M) = Int. It would therefore be interesting to compute M in general.
Another consequence of this is that if Ap(X) = or[or], then Pol(op[X]¥=°) = Int.



INTEGER-VALUED POLYNOMIALS AND p-ADIC FOURIER THEORY 5
4. PoL AND INT MODULO 7

In this §, we prove theorem B. Let I be a finite extension of Q,. Recall that k denotes
the residue field of op. Let B be a finite subset of op and let s : k[X,Y] — [[,c5 k[X]
be the map F(X,Y) — {F(X,[b](X))}ren-

Lemma 4.1. We have kers =[], (Y — [b](X)) - k[X, Y].

Proof. If F(X,[b](X)) = 0, then F(X,Y) = F(X,Y) — F(X, [b](X)) = (Y — [b](X)) -
G(X,Y). This implies the claim by induction since [b](X) # [b'](X) if b # b'. O

Let d = |B| and let I = (X,Y)? so that I is an open neighborhood of ker s in k[X,Y]
and we have a well-defined and injective map s : k[ X, Y]/I — k[X]?/s(I).

Lemma 4.2. There exists n = n(B) having the property that if f € k[X,Y] is such that
F(X,[b](X)) € X"k[X] for allb € B, then f € 1.

Proof. If there is no such n, then for all n there is an f,, contradicting the lemma. Since
E[X,Y]/I is a finite set, there is an f not in I such that f(X, [0](X)) € X"k[X] for all
b € B and infinitely many n, so that f(X,[b](X)) =0 for all b € B. Hence f € kers C [
by lemma 4.1. U

Corollary 4.3. The map s : k[X,Y]/I — k[X]?/(X" + s(I)) is injective.

Proof. It f € k[X,Y7] is such that s(f) = X"g+s(i) € X"k[X]¢+ s(I), the above lemma
applied to f — ¢ shows that f —i € [. O

If h(X) € k[X], let (h(X)|X?) € k denote the coefficient of X7 in h(X). If d > 1 and
m + £ < d, the coefficient of X™Y* in F(X,Y) € k[X,Y]/I is well defined.

Proposition 4.4. If d > 1, and B = {by,...,bs} and n = n(B) is as above, and if
m+ ¢ < d, there exist some ;; € k for1 <i<d and 0 <j <n —1, such that for all
F(X,Y) € k[X,Y], the coefficient of X™Y* in F(X,Y) is equal to

|
—

n

Z pag - (F (X, [b] (X)) X7).

i=1

<.
Il
o

Proof. Let M = k[X,Y]/I and N = k[X]?/(X™+s(I)); they are both finite dimensional
k-vector spaces. Let h,, 0 : M — k be the linear form giving the coefficient of X™Y* in
F(X,Y)mod I. Consider the injective map (lemma 4.3) s : M — N. The linear form
Bmeo s s(M) — k extends to a linear form A\ : N — k which in turn gives rise to a

linear form g : k[X]¢/X™ — k factoring through N.



6 LAURENT BERGER AND JOHANNES SPRANG
There exist some p;; € k such that if f = (f1,...,fs) € K[X]¢/X™, then u(f) =
S S g (FOOIX). T F € BX, Y]/T, we have
B e(F) = Ao s(F)

:M(F(X 0] (X)), -, F(X, [ba] (X))
d n—1

= Z bi](X))[X7). O

Lemma 4.5. If f(X) € op[X]¥7°, g(X) € op[X] and b € 7 - op, then f(X)g([b](X)) €
OFIIX]]wZO.
Proof. This follows from

Y. fXenglXen)=g9@X) Y, fXep=0 O

nemgy,[r](n)=0 neme,,[x(n)=0
Theorem 4.6. If f,g € op[X]¥=° and m, ¢ > 0 then ¢}, (T)-cyo(T) € Pol(op[X]?=°)/x.
Proof. 1f a € o, then c;,,(a) - ¢y o(a) is the coefficient of X™Y* in f([a](X)) - g([a](Y)).

