SUPER-HÖLDER VECTORS AND THE FIELD OF NORMS

by
Laurent Berger \& Sandra Rozensztajn

Abstract

Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-Hölder vectors in certain E-linear representations of \mathbf{Z}_{p}. In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_{∞} / K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_{∞}. We show that these superHölder vectors are the perfection of the field of norms of K_{∞} / K. By specializing to the case of a Lubin-Tate extension, we are able to recover $E((Y))$ inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathcal{O}_{K}^{\times}given by the endomorphisms of the corresponding Lubin-Tate group.

Contents

Introduction 2

1. Super-Hölder functions and vectors. 3
1.1. Uniform pro-p groups. 4
1.2. Super-Hölder functions and vectors 5
2. The field of norms 8
2.1. The field of norms 8
2.2. Decompleting the tilt 9
3. The Lubin-Tate case 10
3.1. Lubin-Tate formal groups 10
3.2. Decompletion of $\widetilde{\mathbf{E}}$ 12
3.3. The perfectoid commutant of Aut(LT) 13
4. Mahler expansions and super-Hölder functions 14
4.1. Good bases and wavelets 15
4.2. Expansions of continuous functions 16
4.3. Mahler bases 18
References. 19

Introduction

Let E be a field of characteristic p, for example a finite field. In our paper [BR22], we defined and studied super-Hölder vectors in certain E-linear representations of the p-adic Lie group \mathbf{Z}_{p}. These vectors are a characteristic p analogue of locally analytic vectors. They allowed us to recover $E((X))$ inside the X-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathbf{Z}_{p}^{\times}given by $a \cdot f(X)=f\left((1+X)^{a}-1\right)$.

In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_{∞} / K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_{∞}. We show that these super-Hölder vectors are the perfection of the field of norms of K_{∞} / K. By specializing to the case of a Lubin-Tate extension, we are able to recover $E((Y))$ inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathcal{O}_{K}^{\times}given by the endomorphisms of the corresponding Lubin-Tate group.

We now give more details about the contents of our paper. Let Γ be a p-adic Lie group. It is known that Γ always has a uniform open pro- p subgroup G. Let G be such a subgroup, and let $G_{i}=G^{p^{i}}$ for $i \geqslant 0$. Let M be an E-vector space, endowed with a valuation $v a l_{M}$ such that $\operatorname{val}_{M}(x m)=\operatorname{val}_{M}(m)$ if $x \in E^{\times}$. We assume that M is separated and complete for the val_{M}-adic topology. We say that a function $f: G \rightarrow M$ is super-Hölder if there exist constants $e>0$ and $\lambda, \mu \in \mathbf{R}$ such that $\operatorname{val}_{M}(f(g)-f(h)) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ whenever $g h^{-1} \in G_{i}$, for all $g, h \in G$ and $i \geqslant 0$. If M is now endowed with an action of G by isometries, and $m \in M$, we say that m is a super-Hölder vector if the orbit map $g \mapsto g \cdot m$ is a super-Hölder function $G \rightarrow M$. We let $M^{G-e-s h, \lambda}$ denote the space of super-Hölder vectors for given constants e and λ as in the definition above. The space of vectors of M that are super-Hölder for a given e is independent of the choice of the uniform subgroup G, and denoted by $M^{e-s h}$. When $G=\mathbf{Z}_{p}$ and $e=1$, we recover the definitions of [BR22]. If Γ is a p-adic Lie group and $e=1$, we get an analogue of locally \mathbf{Q}_{p}-analytic vectors. If K is a finite extension of \mathbf{Q}_{p}, Γ is the Galois group of a Lubin-Tate extension of K, and $e=\left[K: \mathbf{Q}_{p}\right]$, we seem to get an analogue of locally K-analytic vectors.

