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Abstract. — Let E be a field of characteristic p. In a previous paper of ours, we defined
and studied super-Hölder vectors in certain E-linear representations of Zp. In the present
paper, we define and study super-Hölder vectors in certain E-linear representations of a
general p-adic Lie group. We then consider certain p-adic Lie extensions K∞/K of a p-adic
field K, and compute the super-Hölder vectors in the tilt of K∞. We show that these super-
Hölder vectors are the perfection of the field of norms of K∞/K. By specializing to the
case of a Lubin-Tate extension, we are able to recover E((Y )) inside the Y -adic completion
of its perfection, seen as a valued E-vector space endowed with the action of O×

K given by
the endomorphisms of the corresponding Lubin-Tate group.
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Introduction

Let E be a field of characteristic p, for example a finite field. In our paper [BR22], we
defined and studied super-Hölder vectors in certain E-linear representations of the p-adic
Lie group Zp. These vectors are a characteristic p analogue of locally analytic vectors.
They allowed us to recover E((X)) inside the X-adic completion of its perfection, seen as a
valued E-vector space endowed with the action of Z×

p given by a ·f(X) = f((1+X)a−1).
In the present paper, we define and study super-Hölder vectors in certain E-linear rep-

resentations of a general p-adic Lie group. We then consider certain p-adic Lie extensions
K∞/K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K∞. We
show that these super-Hölder vectors are the perfection of the field of norms of K∞/K.
By specializing to the case of a Lubin-Tate extension, we are able to recover E((Y )) inside
the Y -adic completion of its perfection, seen as a valued E-vector space endowed with
the action of O×

K given by the endomorphisms of the corresponding Lubin-Tate group.
We now give more details about the contents of our paper. Let Γ be a p-adic Lie group.

It is known that Γ always has a uniform open pro-p subgroupG. LetG be such a subgroup,
and let Gi = Gpi for i ⩾ 0. Let M be an E-vector space, endowed with a valuation valM
such that valM(xm) = valM(m) if x ∈ E×. We assume that M is separated and complete
for the valM -adic topology. We say that a function f : G → M is super-Hölder if there
exist constants e > 0 and λ, µ ∈ R such that valM(f(g)− f(h)) ⩾ pλ · pei + µ whenever
gh−1 ∈ Gi, for all g, h ∈ G and i ⩾ 0. If M is now endowed with an action of G by
isometries, and m ∈M , we say that m is a super-Hölder vector if the orbit map g 7→ g ·m
is a super-Hölder function G → M . We let MG-e-sh,λ denote the space of super-Hölder
vectors for given constants e and λ as in the definition above. The space of vectors of M
that are super-Hölder for a given e is independent of the choice of the uniform subgroup
G, and denoted by M e-sh. When G = Zp and e = 1, we recover the definitions of [BR22].
If Γ is a p-adic Lie group and e = 1, we get an analogue of locally Qp-analytic vectors. If
K is a finite extension of Qp, Γ is the Galois group of a Lubin-Tate extension of K, and
e = [K : Qp], we seem to get an analogue of locally K-analytic vectors.

From now on, assume that p ̸= 2. Let K be a p-adic field and let K∞/K be an almost
totally ramified p-adic Lie extension, with Galois group Γ of dimension d ⩾ 1. The tilt
of K∞ is the fraction field ẼK∞ of lim←−x 7→xp

OK∞/p. It is a perfect complete valued field
of characteristic p, endowed with an action of Γ by isometries. The field ẼK∞ naturally
contains the field of norms XK(K∞) of the extension K∞/K, and it is known that ẼK∞

is the completion of the perfection of XK(K∞). We have the following result (theorem
2.2.3).
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Theorem A. — We have Ẽd-sh
K∞ = ∪n⩾0φ

−n(XK(K∞)).

Assume now that K is a finite extension of Qp, with residue field k, and let LT be a
Lubin-Tate formal group attached to K. Let K∞ be the extension of K generated by
the torsion points of LT, so that Gal(K∞/K) is isomorphic to O×

K . The field of norms
XK(K∞) is isomorphic to k((Y )), and O×

K acts on this field by the endomorphisms of the
Lubin-Tate group: a ·f(Y ) = f([a](Y )). Let d = [K : Qp]. The following (theorem 3.2.1)
is a more precise version of theorem A in this situation.

Theorem B. — If j ⩾ 1, then Ẽ1+pjOK -d-sh,dj
K∞ = k((Y )).

If K = Qp and K∞/K is the cyclotomic extension, theorem B was proved in [BR22].
A crucial ingredient of the proof of this theorem was Colmez’ analogue of Tate traces for
ẼK∞ . If the Lubin-Tate group if of height ⩾ 2, there are no such traces (we state and
prove a precise version of this assertion in §3.2). Instead of Tate traces, we a theorem of
Ax and a precise characterization of the field of norms XK(K∞) inside ẼK∞ in order to
prove theorem A.

As an application of theorem B, we compute the perfectoid commutant of Aut(LT).
If b ∈ O×

K and n ∈ Z, then u(Y ) = [b](Y qn) is an element of Ẽ+
K∞ that satisfies the

functional equation u ◦ [g](Y ) = [g] ◦ u(Y ) for all g ∈ O×
K . Conversely, we prove the

following (theorem 3.3.1).

Theorem C. — If u ∈ Ẽ+
K∞ is such that valY (u) > 0 and u◦ [g] = [g]◦u for all g ∈ O×

K,
there exists b ∈ O×

K and n ∈ Z such that u(Y ) = [b](Y qn).

In the last section, we give a characterization of super-Hölder functions on a uniform
pro-p group in terms of their Mahler expansions (theorem 4.3.4). In order to do so, we
prove some results of independent interest on the space of continuous functions on Od

K

with values in a valued E-vector space M as above.
At the end of [BR22], we suggested an application of super-Hölder vectors for the

action of Zp to the p-adic local Langlands correspondence for GL2(Qp). We hope that
this general theory of super-Hölder vectors, especially in the Lubin-Tate case, will have
applications to the p-adic local Langlands correspondence for other fields than Qp.

1. Super-Hölder functions and vectors

In this section, we define Super-Hölder vectors inside a valued E-vector space M en-
dowed with an action of a p-adic Lie group Γ. The definition is very similar to the one
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that we gave for Γ = Zp in our paper [BR22]. The main new technical tool is the exis-
tence of uniform open subgroups of Γ. These uniform subgroups look very much like Zd

p

in a sense that we make precise.

1.1. Uniform pro-p groups. — Uniform pro-p groups are defined at the beginning of
§4 of [DdSMS99]. We do not recall the definition, nor the notion of rank of a uniform
pro-p group, but rather point out the following properties of uniform pro-p groups. A
coordinate (below) is simply a homeomorphism.