Choose d > m+ ¢ and B C 7 - op with |B| = d.
If H(X,Y) € k[X,Y] and hy(X) = H(X, [b](X)) for b € op, then

H([a](X), [a]([b](X))) = H([a](X), [P]([a](X))) = hs([a] (X))-
Take H(X,Y) = f(X)-g(¥) and let F(X,Y) = ([a](X))-9((a)(V)) = H([a](X), [a) (V).
Since B C 7 - op, lemma 4.5 implies that hy(X) = f(X) ~g([b] (X)) belongs to op[X]¥=°.
By prop 4.4, the coefficient of X™Y*in F(X,Y) is ZZ 12] "o Hij - (h, ([a](X))]X7), and

hence ¢ (T) - cye(T) = Sy S0 iy - eny () € Pol(op[X]=0)/m. O

Recall that [a](X) = >_, 5, c1a(a)X™ with ¢;,(T) € Int, and that a Mahler basis for
or is a regular basis of Int.

Lemma 4.7. The functions ¢, 4 are part of a Mahler basis for op, and the op-algebra
Int is generated by the c; g for k > 0.

Proof. See theorem 3.1 of [SI09]. O

Let us write ¢, := %w, i.e. 1, is the unique operator ¢;: 0p[X] ®,, F — op[X] @, F
such that po, = % Tr, where Tr denotes the trace of op[X] ®,, F' over (op[X] @, F).

Lemma 4.8. If X is a coordinate on LT such that [r](X) = X + X, then

1/’q(1):1
V(X)) =0if1<i<q—2

Yo(XT) = g (1—q).

Proof. See the proof of [FX13, Prop 2.2]. O
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Proof of theorem B. Note that Pol(op[X]¥=°) is independent of the choice of coordinate
X on LT. We choose one such that [7](X) = 7 X+X? Bylemma 4.8, 1—q/(7(1—q))-X97*
belongs to op[X]¥=° so that 1 € Pol(op[X]¥=°). Likewise, X € op[X]¥=?, so that we
have ¢; s € Pol(op[X]¥=?) for all k£ > 0. Theorem B now follows from lemma 4.7, and
from theorem 4.6. O

Another proof of theorem B using completely different ideas is sketched below. It is
based on arguments of Konstantin Ardakov for proving that Pol(or[X]) 4+ 7 - Int = Int.
Let M be either op[X] or op[X]¥=°.

Lemma 4.9. Ifb € o}, then Pol(M) is stable under P(T) +— P(b-T).
Proof. We have cfopyn(a) = cpn(ba) and if f € M and b € o, then fo [b] € M. O

Let 0 = logip(X)™! - d/dX be the normalized invariant differential on F[X]. Recall
(see §1 of [Kat81]) that if f(X) € F[X], then f(X © H) =>_, ., P.(0)(f(X)) - H".

Lemma 4.10. Ifb € op, then Pol(M) is stable under P(T) — P(T + ).

Proof. We first check that M is stable under P,(0) for all n > 0. We have f(X & H) =
Y onso Pu(0)(f(X)) - H™ and P,(0)(f(X)) belongs to op[X] as f(X @& H) € op[X, H].
Finally 90 ¢y = 714 0 3 so that if (f) = 0 then (P, () f) = 0 as well.

If f(X) e M, then f([a+b](X)) =>",5y¢si(a+b) X" On the other hand,

F(la+b)(X) = f([a(X) @ [B1(X)) = Y Pu(@)(H)([al(X)) - BI(X)".

n>0
This implies that
cra(T+0) = Y enope(T)enmd). O
O

Proposition 4.11.

(1) The image of Pol(op[X]¥=°) in Int /7 - Int is infinite dimensional.
(2) We have Pol(op[X]¥=°) + 7 - Int = Int.

Proof. We have X € op[X]¥=° and hence ¢; ; € Pol(op[X]¥=?) for alli > 1. In particular,
14 € Pol(op[X]¥=") for all £ > 0. By lemma 4.7, these elements are part of a Mahler
basis, hence linearly independent mod 7. This implies (1).