From now on, assume that $p \neq 2$. Let K be a p-adic field and let K_{∞} / K be an almost totally ramified p-adic Lie extension, with Galois group Γ of dimension $d \geqslant 1$. The tilt of K_{∞} is the fraction field $\widetilde{\mathbf{E}}_{K_{\infty}}$ of $\lim _{\underset{x}{ } \rightarrow x^{p}} \mathcal{O}_{K_{\infty}} / p$. It is a perfect complete valued field of characteristic p, endowed with an action of Γ by isometries. The field $\widetilde{\mathbf{E}}_{K_{\infty}}$ naturally contains the field of norms $X_{K}\left(K_{\infty}\right)$ of the extension K_{∞} / K, and it is known that $\widetilde{\mathbf{E}}_{K_{\infty}}$ is the completion of the perfection of $X_{K}\left(K_{\infty}\right)$. We have the following result (theorem 2.2.3).

Theorem A. - We have $\widetilde{\mathbf{E}}_{K_{\infty}}^{d \text { sh }}=\cup_{n \geqslant 0} \varphi^{-n}\left(X_{K}\left(K_{\infty}\right)\right)$.
Assume now that K is a finite extension of \mathbf{Q}_{p}, with residue field k, and let LT be a Lubin-Tate formal group attached to K. Let K_{∞} be the extension of K generated by the torsion points of LT, so that $\operatorname{Gal}\left(K_{\infty} / K\right)$ is isomorphic to \mathcal{O}_{K}^{\times}. The field of norms $X_{K}\left(K_{\infty}\right)$ is isomorphic to $k((Y))$, and \mathcal{O}_{K}^{\times}acts on this field by the endomorphisms of the Lubin-Tate group: $a \cdot f(Y)=f([a](Y))$. Let $d=\left[K: \mathbf{Q}_{p}\right]$. The following (theorem 3.2.1) is a more precise version of theorem A in this situation.

Theorem B. - If $j \geqslant 1$, then $\widetilde{\mathbf{E}}_{K_{\infty}}^{1+p^{j}} \mathcal{O}_{K}-d-\mathrm{sh}, d j=k((Y))$.
If $K=\mathbf{Q}_{p}$ and K_{∞} / K is the cyclotomic extension, theorem B was proved in [BR22]. A crucial ingredient of the proof of this theorem was Colmez' analogue of Tate traces for $\widetilde{\mathbf{E}}_{K_{\infty}}$. If the Lubin-Tate group if of height $\geqslant 2$, there are no such traces (we state and prove a precise version of this assertion in §3.2). Instead of Tate traces, we a theorem of Ax and a precise characterization of the field of norms $X_{K}\left(K_{\infty}\right)$ inside $\widetilde{\mathbf{E}}_{K_{\infty}}$ in order to prove theorem A.

As an application of theorem B, we compute the perfectoid commutant of Aut(LT). If $b \in \mathcal{O}_{K}^{\times}$and $n \in \mathbf{Z}$, then $u(Y)=[b]\left(Y^{q^{n}}\right)$ is an element of $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$that satisfies the functional equation $u \circ[g](Y)=[g] \circ u(Y)$ for all $g \in \mathcal{O}_{K}^{\times}$. Conversely, we prove the following (theorem 3.3.1).

Theorem C. - If $u \in \widetilde{\mathbf{E}}_{K_{\infty}}^{+}$is such that $\operatorname{val}_{Y}(u)>0$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{K}^{\times}$, there exists $b \in \mathcal{O}_{K}^{\times}$and $n \in \mathbf{Z}$ such that $u(Y)=[b]\left(Y^{q^{n}}\right)$.

In the last section, we give a characterization of super-Hölder functions on a uniform pro- p group in terms of their Mahler expansions (theorem 4.3.4). In order to do so, we prove some results of independent interest on the space of continuous functions on \mathcal{O}_{K}^{d} with values in a valued E-vector space M as above.