Proposition 1.1.1. — If G is a uniform pro-p group of rank d, then
1. Gi = {gpi, g ∈ G} is an open normal (and uniform) subgroup of G for i ⩾ 0
2. We have [Gi : Gi+1] = pd for i ⩾ 0
3. There is a coordinate c : G→ Zd

p such that c(Gi) = (piZp)d for i ⩾ 0
4. If g, h ∈ G, then gh−1 ∈ Gi if and only if c(g)− c(h) ∈ (piZp)d

Proof. — Properties (1-4) are proved in §4 of [DdSMS99]. Alternatively, a uniform
pro-p group G has a natural integer valued p-valuation ω such that (G,ω) is saturated
(remark 2.1 of [Klo05]). Properties (1-4) are then proved in §26 of [Sch11].

For example, the pro-p group Zd
p is uniform for all d ⩾ 1.

Lemma 1.1.2. — If G is a uniform pro-p group, and H is a uniform open subgroup of
G, there exists j ⩾ 0 such that Gi+j ⊂ Hi for all i ⩾ 0.

Proof. — This follows from the fact that {Gi}i⩾0 forms a basis of neighborhoods of the
identity in G.

A p-adic Lie group is a p-adic manifold that has a compatible group structure. For
example, GLn(Zp) and its closed subgroups are p-adic Lie groups. We refer to [Sch11]
for a comprehensive treatment of the theory. Every uniform pro-p group is a p-adic Lie
group. Conversely, we have the following.

Proposition 1.1.3. — Every p-adic Lie group Γ has a uniform open subgroup G, and
the rank of G is the dimension of Γ.

Proof. — See Interlude A (pages 97–98) of [DdSMS99].

Proposition 1.1.4. — Let G be a pro-p group of finite rank, and N a closed normal
subgroup of G. There exists an open subgroup G′ of G such that G′, G′∩N and G′/G′∩N
are all uniform.

Proof. — This is stated and proved on page 64 of [DdSMS99] (their H is our G′).
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1.2. Super-Hölder functions and vectors. — Let M be an E-vector space, endowed
with a valuation valM such that valM(xm) = valM(m) if x ∈ E×. We assume that M
is separated and complete for the valM -adic topology. Throughout this §, G denotes a
uniform pro-p group.

Definition 1.2.1. — We say that f : G → M is super-Hölder if there exist constants
λ, µ ∈ R and e > 0 such that valM(f(g) − f(h)) ⩾ pλ · pei + µ whenever gh−1 ∈ Gi, for
all g, h ∈ G and i ⩾ 0.

Remark 1.2.2. — If G = Zp and e = 1, we recover the functions defined in §1.1 [BR22]
(see also remark 1.12 of ibid).

In the above definition, e will usually be equal to either 1 or dim(G).

We let Hλ,µ
e (G,M) denote the space of functions such that valM(f(g) − f(h)) ⩾ pλ ·

pei +µ whenever gh−1 ∈ Gi, for all g, h ∈ G and i ⩾ 0, and Hλ
e (G,M) = ∪µ∈RHλ,µ

e (G,M)
and He(G,M) = ∪λ∈RHλ

e (G,M).
IfM,N are two valued E-vector spaces, and f : M → N is an E-linear map, we say that

f is Hölder-continuous if there exists c > 0, d ∈ R such that valN(f(x)) ⩾ c · valM(x) + d

for all x ∈M .

Proposition 1.2.3. — If π : M → N is a Hölder-continuous linear map, we get a map
He(G,M)→ He(G,N).

Proof. — Take c, d ∈ R of Hölder continuity for π, f ∈ Hλ,µ
e (G,M), and g, h ∈ G with

gh−1 ∈ Gi. We have valN(π(f(g))−π(f(h))) ⩾ c·valM(f(g)−f(h))+d ⩾ cpλ ·pei+(µ+d),
so that π ◦ f ∈ Hλ′,µ′

e (G,N) with pλ′ = cpλ, and µ′ = µ+ d.

Proposition 1.2.4. — If α : G → H is a group homomorphism, we get a map α∗ :
He(H,M)→ He(G,M).

Proof. — By definition of the subgroups Gi and Hi, we have α(Gi) ⊂ Hi for all i. Take
f ∈ Hλ,µ

e (H,M), and g, h ∈ G with gh−1 ∈ Gi. We have valM(f(α(g)) − f(α(h))) ⩾

pλ · pei + µ as α(g)α(h)−1 ∈ Hi, so that α∗(f) = f ◦ α ∈ Hλ,µ
e (G,M).

Proposition 1.2.5. — Suppose that M is a ring, and that valM(mm′) ⩾ valM(m) +
valM(m′) for all m,m′ ∈M . If c ∈ R, let Mc = MvalM⩾c.

1. If f ∈ Hλ,µ
e (G,Mc) and g ∈ Hλ,ν

e (G,Md), and ξ = min(µ + d, ν + c), then fg ∈
Hλ,ξ

e (G,Mc+d).
2. If λ, µ ∈ R, then Hλ,µ

e (G,M0) is a subring of C0(G,M).
3. If λ ∈ R, then Hλ

e (G,M) is a subring of C0(G,M).
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Proof. — Items (2) and (3) follow from item (1), which we now prove. If x, y ∈ G, then

(fg)(x)− (fg)(y) = (f(x)− f(y))g(x) + (g(x)− g(y))f(y),

which implies the claim.

We now assume that M is endowed with an E-linear action by isometries of G. If
m ∈M , let orbm : G→M denote the function defined by orbm(g) = g ·m.

Definition 1.2.6. — Let MG-e-sh,λ,µ be those m ∈ M such that orbm ∈ Hλ,µ
e (G,M),

and let MG-e-sh,λ and MG-e-sh be the corresponding sub-E-vector spaces of M .

Remark 1.2.7. — We assume that G acts by isometries on M , but not that G acts
continuously on M , namely that G×M → M is continuous. However, let M cont denote
the set of m ∈ M such that orbm : G→ M is continuous. It is easy to see that M cont is
a closed sub-E-vector space of M , and that G×M cont → M cont is continuous (compare
with §3 of [Eme17]). We then have M sh ⊂M cont.

Lemma 1.2.8. — If m ∈ M , then m ∈ MG-e-sh,λ,µ if and only if for all i ⩾ 0, we have
valM(g ·m−m) ⩾ pλ · pei + µ for all g ∈ Gi.

Proof. — If m ∈ M , then m ∈ MG-e-sh,λ,µ if and only if the function orbm is in
Hλ,µ

e (G,M), that is, for all g, h with gh−1 ∈ Gi, we have valM(g ·m−h ·m) ⩾ pλ ·pei +µ.
As G acts by isometries, we have valM(g ·m− h ·m) = valM(h−1g ·m−m). The result
follows, as h−1g = h−1 · gh−1 · h ∈ Gi.

Lemma 1.2.9. — The space MG-e-sh,λ,µ is a closed sub-E-vector space of M .

Lemma 1.2.10. — If i0 ⩾ 0, and m ∈ M is such that valM(g ·m −m) ⩾ pλ · pei + µ

for all g ∈ Gi with i ⩾ i0, then m ∈MG-e-sh,λ.