We now sketch the proof of (2). We have Int /7 = C%(op, k) and its dual is k[or]. Let
I C k[or] be the orthogonal of the image P of Pol(ox[X]¥=%) in C°(oF, k). Since P is
stable under f(T") — f(b-T) for b € oy by lemma 4.9, I is stable under the action of oj.
Since P is also stable under f(7T') — f(T7 4 b) for b € op by lemma 4.10, I is an ideal of
kJor]. By either §8.1 of [Ard12] or the main result of [HMS14], either I = {0} or I is
open in kfor]. By item (1), I cannot be open, so that I = {0} and hence P = Int /7. O
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5. NUMERICAL VERIFICATION

In this §, we assume that F' = Q,2 and that 7 = p. We choose a coordinate X on LT
with [p](X) = pX + X9. Recall that ¢, = 7/q - .

For a non-negative integer n, we write Int<,, for the op-module of integer-valued poly-
nomials on op of degree < n. Similarly, let us denote by Pol(op[X]¥=°)<, the op-module
generated by the set

{ctm:0<m<n, feop[X]""}.
Recall from [SI09, Proposition 2.2], that a sequence { P, },,>0 of integer-valued polynomials
with deg(P,) = n is a basis of Int if and only if v,(Ic(P,)) = —w,(n), where w,(n) =
> is1ln/q"] and le(P) denotes the leading coefficient of a polynomial P.

Definition 5.1. For a fized non-negative integer n, we define so(n) = inf{N > n such
that there exists P € Pol(op[X]Y=%)<n of degree n such that v,(1c(P)) = —w,(n)}.

By Theorem A, we have Ap(X) = op[or] if and only if sy(n) is finite for every n € N.
In this section, we explain how to compute so(n) numerically. As a first step, let us give
explicit generators of the op-module Pol(op[X]¥=%)< .

Recall that ' = Q,2 and that = = p.

Lemma 5.2. We have op[X]*=0 = (@27 X" p(or[X])) @ (pX7 ! — (1 —q)) - p(or[X]).

Proof. We have op[X] = ®_y X'¢(op[X]). By lemma 4.8, 1,(1) = 1 and ,(X?) = 0
for 1< i < q—2and (X)) = (1—q)/p. If f = S50 Xip(f,) then y(f) =
fo+ (1 —q)/p- fy—1 so that ¥,(f) = 0 if and only if f,_y = —p/(1 —q) - fo. O

Since ¢y, for 0 < m < N does only depend on f € op[X]/XVT[X], we obtain the
following corollary:

Corollary 5.3. Let by, ...,by be a basis of the op-submodule of op[X]/XNT[X] gener-
ated by the images of

(D) AGXT = (1= @)p(X) :0<j < NPU{X (XY :0<i+j< N, 1<i<q-2}
in op[X]/XNTX], then the op-module Pol(op[X]¥=°) <y is generated by
{Chm :b=1g,...,bny,0 <m < N}

The basis by, . .., by can easily be computed from the generators in (1) using Gaufian
elimination. In order to compute Pol(op[X]¥=°)<y efficiently, we need to compute for
b e {by,...,by} and 0 < m < N the polynomials ¢, ,,,. For 0 < ¢ < N, let us write
bi =big+ b1 X +...b; XV and define the matrices

bo’o bO,l e boJ\[
bl,O b171 Ce bl,N

€ Maty i1, nv41(0F),

bN70 bNJ bN,N
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and
Co,0 Co1 .- Co,N
C1,0 11 .- C1,N
C = ) ) ) € Matyi1,n41(Int).
CNo CNa1 ... CNN
We have
Cby,0  Cbg,1 - -- Cbg,N
€10 Cb1, 1 --- Coy,N
B.-C = . i . < MatN+17N+1 (Int)
Con0 Conl o cc- ConN

Hence, in order to compute Pol(or[X]¥=?)<y it remains to compute the polynomials c; ;
efficiently. For all ¢« € N, we have
(2) [a)(X)" = Z ¢i(a) X7 = expyr(a - logyr (X))

J=i
Let us denote by D = ((logyp(X)7 | Xk))0<jk<N
log;r. Then (2) can be re-written as the matrix identity

1

the (truncated) Carleman matrix of

D-C= . . D,

CLN

and we get C = D~'diag(1,qa,...,a”)D. For the computation of the Carleman matrix
of log;r, we have the following efficient recursive formula for the coefficients of log;(X).
Write logyp(X) = 3,51 e X* with hy = 1.