At the end of [BR22], we suggested an application of super-Hölder vectors for the action of \mathbf{Z}_{p} to the p-adic local Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbf{Q}_{p}\right)$. We hope that this general theory of super-Hölder vectors, especially in the Lubin-Tate case, will have applications to the p-adic local Langlands correspondence for other fields than \mathbf{Q}_{p}.

1. Super-Hölder functions and vectors

In this section, we define Super-Hölder vectors inside a valued E-vector space M endowed with an action of a p-adic Lie group Γ. The definition is very similar to the one
that we gave for $\Gamma=\mathbf{Z}_{p}$ in our paper $[\mathbf{B R 2 2}]$. The main new technical tool is the existence of uniform open subgroups of Γ. These uniform subgroups look very much like \mathbf{Z}_{p}^{d} in a sense that we make precise.
1.1. Uniform pro- p groups. - Uniform pro-p groups are defined at the beginning of $\S 4$ of [DdSMS99]. We do not recall the definition, nor the notion of rank of a uniform pro- p group, but rather point out the following properties of uniform pro-p groups. A coordinate (below) is simply a homeomorphism.

Proposition 1.1.1. - If G is a uniform pro-p group of rank d, then

1. $G_{i}=\left\{g^{p^{i}}, g \in G\right\}$ is an open normal (and uniform) subgroup of G for $i \geqslant 0$
2. We have $\left[G_{i}: G_{i+1}\right]=p^{d}$ for $i \geqslant 0$
3. There is a coordinate $c: G \rightarrow \mathbf{Z}_{p}^{d}$ such that $c\left(G_{i}\right)=\left(p^{i} \mathbf{Z}_{p}\right)^{d}$ for $i \geqslant 0$
4. If $g, h \in G$, then $g h^{-1} \in G_{i}$ if and only if $c(g)-c(h) \in\left(p^{i} \mathbf{Z}_{p}\right)^{d}$

Proof. - Properties (1-4) are proved in $\S 4$ of [DdSMS99]. Alternatively, a uniform pro- p group G has a natural integer valued p-valuation ω such that (G, ω) is saturated (remark 2.1 of [Klo05]). Properties (1-4) are then proved in $\S 26$ of [Sch11].

For example, the pro- p group \mathbf{Z}_{p}^{d} is uniform for all $d \geqslant 1$.
Lemma 1.1.2. - If G is a uniform pro-p group, and H is a uniform open subgroup of G, there exists $j \geqslant 0$ such that $G_{i+j} \subset H_{i}$ for all $i \geqslant 0$.

Proof. - This follows from the fact that $\left\{G_{i}\right\}_{i \geqslant 0}$ forms a basis of neighborhoods of the identity in G.

A p-adic Lie group is a p-adic manifold that has a compatible group structure. For example, $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ and its closed subgroups are p-adic Lie groups. We refer to [Sch11] for a comprehensive treatment of the theory. Every uniform pro- p group is a p-adic Lie group. Conversely, we have the following.

Proposition 1.1.3. - Every p-adic Lie group Γ has a uniform open subgroup G, and the rank of G is the dimension of Γ.

Proof. - See Interlude A (pages 97-98) of [DdSMS99].
Proposition 1.1.4. - Let G be a pro-p group of finite rank, and N a closed normal subgroup of G. There exists an open subgroup G^{\prime} of G such that $G^{\prime}, G^{\prime} \cap N$ and $G^{\prime} / G^{\prime} \cap N$ are all uniform.

Proof. - This is stated and proved on page 64 of [DdSMS99] (their H is our G^{\prime}).
1.2. Super-Hölder functions and vectors. - Let M be an E-vector space, endowed with a valuation val_{M} such that $\operatorname{val}_{M}(x m)=\operatorname{val}_{M}(m)$ if $x \in E^{\times}$. We assume that M is separated and complete for the val_{M}-adic topology. Throughout this \S, G denotes a uniform pro- p group.