Proof. — Take i < i0, and let Ri be a set of representatives of Gi0\Gi. This is a finite set,
so there exists µi ∈ R such that valM(r ·m−m) ⩾ pλ · pei +µi for all r ∈ Ri. If g ∈ Gi, it
can be written as g = hr for some h ∈ Gi0 and r ∈ Ri. We then have g ·m−m = hr·m−h·
m+h·m−m, so that valM(g·m−m) ⩾ min(valM(r·m−m), valM(h·m−m)) (recall that G
acts by isometries), so valM(g ·m−m) ⩾ min(pλ ·pei +µi, p

λ ·pei0 +µ) ⩾ pλ ·pei +min(µ, µi)
as i0 > i. If µ′ is the min of µ and the µi for 0 ⩽ i < i0, then m ∈MG-e-sh,λ,µ′ .

Recall that if k ⩾ 0, then Gk is also a uniform pro-p group.

Lemma 1.2.11. — If k ⩾ 0 then MG-e-sh,λ = MGk-e-sh,λ+k.



SUPER-HÖLDER VECTORS AND THE FIELD OF NORMS 7

Proof. — Note that (Gk)i = Gi+k. The inclusion MG-e-sh,λ ⊂MGk-e-sh,λ+k is obvious, and
the reverse inclusion follows from lemma 1.2.10.

Proposition 1.2.12. — The space MH-e-sh does not depend on the choice of a uniform
open subgroup H ⊂ G.

Proof. — Let H and H ′ be uniform open subgroups of G. The group H ∩H ′ contains an
open uniform subgroup by prop 1.1.3, so to prove the proposition, we can further assume
that H ′ ⊂ H. We then have H ′

i ⊂ Hi for all i, so that if m ∈ MH-e-sh,λ,µ, then m ∈
MH′-e-sh,λ,µ. This implies that MH-e-sh,λ ⊂ MH′-e-sh,λ. Conversely, by lemma 1.1.2, there
exists j such that Hj ⊂ H ′. The previous reasoning implies that MH′-e-sh,λ ⊂ MHj-e-sh,λ.
Lemma 1.2.11 now implies that MHj-e-sh,λ = MH-e-sh,λ−j.

These inclusions imply the proposition.

Definition 1.2.13. — If Γ is a p-adic Lie group that acts by isometries on M , we let
M e-sh = MG-e-sh where G is any uniform open subgroup of Γ.

Remark 1.2.14. — If e ⩽ f , then M f -sh ⊂M e-sh.

Recall that G is a uniform pro-p group. If a closed normal subgroup N of G acts
trivially on M , then G/N acts on M .

Proposition 1.2.15. — If a closed normal subgroup N of G acts trivially on M , then
MG-e-sh = MG/N -e-sh.

Proof. — By prop 1.1.4, G has an open subgroup G′ such that G′ and G′/N ′ are uniform
(where N ′ = G′ ∩ N). By prop 1.2.12, we have MG-e-sh = MG′-e-sh and MG/N -e-sh =
MG′/N ′-e-sh. Let π : G′ → G′/N ′ denote the projection. We have π(G′

i) = (G′/N ′)i for
all i. Hence if m ∈ M , then valM(g ·m −m) ⩾ pλ · pei + µ for all g ∈ G′

i if and only if
valM(π(g) ·m−m) ⩾ pλ · pei + µ for all π(g) ∈ (G′/N ′)i.

Proposition 1.2.16. — Suppose that M is a ring, and that g(mm′) = g(m)g(m′) and
valM(mm′) ⩾ valM(m) + valM(m′) for all m,m′ ∈M and g ∈ G.

1. If v ∈ R and m,m′ ∈MG-e-sh,λ,µ ∩MvalM⩾v, then m ·m′ ∈MG-e-sh,λ,µ+v.
2. If m ∈MG-e-sh,λ,µ ∩M×, then 1/m ∈MG-e-sh,λ,µ−2 valM (m).

Proof. — Item (1) follows from prop 1.2.5 and lemma 1.2.8. Item (2) follows from

g
( 1
m

)
− 1
m

= m− g(m)
g(m)m .
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2. The field of norms

Let K be a p-adic field, and let K∞ be an algebraic Galois extension of K, whose
Galois group G is a p-adic Lie group of dimension ⩾ 1. We assume that K∞/K is almost
totally ramified, namely that the inertia subgroup of G is open in G. Let d = dim(G)
and let ℓ = pd. Let Ẽ+

K∞ denote the ring lim←−x 7→xℓ
OK∞/p. This is a perfect domain of

characteristic p, which has a natural action of G. The map (yj)j⩾0 7→ (ydi)i⩾0 gives an
isomorphism between lim←−x7→xp

OK∞/p and Ẽ+
K∞ , so that Ẽ+

K∞ is the ring of integers of
the tilt of K̂∞ (see §3 of [Sch12]).

If x = (xi)i⩾0, and x̂i is a lift of xi to OK∞ , then ℓi valp(x̂i) is independent of i ⩾ 0 such
that xi ̸= 0. We define a valuation on Ẽ+

K∞ by valE(x) = limi→+∞ ℓi valp(x̂i).
The aim of this section is to compute (Ẽ+

K∞)d-sh. Given definition 1.2.13, we assume
from now on (replacing K by a finite subextension if necessary) that G is uniform and
that K∞/K is totally ramified. Let k denote the common residue field of K and K∞.

2.1. The field of norms. — Let E(K∞) denote the set of finite extensions E of K
such that E ⊂ K∞. Let XK(K∞) denote the set of sequences (xE)E∈E(K∞) such that
xE ∈ E for all E ∈ E(K∞), and NF/E(xF ) = xE whenever E ⊂ F with E,F ∈ E(K∞).

If n ⩾ 0, let Kn = KGn
∞ so that [Kn+1 : Kn] = ℓ, {Kn}n⩾0 is a cofinal subset of E(K∞),

and XK(K∞) = lim←−NKn/Kn−1
Kn. If x = (xn)n⩾0 ∈ XK(K∞), let valE(x) = valp(x0).

Theorem 2.1.1. — Let K and K∞ be as above.

1. If x, y ∈ XK(K∞), then {NKn+j/Kn(xn+j + yn+j)}j⩾0 converges for all n ⩾ 0.
2. If we set (x+y)n = limj→+∞ NKn+j/Kn(xn+j +yn+j), then x+y ∈ XK(K∞), and the

set XK(K∞) with this addition law, and componentwise multiplication, is a field of
characteristic p.

3. The function valE is a valuation on XK(K∞), for which it is complete
4. If ϖ = (ϖn)n⩾0 is a norm compatible sequence of uniformizers of OKn, the valued

field XK(K∞) is isomorphic to k((ϖ)) (with val(ϖ) = valp(ϖ0)).

Proof. — By a result of Sen [Sen72], K∞/K is strictly APF in the terminology of §1.2
of [Win83] (see 1.2.2 of ibid). The theorem is then proved in §2 of ibid.

Let X+
K(K∞) = lim←−NKn/Kn−1

OKn be the ring of integers of the valued field XK(K∞).
If c > 0, let Ic

n = {x ∈ OKn such that valp(x) ⩾ c}. If m,n ⩾ 0, the map OKn/I
c
n →

OKm+n/I
c
m+n is well-defined and injective.
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Proposition 2.1.2. — There exists c(K∞/K) ⩽ 1 such that if 0 < c ⩽ c(K∞/K), then
valp(NKn+k/Kn(x)/x[Kn+k:Kn] − 1) ⩾ c for all n, k ⩾ 0 and x ∈ OKn+k

.