Lemma 5.4. We have h, = 1/(p — p") - 14 b, ()p'~" where j =n —i(q—1).
Proof. We have log;r(pX + X9) = plog;p(X). We can expand log;(pX + X9) as
logy(pX + X) = logyp (pX) + ) X logfn (pX),
i>1
where 1og[] denotes the Hasse derivative of log;r. Computing the coefficient of X™ on
each side of plog;p(X) — logir(pX) = Y,y X logiy(pX), we get
[n/q]

(p—p")h, Z(log w(pX) | X9 Z h; ( ) Pt where j =n —i(g—1). O
i>1
Fix a positive integer N. We now describe an algorithm for computing so(n) for all
n < N (it returns —1 if so(n) > N).
(1) Compute the Carleman matrix D of log;, see Lemma 5.4.
(2) Compute (c; j(a));; = C = D 'diag(1,...,a")D.
(3) Compute a basis by, . . ., by of 0op[X]¥=" modulo XV*!, see Lemma 5.2, and store

the coefficients of by, ..., by in a matrix B.
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(4) The matrix B - C' = (cp, m)im contains generators of Pol(op[X]¥=%) <y, see Corol-

lary 5.3.

(5) For each n with 0 < n < N let so(n) be the smallest s € {1,..., N} such that the
op-module spanned by ¢, ,, with 0 < ¢,m < s contains a polynomial of leading
coefficient —w,(n). If there is no s with this property set so(n) = —1.

For an implementation of this algorithm in SageMath, see Appendix A. The code is
adapted from a similar program by Crisan and Yang, see the appendix of [AB24].

Here are some results, running SageMath 10.5 on an M1 iMac.
(1) For p =2 and N = 800 and precision 6000 we find that so(n) is finite for n < 206

2-adic Unramified Extension Field in y defined by x*2 + x + 1
988.46 sec

Computing the polynomials c_ij:
Computing a basis for Pol(o_F[X]*(psi=0)): 2632.96 sec
5=800: 197.88 sec
s0(n) is finite for all n<= 206
Total time: 39153.65 sec
2-adic Unramified Extension Field in y defined by x~2 + x + 1
%X
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FIGURE 1. Plot of so(n) —n for p = 2 and N = 800. Red points are the

n’s for which sg(n) = —1.

(2) For p =3 and N = 800 and precision 6000 we find that so(n) is finite for n < 226

—adic Unramified Extension Field in y defined by x"2 + 2kx + 2
603.56 sec

Computing the polynomials c_ij:
Computing a basis for Pol(o_F[X]~(psi=0)): 2936.57 sec
s=800: 116.28 sec
s0(n) is finite for all n<= 226
Total time: 22129.22 sec
3-adic Unramified Extension Field in y defined by x~2 + 2*x + 2
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FIGURE 2. Plot of so(n) —n for p = 3 and N = 800. Red points are the

n’s for which sg(n) = —1.
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APPENDIX A. SAGEMATH CODE

p=3 # prime number
N=120 # cutoff
precision = 1000 # p-adic precision

q=p~2 # Degree of the residue field

# Python imports

from time import process_time
import matplotlib.pyplot as plt
import numpy as np

# Definitions

import sage.rings.padics.padic_extension_generic

# Define the p-adic field, its ring of integers and the valuation function v

o_F.<y> = Zq(ZZ(q) ,prec=precision)
F.<y> = Qq(ZZ(q) ,prec=precision)

v = F.valuation ()

print (F)

# Define the generator of the unique maximal ideal in
Pi = o_F(p)

# Do linear algebra over the ring of polynomials F[X]
# in one variable X with coefficients in the field F:
F_X.<X> = F[]
F_Y.<Y> = FI[]