Definition 1.2.1. - We say that $f: G \rightarrow M$ is super-Hölder if there exist constants $\lambda, \mu \in \mathbf{R}$ and $e>0$ such that $\operatorname{val}_{M}(f(g)-f(h)) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ whenever $g h^{-1} \in G_{i}$, for all $g, h \in G$ and $i \geqslant 0$.

Remark 1.2.2. - If $G=\mathbf{Z}_{p}$ and $e=1$, we recover the functions defined in $\S 1.1$ [BR22] (see also remark 1.12 of ibid).
In the above definition, e will usually be equal to either 1 or $\operatorname{dim}(G)$.
We let $\mathcal{H}_{e}^{\lambda, \mu}(G, M)$ denote the space of functions such that $\operatorname{val}_{M}(f(g)-f(h)) \geqslant p^{\lambda}$. $p^{e i}+\mu$ whenever $g h^{-1} \in G_{i}$, for all $g, h \in G$ and $i \geqslant 0$, and $\mathcal{H}_{e}^{\lambda}(G, M)=\cup_{\mu \in \mathbf{R}} \mathcal{H}_{e}^{\lambda, \mu}(G, M)$ and $\mathcal{H}_{e}(G, M)=\cup_{\lambda \in \mathbf{R}} \mathcal{H}_{e}^{\lambda}(G, M)$.

If M, N are two valued E-vector spaces, and $f: M \rightarrow N$ is an E-linear map, we say that f is Hölder-continuous if there exists $c>0, d \in \mathbf{R}$ such that $\operatorname{val}_{N}(f(x)) \geqslant c \cdot \operatorname{val}_{M}(x)+d$ for all $x \in M$.

Proposition 1.2.3. - If $\pi: M \rightarrow N$ is a Hölder-continuous linear map, we get a map $\mathcal{H}_{e}(G, M) \rightarrow \mathcal{H}_{e}(G, N)$.

Proof. - Take $c, d \in \mathbf{R}$ of Hölder continuity for $\pi, f \in \mathcal{H}_{e}^{\lambda, \mu}(G, M)$, and $g, h \in G$ with $g h^{-1} \in G_{i}$. We have $\operatorname{val}_{N}(\pi(f(g))-\pi(f(h))) \geqslant c \cdot \operatorname{val}_{M}(f(g)-f(h))+d \geqslant c p^{\lambda} \cdot p^{e i}+(\mu+d)$, so that $\pi \circ f \in \mathcal{H}_{e}^{\lambda^{\prime}, \mu^{\prime}}(G, N)$ with $p^{\lambda^{\prime}}=c p^{\lambda}$, and $\mu^{\prime}=\mu+d$.

Proposition 1.2.4. - If $\alpha: G \rightarrow H$ is a group homomorphism, we get a map α^{*} : $\mathcal{H}_{e}(H, M) \rightarrow \mathcal{H}_{e}(G, M)$.

Proof. - By definition of the subgroups G_{i} and H_{i}, we have $\alpha\left(G_{i}\right) \subset H_{i}$ for all i. Take $f \in \mathcal{H}_{e}^{\lambda, \mu}(H, M)$, and $g, h \in G$ with $g h^{-1} \in G_{i}$. We have $\operatorname{val}_{M}(f(\alpha(g))-f(\alpha(h))) \geqslant$ $p^{\lambda} \cdot p^{e i}+\mu$ as $\alpha(g) \alpha(h)^{-1} \in H_{i}$, so that $\alpha^{*}(f)=f \circ \alpha \in \mathcal{H}_{e}^{\lambda, \mu}(G, M)$.

Proposition 1.2.5. - Suppose that M is a ring, and that $\operatorname{val}_{M}\left(m m^{\prime}\right) \geqslant \operatorname{val}_{M}(m)+$ $\operatorname{val}_{M}\left(m^{\prime}\right)$ for all $m, m^{\prime} \in M$. If $c \in \mathbf{R}$, let $M_{c}=M^{\operatorname{val}_{M} \geqslant c}$.