Proof. — See [Win83] as well as §4 of [CD15]. The result follows from the fact (see
1.2.2 of [Win83]) that the extension K∞/K is strictly APF. One can then apply 1.2.1,
4.2.2 and 1.2.3 of [Win83].

Using prop 2.1.2, we get a map ι : X+
K(K∞) → lim←−x 7→xℓ

OK∞/I
c
∞ given by

(xn)n⩾0 ∈ lim←−NKn/Kn−1
OKn 7→ (xn)n⩾0. Let lim←−x 7→xℓ

OKn/I
c
n denote the set of

(xn)n⩾0 ∈ lim←−x 7→xℓ
OK∞/I

c
∞ such that xn ∈ OKn/I

c
n for all n ⩾ 0.

Proposition 2.1.3. — Let 0 < c ⩽ c(K∞/K) be as in prop 2.1.2.

1. the natural map Ẽ+
K∞ → lim←−x 7→xℓ

OK∞/I
c
∞ is a bijection

2. the map ι : X+
K(K∞)→ lim←−x 7→xℓ

OK∞/I
c
∞ = Ẽ+

K∞ is injective and isometric
3. the image of ι is lim←−x7→xℓ

OKn/I
c
n.

Proof. — See [Win83] and §4 of [CD15]. We give a few more details for the convenience
of the reader. Item (1) is classical (see for instance prop 4.2 of [CD15]).The map ι is
obviously injective and isometric. For (3), choose x = (xn)n⩾0 ∈ lim←−x 7→xℓ

OKn/I
c
n, and

choose a lift x̂n ∈ OKn of xn. One proves that {NKn+j/Kn(x̂n+j)}j⩾0 converges to some
yn ∈ OKn , and that (yn)n⩾0 ∈ X+

K(K∞) is a lift of (xn)n⩾0. See §4 of [CD15] for details,
for instance the proof of lemma 4.1.

Prop 2.1.3 allows us to see X+
K(K∞), and hence φ−n(X+

K(K∞)) for all n ⩾ 0, as a
subring of Ẽ+

K∞ .

Proposition 2.1.4. — The ring ∪n⩾0φ
−n(X+

K(K∞)) is dense in Ẽ+
K∞.

Proof. — See §4.3 of [Win83].

2.2. Decompleting the tilt. — We now compute (Ẽ+
K∞)d-sh. Since prop 2.2.1 below

is vacuous if p = 2, we assume in this § that p ̸= 2.

Proposition 2.2.1. — If 0 < c ⩽ 1− 1/(p− 1), and x ∈ OK∞ is such that valp(g(x)−
x) ⩾ 1 for all g ∈ Gn, then the image of x in OK∞/I

c
∞ belongs to OKn/I

c
n.

Proof. — If valp(g(x)− x) ⩾ 1 for all g ∈ Gal(Kalg/Kn), then by theorem 1.7 of [LB10]
(an optimal version of a theorem of Ax), there exists y ∈ Kn such that valp(x − y) ⩾

1− 1/(p− 1). This implies the proposition.

Proposition 2.2.2. — If c = pγ is as above, then X+
K(K∞) ⊂ (Ẽ+

K∞)G-d-sh,γ,0.
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Proof. — Take x = (xn)n⩾0 ∈ lim←−x 7→xℓ
OKn/I

c
n. If g ∈ Gi, then g(xn) = xn for n ⩽ i, so

that valE(gx− x) ⩾ pdipγ.

Theorem 2.2.3. — We have

1. (Ẽ+
K∞)G-d-sh,0,0 ⊂ X+

K(K∞)
2. (Ẽ+

K∞)d-sh = ∪n⩾0φ
−n(X+

K(K∞)) and Ẽd-sh
K∞ = ∪n⩾0φ

−n(XK(K∞))

Proof. — Take c ⩽ min(c(K∞/K), 1 − 1/(p − 1)). Take x = (xn)n⩾0 ∈ lim←−x 7→xℓ
OK∞/p.

If n ⩾ 0 and x ∈ (Ẽ+
K∞)G-d-sh,0,0, then valE(g(x) − x) ⩾ pdn if g ∈ Gn. This implies that

valp(g(xn) − xn) ⩾ 1 if g ∈ Gn. By prop 2.2.1, the image of xn in OK∞/I
c
∞ belongs to

OKn/I
c
n. Hence the image of x in lim←−x 7→xℓ

OK∞/I
c
∞ belongs to lim←−x 7→xℓ

OKn/I
c
n. By prop

2.1.3, x belongs to X+
K(K∞). This proves (1).

Since valE(φ(x)) = p ·valE(x), item (2) follows from (1) and props 2.2.2 and 1.2.16.

Remark 2.2.4. — We have Ẽd-sh
K∞ ⊂ Ẽ1-sh

K∞ . The field Ẽ1-sh
K∞ contains the field of norms

XK(L∞) of any p-adic Lie extension L∞/K contained in K∞. Indeed, ẼL∞ ⊂ ẼK∞ and
if e = dim Gal(L∞/K), then XK(L∞) ⊂ Ẽe-sh

L∞ ⊂ Ẽ1-sh
K∞ (see prop 1.2.15).

Can one give a description of Ẽ1-sh
K∞ , for example along the lines of §5 of [Ber16]?

3. The Lubin-Tate case

We now specialize the constructions of the previous section to the case when K∞ is
generated over K by the torsion points of a Lubin-Tate formal group.

3.1. Lubin-Tate formal groups. — Let K be a finite extension of Qp of degree d,
with ring of integers OK , inertia index f , ramification index e, and residue field k. Let
q = pf = Card(k) and let π be a uniformizer of OK . Let LT be the Lubin-Tate formal
OK-module attached to π (see [LT65]). We choose a coordinate Y on LT. For each
a ∈ OK we get a power series [a](Y ) ∈ OK [[Y ]], that we now see as an element of k[[Y ]].
In particular, [π](Y ) = Y q. Let S(T, U) ∈ k[[T, U ]] denote the reduction mod π of the
power series giving the addition law in LT in that coordinate. Recall that S(T, 0) = T

and S(0, U) = U .

Lemma 3.1.1. — If a, b ∈ OK and i ⩾ 0, then valY ([a+ pib](Y )− [a](Y )) ⩾ pdi.
Furthermore, [1 + πi](Y ) = Y + Y qi + O(Y qi+1).

Proof. — We have [π](Y ) = Y q, so valY ([π](Y )) ⩾ pf . Writing p = uπe for a unit u,
we see that valY ([pib](Y )) ⩾ pdi if b ∈ OK . If a, b ∈ OK and i ⩾ 0, then [a + bpi](Y ) =
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S([a](Y ), [bpi](Y )). We have S(T, U) = T+U+TU ·R(T, U), so that [a+bpi](Y )−[a](Y ) =
S([a](Y ), [bpi](Y ))− [a](Y ) ∈ [bpi](Y ) · k[[Y ]]. This implies the first result.