# Define the rings of power series over F and o_F and
F_T.<T>=PowerSeriesRing (F,default_prec=N)
phi_F=Pi*T+T"q
o_F_tt.<t>=PowerSeriesRing(o_F,default_prec=N)
phi=o_F_tt (phi_F(t))

def LogLT(N):
# Computes the logarithm of the Lubin-Tate formal
to precision O0(T"(N+1))
h=[0,1]
for n in range(2,N+1):

o_F.

the Frobenius 1ift phi=pT+T"q.

group law with phi(T)=Pi*T+T"q up

h.append (sum ([F(h[n-q*i+i]l*binomial (n-g*i+i,i)*p~(n-q*i)) for i in range(l,floor

((n)/q)+1)1)/(p-p~n))

log_LT= sum([h[n]*T"n for n in range(1,N)])+0(T~(N+1))

return log_LT

def LogCarlemanMatrix (N):
# Computes the Carleman matrix of log_LT which is
CMat = matrix(F,N+1,N+1)

used for computing c_(i,j)

# Compute the logarithm of the Lubin-Tate formal group law

log_LT=LogLT (N)

log LT_j=F_T(1)
for j in range(O,N+1):
# Stores the coefficients of the power series
CMat
log_LT_dict_j=log_LT_j.dict ()
1=[0 for _ in range(0,N+1)]
for key in log_LT_dict_j.keys():

log _LT(T)"j in row j of the matrix
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l[keyl=log_LT_dict_j [key]
for i in range(0,len(1l)):
CMat [j,i]=1[1i]
log LT_j=log_LT_j*log_LT+0(T"(N+1))
return CMat

def BMatrix(N):
# BMatrix returns a square matrix B of size (N+1)x(N+1)
# such that B[i,0]+X*B[i,1]+...+X"N*B[i,N] for i=0...N forms
# an o_F-basis of the degree <=N part of o_F[X]" (psi=0)

# Create a list (genList) of all generators of o_F[X] (psi=0) of degree at most N
genList=[]
for i in range(0,q-1):
phi_j=o_F_tt (1)
for j in range(0O,N-i+1):
if i==
genList.append ((Pi*t~(gq-1)-(1-q))*phi_j+0(t~(N+1)))
else:
genList.append(t~i*phi_j+0(t~(N+1)))
phi_j=phi_j*phi

# Store the coefficients of the polynomials in genList in the matrix B
B=matrix (F,len(genList) ,N+1)
i=0
for gen in genList:

l=gen.list ()

for j in range(0,len(1l)):

B[i,jl1=1[j]
i=i+l

# Perform Gaussian elimination
i0 = 0
for k in range(B.ncols()):
valuation_row_pairs = [
(v(B[i,k]), i) for i in range(iO, B.nrows()) if B[i,k] != 0]

if not valuation_row_pairs:
raise ValueError("B,is_ not_ full-rank")
minv, i_minv = min(valuation_row_pairs)

# Swap the row of minimum valuation with the first bad row
B[i0O, :], Bli_minv, :] = B[i_minv, :], B[iO, :]

# Divide the top row by a unit in o_F
u = B[i0, k] / Pi~int(v(B[i0, k1))
B[i0O, :1 /= u

# Cleave through the other rows
for i in range(i0 + 1, B.nrows()):
if v(B[i, k]) >= v(B[iO, k]):
B[i, :] -= B[i, k]/B[i0, k] * B[i0, :]

io += 1

# Return the first B.ncols() rows of the matrix B
return B[0:B.ncols (), :]

def CMatrix (N, D=None):
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# Computes a matrix containing the polynomials c_(ij) using the Carleman matrix of
log_LT
if D is None:

D = LogCarlemanMatrix (N)

# Define a diagonal matrix:
Diag = matrix(F_X, N+1,N+1, lambda x,y: kronecker_delta(x,y) * X"x)

# Compute the inverse of D:

S = D.inverse ()