1. If $f \in \mathcal{H}_{e}^{\lambda, \mu}\left(G, M_{c}\right)$ and $g \in \mathcal{H}_{e}^{\lambda, \nu}\left(G, M_{d}\right)$, and $\xi=\min (\mu+d, \nu+c)$, then $f g \in$ $\mathcal{H}_{e}^{\lambda, \xi}\left(G, M_{c+d}\right)$.
2. If $\lambda, \mu \in \mathbf{R}$, then $\mathcal{H}_{e}^{\lambda, \mu}\left(G, M_{0}\right)$ is a subring of $C^{0}(G, M)$.
3. If $\lambda \in \mathbf{R}$, then $\mathcal{H}_{e}^{\lambda}(G, M)$ is a subring of $C^{0}(G, M)$.

Proof. - Items (2) and (3) follow from item (1), which we now prove. If $x, y \in G$, then

$$
(f g)(x)-(f g)(y)=(f(x)-f(y)) g(x)+(g(x)-g(y)) f(y),
$$

which implies the claim.
We now assume that M is endowed with an E-linear action by isometries of G. If $m \in M$, let $\operatorname{orb}_{m}: G \rightarrow M$ denote the function defined by $\operatorname{orb}_{m}(g)=g \cdot m$.

Definition 1.2.6. - Let $M^{G-e-\text { sh, }, \lambda, \mu}$ be those $m \in M$ such that $\operatorname{orb}_{m} \in \mathcal{H}_{e}^{\lambda, \mu}(G, M)$, and let $M^{G-e-s h, \lambda}$ and $M^{G-e-s h}$ be the corresponding sub- E-vector spaces of M.

Remark 1.2.7. - We assume that G acts by isometries on M, but not that G acts continuously on M, namely that $G \times M \rightarrow M$ is continuous. However, let $M^{\text {cont }}$ denote the set of $m \in M$ such that orb $_{m}: G \rightarrow M$ is continuous. It is easy to see that $M^{\text {cont }}$ is a closed sub- E-vector space of M, and that $G \times M^{\text {cont }} \rightarrow M^{\text {cont }}$ is continuous (compare with $\S 3$ of $[\mathbf{E m e 1 7}])$. We then have $M^{\text {sh }} \subset M^{\text {cont }}$.

Lemma 1.2.8. - If $m \in M$, then $m \in M^{G-e-s h, \lambda, \mu}$ if and only if for all $i \geqslant 0$, we have $\operatorname{val}_{M}(g \cdot m-m) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ for all $g \in G_{i}$.

Proof. - If $m \in M$, then $m \in M^{G-e-s h, \lambda, \mu}$ if and only if the function orb_{m} is in $\mathcal{H}_{e}^{\lambda, \mu}(G, M)$, that is, for all g, h with $g h^{-1} \in G_{i}$, we have $\operatorname{val}_{M}(g \cdot m-h \cdot m) \geqslant p^{\lambda} \cdot p^{e i}+\mu$. As G acts by isometries, we have $\operatorname{val}_{M}(g \cdot m-h \cdot m)=\operatorname{val}_{M}\left(h^{-1} g \cdot m-m\right)$. The result follows, as $h^{-1} g=h^{-1} \cdot g h^{-1} \cdot h \in G_{i}$.

Lemma 1.2.9. - The space $M^{G-e-s h, \lambda, \mu}$ is a closed sub-E-vector space of M.
Lemma 1.2.10. - If $i_{0} \geqslant 0$, and $m \in M$ is such that $\operatorname{val}_{M}(g \cdot m-m) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ for all $g \in G_{i}$ with $i \geqslant i_{0}$, then $m \in M^{G-e-s h, \lambda}$.