The second claim follows likewise from the fact that [1 + πi](Y ) = S(Y, [πi](Y )) =
Y + [πi](Y ) + Y · [πi](Y ) ·R(Y, [πi](Y )).

Let E = k((Y )). Let En = k((Y 1/qn)) and let E∞ = ∪n⩾0En. These fields are endowed
with the Y -adic valuation valY , and we let E+

⋆ denote the ring of integers of E⋆. The
group O×

K acts on En by a · f(Y 1/qn) = f([a](Y 1/qn)).

Lemma 3.1.2. — If j ⩾ 1 (j ⩾ 2 if p = 2), then 1+pjOK is uniform, and (1+pjOK)i =
1 + pi+jOK.

Proof. — The map 1 + pjOK → OK , given by x 7→ p−j · logp(x − 1), is an isomorphism
of pro-p groups taking 1 + pi+jOK to piOK .

Recall that d = [K : Qp], that f = [k : Fp], and that q = pf .

Proposition 3.1.3. — We have E+
n = (E+

n )1+pjOK -d-sh,dj−fn,0.

Proof. — If b ∈ OK and i, j ⩾ 0, then by lemma 3.1.1, we have

valY ([1 + pi+jb](Y 1/qn)− Y 1/qn) ⩾ 1/qn · pd(i+j) = pdj−fn · pdi.

Lemma 3.1.2 then implies that Y 1/qn ∈ (E+
n )1+pjOK -d-sh,dj−fn,0. The lemma now follows

from prop 1.2.16 and lemma 1.2.9.

Corollary 3.1.4. — We have E = E1+pjOK -d-sh,dj.

Proof. — This follows from prop 3.1.3 with n = 0, and prop 1.2.16.

Proposition 3.1.5. — If ε > 0, then k[[Y ]]1+pjOK -d-sh,dj+ε ⊂ k[[Y p]].

Proof. — Take f(Y ) ∈ k[[Y ]]. There is a power series h(T, U) ∈ k[[T, U ]] such that

f(T + U) = f(T ) + U · f ′(T ) + U2 · h(T, U).

If m ⩾ 0, lemma 3.1.1 implies that [1 + πm](Y ) = Y + Y qm + O(Y qm+1). Therefore,

f([1 + πm](Y )) = f(Y ) + (Y qm + O(Y qm+1)) · f ′(Y ) + O(Y 2qm).

If f(Y ) /∈ k[[Y p]], then f ′(Y ) ̸= 0. Let µ = valY (f ′(Y )). The above computations imply
that valY (f([1 + πei+ej](Y ))− f(Y )) = pdj · pdi + µ for i≫ 0.

This implies the claim, since πeOK = pOK .

Corollary 3.1.6. — We have E1+pjOK -d-sh,dj−fn
∞ = En.
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Proof. — We prove that, more generally, E1+pjOK -d-sh,dj−ℓ
∞ = k((Y 1/pℓ)). Take f(Y 1/pm) ∈

(E+
∞)1+pjOK -d-sh,dj−ℓ where f(Y ) ∈ k[[Y ]]. Since valY (hp) = p · valY (h) for all h ∈ Ẽ+, we

have fpm(Y ) ∈ (E+
∞)1+pjOK -d-sh,dj−ℓ+m, where fpm(Y ) ∈ E[[Y ]] is fpm(Y ) = f(Y 1/pm)pm .

If m ⩾ ℓ + 1, then prop 3.1.5 implies that fpm(Y ) ∈ E[[Y p]], so that f(Y ) = g(Y p), and
f(Y 1/pm) = g(Y 1/pm−1). This implies the claim.

3.2. Decompletion of Ẽ. — Since we use the results of §2.2, we once more assume
that p ̸= 2. Let Ẽ denote the Y -adic completion of E∞.

Theorem 3.2.1. — We have Ẽ1+pjOK -d-sh,dj = E, and Ẽd-sh = E∞.

Proof. — Let K∞ = K(LT[π∞]) denote the extension of K generated by the torsion
points of LT, and let Γ = Gal(K∞/K). The Lubin-Tate character χπ gives rise to
an isomorphism χπ : Γ → O×

K . For n ⩾ 1, let Kn = K(LT[πn]). If (πn)n⩾1 is a
compatible sequence of primitive πn-torsion points of LT, then πn is a uniformizer of
OKn , ϖ = (πn)n⩾0 belongs to lim←−NKn/Kn−1

OKn , and XK(K∞) = k((ϖ)) by theorem 2.1.1.
If g ∈ Γ, then g(ϖ) = [χπ(g)](ϖ), so that if we identify Γ and O×

K , then XK(K∞) = E
with its action of O×

K . Prop 2.1.4 implies that Ẽ = ẼK∞ as valued fields with an action of
(an open subgroup of) O×

K . We can therefore apply theorem 2.2.3, and get (Ẽ+)d-sh = E+
∞.

This implies the second statement. The first one then follows from coro 3.1.6.

Remark 3.2.2. — In the above proof, note that K1+pnOK
∞ = Kne, so that the numbering

is not the same as in §2.1.

Remark 3.2.3. — We can define Lubin-Tate Γ-modules over E as in §3.2 of [BR22].
The results proved in that section carry over to the Lubin-Tate setting without difficulty.

In theorem 2.9 of [BR22], we proved theorem 3.2.1 above in the cyclotomic case, using
Tate traces. There are no such Tate traces in the Lubin-Tate case if K ̸= Qp. We now
explain why this is so. More precisely, we prove that there is no Γ-equivariant k-linear
projector Ẽ → E if K ̸= Qp. Choose a coordinate T on LT such that logLT(T ) =∑

n⩾0 T
qn
/πn, so that log′

LT(T ) ≡ 1 mod π. Let ∂ = 1/ log′
LT(T ) · d/dT be the invariant

derivative on LT. Let φq = φf where q = pf .

Lemma 3.2.4. — We have dγ(Y )/dY ≡ χπ(γ) in E for all γ ∈ Γ.

Proof. — Since log′
LT ≡ 1 mod π, we have ∂ = d/dY in E. Applying ∂ ◦ γ = χπ(γ)γ ◦ ∂

to Y , we get the claim.

Lemma 3.2.5. — If γ ∈ Γ is nontorsion, then Eγ=1 = k.
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Proposition 3.2.6. — If K ̸= Qp, there is no Γ-equivariant map R : E→ E such that
R(φq(f)) = f for all f ∈ E.

Proof. — Suppose that such a map exists, and take γ ∈ Γ nontorsion and such that
χπ(γ) ≡ 1 mod π. We first show that if f ∈ E is such that (1 − γ)f ∈ φq(E), then
f ∈ φq(E). Write f = f0 + φq(R(f)) where f0 = f − φq(R(f)), so that R(f0) = 0 and
(1 − γ)f0 = φq(g) ∈ φq(E). Applying R, we get 0 = (1 − γ)R(f0) = g. Hence g = 0
so that (1 − γ)f0 = 0. Since Eγ=1 = k by lemma 3.2.5, this implies f0 ∈ k, so that
f ∈ φq(E).