H*

Compute the matrix C:
C =S x Diag * D

return C

def w_q(n):
return (n - sum(n.digits(base=q))) / (q-1)

def compute_s(N, filename=Nomne):

t_start = process_time ()

D = LogCarlemanMatrix (N)

C = CMatrix (N, D)

t_end = process_time ()

print (f"Computing,the polynomials c_ij: {t_end-t_starty:,.2f} sec")

t_start = process_time ()

# BPsi contains a basis of o_F[X] (psi=0)_{<=N} of degree <=N

BPsi=BMatrix (N)

# Tau contains a basis of Pol(o_F[X] {psi=0}_{<=N})

Tau=BPsix*C

t_end = process_time ()

print (f"Computinga basis for Pol(o_F[X] (psi=0)):,{t_end-t_starty:,.2f} sec")

# sO_s[n] will store the minimal degree such that Int_n is contained in Pol(o_F[X]"{
psi=0}_{<=s0_s[nl})
sO_s = [-1 for _ in range(N+1)]
B_old = Matrix (0,0)
d =0
for s in range(N+1):
t_start = process_time ()

# 1. Use the non-zero rows from previous calculations

# 2. Add a 0 column to its left

# 3. Add rows corresponding to entries from the j_th column of Tau_a
B = Matrix(F, 2*s-d+1, s-d+1)

B[0,0] = 1
B[1l:s-d+1, 1:]1 = B_old
for i in [0 .. s-1]:

coeffs = Tauli, s].list()
Bls-d+1+i, B.ncols()-len(coeffs)+d:] = vector(F, reversed(coeffs([d:]))

# Perform Gaussian elimination
i0o = 0
ks = []
for k in range(B.ncols()):
valuation_row_pairs = [
(v(B[i,k]), i) for i in range(iO, B.nrows()) if B[i,k] != 0]
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if not valuation_row_pairs:

raise ValueError ("B,isynot,full-rank")
minv, i_minv = min(valuation_row_pairs)
ks.append (k)

# Swap the row of minimum valuation with the first bad row
B[iO, :], Bl[i_minv, :] = B[i_minv, :], B[iO, :]

# Divide the top row by a unit in o_F
u = B[i0O, k] / Pi~int(v(B[iO, k1))
B[i0O, :]1 /= u

# Cleave through the other rows
for i in range(iO0 + 1, B.nrows()):
if v(B[i, k1) >= v(B[i0O, k]):
B[i, :] -= B[i, k]1/B[i0, k] * B[i0, :]

i0 += 1

d_is_updated = False
for b in [d .. s]:
n=b
# if the valuation of the leading coefficient is for the first time
then store s in sO_s
if v(B[s-b, s-bl) == -w_q(n):
if sO_s[b] == -1:
sO_s[b] = s
else:
if not d_is_updated:
d = b
d_is_updated = True
Bl:s-d+1, :s-d+1]

B_old

t_end = process_time ()
print (f"s={s}: {t_end-t_starty:,.2f}, sec", end=’\r’)
if filename is not None:
with open(filename, ’w’) as f:
f.write("n,s0\n")
for n, sO in enumerate(sO_s):
f.write(£"{n},{s0}\n")

print ()

# plot the result

plt.

fig
for

plt.
plt.
.title(str(F))
plt.
plt.
plt.

plt

style.use(’bmh’)
= plt.figure(figsize=(15,6), dpi=300)
n, sO in enumerate(sO_s):
if sO != -1:

plt.plot(n, sO-n, ’x’, c=’C0’)
else:

plt.plot(n, O, ’x’, c=’Cl’)
xlabel (r"$n$")
ylabel ("$s_0(n),-yn$")

minorticks_on ()
grid(which=’both’)
grid(which=’major’, linestyle=’-’, c=’grey’)

return sO_s, fig

-w_
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t_start_tot = process_time ()

sO_s = compute_s(N);

print ("sO(n),isyfinite,for all n<=",(s0_s[0]+[-1]).index(-1)-1)
t_end_tot = process_time ()

print (f"Total, time: {t_end_tot-t_start_tot,:,.2f}, sec")
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