However, lemma 3.2.4 and the fact that χπ(γ) ≡ 1 mod π imply that γ(Y ) = Y +fγ(Y p)
for some fγ ∈ E, so that γ(Y q/p) = Y q/p + φq(gγ). Hence (1 − γ)(Y q/p) ∈ φq(E) even
though Y q/p does not belong to φq(E). Therefore, no such map R can exist.

Corollary 3.2.7. — If K ̸= Qp, there is no Γ-equivariant k-linear projector φ−1
q (E)→

E. A fortiori, there is no Γ-equivariant k-linear projector Ẽ→ E.

Proof. — Given such a projector Π, we could define R as in prop 3.2.6 by R = Π◦φ−1
q .

3.3. The perfectoid commutant of Aut(LT). — In §3.1 of [BR22], we computed
the perfectoid commutant of Aut(Gm). We now use theorem 3.2.1 to do the same for
Aut(LT). We still assume that p ̸= 2.

Theorem 3.3.1. — If u ∈ Ẽ+ is such that valY (u) > 0 and u ◦ [g] = [g] ◦ u for all
g ∈ O×

K, there exists b ∈ O×
K and n ∈ Z such that u(Y ) = [b](Y qn).

Recall that a power series f(Y ) ∈ k[[Y ]] is separable if f ′(Y ) ̸= 0. If f(Y ) ∈ Y · k[[Y ]],
we say that f is invertible if f ′(0) ∈ k×, which is equivalent to f being invertible for
composition (denoted by ◦). We say that w(Y ) ∈ Y · k[[Y ]] is nontorsion if w◦n(Y ) ̸= Y

for all n ⩾ 1. If w(Y ) = ∑
i⩾0 wiY

i ∈ k[[Y ]] and m ∈ Z, let w(m)(Y ) = ∑
i⩾0 w

pm

i Y i. Note
that (w ◦ v)(m) = w(m) ◦ v(m).

Proposition 3.3.2. — Let w(Y ) ∈ Y +Y 2 ·k[[Y ]] be a nontorsion series, and let f(Y ) ∈
Y · k[[Y ]] be a separable power series. If w(m) ◦ f = f ◦ w for some m ∈ Z, then f is
invertible.

Proof. — This is a slight generalization of lemma 6.2 of [Lub94]. Write

f(Y ) = fnY
n + O(Y n+1)

f ′(Y ) = gjY
j + O(Y j+1)

w(Y ) = Y + wrY
r + O(Y r+1),
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with fn, gj, wr ̸= 0. Since w is nontorsion, we can replace w by w◦pℓ for ℓ≫ 0 and assume
that r ⩾ j + 1. We have

w(m) ◦ f = f(Y ) + w(m)
r f(Y )r + O(Y n(r+1))

= f(Y ) + w(m)
r f r

nY
nr + O(Y nr+1).

If j = 0, then n = 1 and we are done, so assume that j ⩾ 1. We have

f ◦ w = f(Y + wrY
r + O(Y r+1))

= f(Y ) + wrY
rf ′(Y ) + O(Y 2r)

= f(Y ) + wrgjY
r+j + O(Y r+j+1).

This implies that nr = r + j, hence (n − 1)r = j, which is impossible if r > j unless
n = 1. Hence n = 1 and f is invertible.

Lemma 3.3.3. — If u ∈ Ẽ+ is such that valX(u) > 0 and u◦[g] = [g]◦u for all g ∈ O×
K,

then u ∈ (Ẽ+)d-sh.

Proof. — The group O×
K acts on Ẽ+ by g · u = u ◦ [g]. By lemmas 3.1.1 and 3.1.2, the

function g 7→ [g] ◦ u is in Hλ
d(1 + pOK , Ẽ+), where pλ = valY (u).

Proof of theorem 3.3.1. — Take u ∈ Ẽ such that valY (u) > 0 and u ◦ [g] = [g] ◦ u for all
g ∈ O×

K . By lemma 3.3.3 and theorem 3.2.1, there is an m ∈ Z such that f(Y ) = u(Y )pm

belongs to Y · k[[Y ]] and is separable. Take g ∈ 1 + πOK such that g is nontorsion, and
let w(Y ) = [g](Y ) so that u ◦ w = w ◦ u. We have f ◦ w = w(m) ◦ f . By prop 3.3.2,
f is invertible. In addition, f ◦ w = w(m) ◦ f if w(Y ) = [g](Y ) for all g ∈ O×

K . Hence
f0 · g = gpm · f0, so that apm = a for all a = g ∈ k. This implies that Fq ⊂ Fp|m| , so
that m = fn for some n ∈ Z. Hence w(m) = w, and f ◦ [g] = [g] ◦ f for all g ∈ O×

K .
Theorem 6 of [LS07] implies that f ∈ Aut(LT). Hence there exists b ∈ O×

K such that
u(Y ) = [b](Y qn).

4. Mahler expansions and super-Hölder functions

In §1.3 of [BR22], we proved an analogue of Mahler’s theorem for continuous functions
Zp → M , and then gave a characterization of super-Hölder functions in terms of their
Mahler expansions. We now indicate how these results generalize to functions G → M

for a uniform pro-p group G. Given the definition of super-Hölder functions and the
existence of a coordinate c : G → Zd

p as in prop 1.1.1, it is enough to study functions
Zd

p → M . We generalize the setting a little bit, and study functions Od
K → M where K
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is a finite extension of Qp. Let K be such a field, fix a uniformizer π of OK and let k be
the residue field of K. Let q = Card(k).

4.1. Good bases and wavelets. — Let X = Od
K , which we endow with the valuation

valX(x1, . . . , xd) = mini valπ(xi). For n ⩾ 0, let Xn = πnX = {x ∈ X, valX(x) ⩾ n}.
We endow X with the valX-adic topology. For any set Y , we denote by LC(X, Y ) the

set of locally constant functions X → Y . For n ⩾ 0 we denote by LCn(X, Y ) the subset
of elements of LC(X, Y ) that factor through X/Xn. Let I = ∪n⩾0In be a set of indices,
where In ⊂ In+1 for all n ⩾ 0, and Card(In) = Card(X/Xn) = qnd. Let E be a field of
characteristic p.

Definition 4.1.1. — A family {hi}i∈I is a good basis of LC(X,E) if it is a basis of the
E-vector space LC(X,E) such that for all n ⩾ 0, {hi}i∈In is a basis of LCn(X,E).

Let M be (as usual) an E-vector space with a valuation valM , such that valM(ax) =
valM(x) for all a ∈ E× and x ∈M . We assume that M is separated and complete for the
valM -adic topology.

Proposition 4.1.2. — Every f ∈ LCn(X,M) can be written uniquely as ∑
i∈In

hi ·mi

for some elements mi ∈M . Moreover, infx∈X valM(f(x)) = infi∈In valM(mi).

Proof. — Let {δx}x∈X/Xn be the basis of LCn(X,E) defined as follows: δx is the charac-
teristic function of x+Xn. Then f ∈ LCn(X,M) is equal to ∑

x∈X/Xn
δx · f(x).

As {hi}i∈In is also a basis of LCn(X,E), we can write δx = ∑
i∈In

ai,xhi for some
elements ai,x ∈ E. We now have f = ∑

i∈In
hi ·mi where mi = ∑

x∈X/Xn
ai,xf(x). This

formula implies that infi∈In valM(mi) ⩾ infx∈X valM(f(x)).
On the other hand we can also write hi = ∑

x∈X/Xn
bx,iδx for some elements bx,i ∈ E,

so that f(x) = ∑
i∈In

bx,imi. This implies that infi∈In valM(mi) ⩽ infx∈X valM(f(x)).

We now give an example of a particularly nice good basis of LC(X,E), the basis of
wavelets (see §I.3 of [Col10] and §2.1 of [dS16]). Let T be a set of representatives of
X/X1 in X, chosen so that the representative of 0 is 0. For each n ⩾ 0, let Rn be the set
of representatives of X/Xn defined as follows: R0 = {0}, and for n ⩾ 1, Rn = {∑n−1

i=0 π
ixi,

xi ∈ T for all i}. We have R1 = T , and Rn ⊂ Rn+1 for all n. Let R = ∪n⩾0Rn. If
r ∈ R let ℓ(r) be the smallest n such that r ∈ Rn. For r ∈ R, let χr be the characteristic
function of the closed disc r +Xℓ(r) = {x ∈ X, valX(x− r) ⩾ ℓ(r)}.

Proposition 4.1.3. — The set {χr}r∈R is a good basis of LC(X,E).
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Proof. — We prove that for all n ⩾ 0, the set {χr}r∈Rn is a basis of LCn(X,E). Consider
the basis {δr}r∈Rn of LCn(X,E), where δr is the characteristic function of r + Xn. We
have

χr =
∑

r′∈Rn−ℓ(r)

δr+πℓ(r)r′ .

This implies that if we write Rn = (Rn\Rn−1)⊔ . . .⊔(R1\R0)⊔R0 and we express the
family {χr}r∈Rn in terms of the basis {δr}r∈Rn , we get a unipotent matrix. This shows
that {χr}r∈Rn is also a basis of LCn(X,E).

4.2. Expansions of continuous functions. — We show that every continuous func-
tion X → M has a convergent expansion along a good basis of X, and prove some
continuity estimates in terms of the coefficients of the expansion. If {mi}i∈I is a family
of M , we say that mi → 0 if infi/∈In valM(mi)→ +∞ as n→ +∞.

Theorem 4.2.1. — Let {hi}i∈I be a good basis of LC(X,E).
If {mi}i∈I is a family of M such that mi → 0, the function f : X → M given by

f = ∑
i∈I hi ·mi belongs to C0(X,M), and infx∈X valM(f(x)) = infi∈I valM(mi).

Conversely, if f ∈ C0(X,M), there exists a unique family {mi(f)}i∈I of elements of
M such that mi(f)→ 0 and such that f = ∑

i∈I hi ·mi(f).

Proof. — Let {mi}i∈I be a family of M such that mi → 0. If fn = ∑
i∈In

hi · mi, then
fn ∈ C0(X,M), and f is the uniform limit of the fn. We have infX valM(fn(x)) =
infi∈In valM(mi) by prop 4.1.2. Since mi → 0, we have infi∈I valM(mi) = infi∈In valM(mi)
for n≫ 0. Hence infX valM(fn(x)) = infi∈I valM(mi) for n≫ 0. Since infx∈X valM(f(x)) =
limn infx valM(fn(x)), we have infx∈X valM(f(x)) = infi∈I valM(mi).

We now prove the converse. Let Mn = {m ∈ M, valM(m) ⩾ n}, let πn : M → M/Mn

be the projection, and for each n, fix a lift ψn : M/Mn → M . Take f ∈ C0(X,M), and
let fn = ψn ◦ πn ◦ f . As f and fn coïncide modulo Mn, f is the uniform limit of the fn.
On the other hand, πn ◦ f is locally constant, and therefore so is fn. As X is compact,
there exists some k(n) ⩾ 0 such that fn ∈ LCk(n)(X,M). By prop 4.1.2, we can write
fn = ∑

i∈I hi ·mi,n, where mi,n = 0 if i /∈ Ik(n). We have valM(mi,n −mi,n′) ⩾ min(n, n′)
by construction, so that for each i, the sequence {mi,n}n converges to some mi ∈ M .
Moreover, if i /∈ Ik(n), then valM(mi) ⩾ n, so that mi → 0. The continuous function∑

i∈I hi ·mi is the uniform limit of the fn, so that finally f = ∑
i∈I hi ·mi.

Proposition 4.2.2. — Take f ∈ C0(X,M) and t ∈ Z⩾0. If {hi}i∈I is a good basis of
LC(X,E), and we write f = ∑

i hi ·mi with mi → 0, then infi ̸∈It valM(mi) depends only
on f and not on the choice of the good basis.
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Proof. — Fix two good bases {hi}i∈I and {h′
i}i∈I of LC(X,E). There exists a family

{λi,j}(i,j)∈I×I of elements of E such that hi = ∑
j λi,jh

′
j for all i. Moreover, if i ∈ Ic then

λi,j = 0 for all j ̸∈ Ic. Now write f = ∑
i∈I hi ·mi(f) = ∑

i∈I h
′
i ·m′

i(f). We also have

f =
∑

i

(
∑

j

λi,jh
′
j) ·mi(f) =

∑
j

h′
j · (

∑
i

λi,jmi(f)),

so that m′
j(f) = ∑

i λi,jmi(f). If j ̸∈ It, then m′
j(f) = ∑

i ̸∈It
λi,jmi(f), as λi,j = 0 if i ∈ It

and j ̸∈ It. This implies that infj ̸∈It valM(m′
j(f)) ⩾ infi ̸∈It valM(mi(f)).

By symmetry, we get that infj ̸∈It valM(m′
j(f)) = infi ̸∈It valM(mi(f)).

Theorem 4.2.3. — Take f ∈ C0(X,M) and t ∈ Z⩾0.
If {hi}i∈I is a good basis of LC(X,E), and we write f = ∑

i hi ·mi with mi → 0, then

inf
i ̸∈It

valM(mi) = inf
x,y∈X

valX(x−y)⩾t

valM(f(x)− f(y)).

Proof. — Let Ct(f) = infx,y∈X,valX(x−y)⩾t valM(f(x)−f(y)) and Bt(f) = infi ̸∈It valM(mi).
If x ∈ X and z ∈ Xt, then f(x + z) − f(x) = ∑

i∈I (hi(x+ z)− hi(z)) · mi(f). As
hi ∈ LCt(X,E) for i ∈ It, the above equality gives us

f(x+ z)− f(x) =
∑
i ̸∈It

(hi(x+ z)− hi(z)) ·mi(f).

This implies that Ct(f) ⩾ Bt(f).
We now prove the converse inequality. By prop 4.2.2, Bt(f) is independent of the choice

of a good basis, and we choose the wavelet basis of prop 4.1.3. Write f = ∑
r∈R χr ·mr(f),

so that we want to show that valM(mr(f)) ⩾ Ct(f) for all r /∈ Rt. If x ∈ X, define
gx : X → M by gx(z) = f(x + πtz) − f(x), and write gx = ∑

r∈R χr ·mr(gx). For each
r ∈ R, we can write uniquely r = rt + πts with rt ∈ Rt, where s = 0 if r ∈ Rt, and
s ̸= 0 ∈ Rℓ(r)−t if r /∈ Rt. For x ∈ Rt and r /∈ Rt, the map z 7→ χr(x + πtz) − χr(x) is
the zero function if rt ̸= x, and is χs if rt = x. This implies that if x ∈ Rt, then

gx(z) =
∑
r∈R

(
χr(x+ πtz)− χr(x)

)
·mr(f)

=
∑

r /∈Rt

(
χr(x+ πtz)− χr(x)

)
·mr(f)

=
∑

s/∈R0

χs(z) ·mx+πts(f).

Therefore if x ∈ Rt, then m0(gx) = 0 and ms(gx) = mx+πts(f) if s ̸= 0. We have
infs∈R valM(ms(gx)) = infz∈X valM(gx(z)) ⩾ Ct(f), so that valM(ms(gx)) ⩾ Ct(f) for all
x ∈ X and s ∈ R. This implies that for all x ∈ Rt and s ̸= 0, valM(mx+πts(f)) ⩾ Ct(f).
Hence for all r /∈ Rt, we have valM(mr(f)) ⩾ Ct(f).
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4.3. Mahler bases. — We now construct some other examples of good bases. For
n ⩾ 0, let Intn(OK) denote the set of polynomials f(T ) ∈ K[T ] such that deg(P ) ⩽ n

and f(OK) ⊂ OK . Recall (see for instance §1.2 of [dS16]) that a Mahler basis for OK

is a sequence {hn}n⩾0 with hn(T ) ∈ K[T ] of degree n, and such that {h0, . . . , hn} is a
basis of the free OK-module Intn(OK) for all n ⩾ 0. For example, if K = Qp, we can
take hn(T ) =

(
T
n

)
. Let {hn}n⩾0 be a Mahler basis for OK . Each hn defines a function

OK → OK and hence OK → k. Let I = Z⩾0 and let In = {0, . . . , qn − 1} for n ⩾ 0.

Proposition 4.3.1. — If {hn}n⩾0 is a Mahler basis for OK, then {hi}i∈I is a good basis
of LC(OK , k).

Proof. — By theorem 1.2 of [dS16], {h0, . . . , hqm−1} is a basis of the k-vector space
LCm(OK , k) for all m ⩾ 0. This implies the claim.

We now specialize to K = Qp. Write N for Z⩾0 and n for an element (n1, . . . , nd) ∈ Nd.
For each n ∈ Nd, we denote by hn the function Zd

p → E given by (x1, . . . , xd) 7→(
x1
n1

)
· · ·

(
xd

nd

)
. For m ∈ Z⩾0, let Im = {n ∈ Nd such that max(n1, . . . , nd) ⩽ pm − 1}.

Proposition 4.3.2. — The functions {hn}n∈Nd form a good basis of LC(Zd
p,Fp).

Proof. — The claim follows from prop 4.3.1 for K = Qp, and lemma 4.3.3 below.

Lemma 4.3.3. — If X and X ′ are as in §4.1, and {hi}i∈I and {h′
j}j∈J are good bases

of LC(X,E) and LC(X ′, E), then {hi ⊗ h′
j}(i,j)∈I×J is a good basis of LC(X × X ′, E),

with (I × J)n = In × Jn.

Let G be a uniform pro-p group, and let c : G→ Zd
p be a coordinate as in prop 1.1.1.

The theorem below follows from prop 4.3.2, theorem 4.2.1, and theorem 4.2.3.

Theorem 4.3.4. — If {mn}n∈Nd is a sequence of M such that mn → 0, the function
f : G → M given by f(g) = ∑

n∈Nd

(
c1(g)

n1

)
· · ·

(
cd(g)

nd

)
mn belongs to C0(G,M). We have

infg∈G valM(f(g)) = infn∈Nd valM(mn).
Conversely, if f ∈ C0(G,M), there exists a unique sequence {mn(f)}n∈Nd such that

mn(f)→ 0 and such that f(g) = ∑
n∈Nd

(
c1(g)

n1

)
· · ·

(
cd(g)

nd

)
mn(f).

We have f ∈ Hλ,µ
e (G,M) if and only if for all i ⩾ 0, we have valM(mn(f)) ⩾ pλ ·pei +µ

whenever max(n1, . . . , nd) ⩾ pi.

Remark 4.3.5. — The first two assertions in the above theorem also follow from theo-
rem 1.2.4 in §III of [Laz65] (we thank Konstantin Ardakov for pointing this out).
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We finish by considering the case G = OK for K a finite extension of Qp, and working
with a Mahler basis for OK . Let K be a finite extension of Qp as before. Assume that
E is an extension of k. Let {hn}n⩾0 be a Mahler basis for OK . If f ∈ C0(OK ,M), write
f = ∑

n⩾0 hnmn(f) with mn(f)→ 0. Let e denote the ramification index of K.

Proposition 4.3.6. — If f = ∑
n⩾0 hnmn(f) as above, then f ∈ Hλ,µ

t (OK ,M) if and
only if valM(mn(f)) ⩾ pλ · pti + µ whenever n ⩾ pdi.

Proof. — This follows from theorem 4.2.3, since valp(x−y) ⩾ i if and only if valπ(x−y) ⩾
ei, and since qe = pd.

In this situation we can also define a slightly different version of super-Hölder functions.
We say that a function f : OK →M is in Hλ,µ

K,t(OK ,M) if valM(f(x)−f(y)) ⩾ pλ ·pti +µ

whenever valπ(x− y) ⩾ i. We then have

Hλ+t(e−1),µ
te (OK ,M) ⊂ Hλ,µ

K,t(OK ,M) ⊂ Hλ,µ
te (OK ,M).

In particular, HK,t(OK ,M) = Hte(OK ,M). If K/Qp is unramified then Hλ,µ
K,t(OK ,M) =

Hλ,µ
t (OK ,M). Moreover we have the following criterion:

Proposition 4.3.7. — If f = ∑
n⩾0 hnmn(f) as above, then f ∈ Hλ,µ

K,t(OK ,M) if and
only if valM(mn(f)) ⩾ pλ · pti + µ whenever n ⩾ qi.

Example 4.3.8. — For all n ⩾ 0, there exists cn(T ) ∈ Intn(OK) such that [a](Y ) =∑
n⩾0 cn(a)Y n. This implies that valY (mn(a 7→ [a](Y ))) ⩾ n, so that the function a 7→

[a](Y ) is in H0,0
d (OK , E[[Y ]]), and in H0,0

K,f (OK , E[[Y ]]) where q = pf .
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