Proof. - Take $i<i_{0}$, and let R_{i} be a set of representatives of $G_{i_{0}} \backslash G_{i}$. This is a finite set, so there exists $\mu_{i} \in \mathbf{R}$ such that $\operatorname{val}_{M}(r \cdot m-m) \geqslant p^{\lambda} \cdot p^{e i}+\mu_{i}$ for all $r \in R_{i}$. If $g \in G_{i}$, it can be written as $g=h r$ for some $h \in G_{i_{0}}$ and $r \in R_{i}$. We then have $g \cdot m-m=h r \cdot m-h$. $m+h \cdot m-m$, so that $\operatorname{val}_{M}(g \cdot m-m) \geqslant \min \left(\operatorname{val}_{M}(r \cdot m-m), \operatorname{val}_{M}(h \cdot m-m)\right)($ recall that G acts by isometries), so $\operatorname{val}_{M}(g \cdot m-m) \geqslant \min \left(p^{\lambda} \cdot p^{e i}+\mu_{i}, p^{\lambda} \cdot p^{e i_{0}}+\mu\right) \geqslant p^{\lambda} \cdot p^{e i}+\min \left(\mu, \mu_{i}\right)$ as $i_{0}>i$. If μ^{\prime} is the min of μ and the μ_{i} for $0 \leqslant i<i_{0}$, then $m \in M^{G-e-s h, \lambda, \mu^{\prime}}$.

Recall that if $k \geqslant 0$, then G_{k} is also a uniform pro- p group.
Lemma 1.2.11. - If $k \geqslant 0$ then $M^{G-e-s h, \lambda}=M^{G_{k}-e-\mathrm{sh}, \lambda+k}$.

Proof. - Note that $\left(G_{k}\right)_{i}=G_{i+k}$. The inclusion $M^{G-e-s h, \lambda} \subset M^{G_{k}-e-s h, \lambda+k}$ is obvious, and the reverse inclusion follows from lemma 1.2.10.

Proposition 1.2.12. - The space $M^{H-e-s h}$ does not depend on the choice of a uniform open subgroup $H \subset G$.

Proof. - Let H and H^{\prime} be uniform open subgroups of G. The group $H \cap H^{\prime}$ contains an open uniform subgroup by prop 1.1.3, so to prove the proposition, we can further assume that $H^{\prime} \subset H$. We then have $H_{i}^{\prime} \subset H_{i}$ for all i, so that if $m \in M^{H-e-s h, \lambda, \mu}$, then $m \in$ $M^{H^{\prime}-e-\text { sh }, \lambda, \mu}$. This implies that $M^{H-e-s h, \lambda} \subset M^{H^{\prime}-e \text {-sh }, \lambda}$. Conversely, by lemma 1.1.2, there exists j such that $H_{j} \subset H^{\prime}$. The previous reasoning implies that $M^{H^{\prime}-e-\mathrm{sh}, \lambda} \subset M^{H_{j}-e-s h, \lambda}$. Lemma 1.2.11 now implies that $M^{H_{j}-e-\text {-sh }, \lambda}=M^{H-e-\text { sh, }, \lambda-j}$.

These inclusions imply the proposition.
Definition 1.2.13. - If Γ is a p-adic Lie group that acts by isometries on M, we let $M^{e-\text {-sh }}=M^{G-e-\text {-sh }}$ where G is any uniform open subgroup of Γ.

Remark 1.2.14. - If $e \leqslant f$, then $M^{f \text {-sh }} \subset M^{e-\text { sh }}$.
Recall that G is a uniform pro- p group. If a closed normal subgroup N of G acts trivially on M, then G / N acts on M.

Proposition 1.2.15. - If a closed normal subgroup N of G acts trivially on M, then $M^{G-e-s h}=M^{G / N-e-s h}$.

Proof. - By prop 1.1.4, G has an open subgroup G^{\prime} such that G^{\prime} and G^{\prime} / N^{\prime} are uniform (where $N^{\prime}=G^{\prime} \cap N$). By prop 1.2.12, we have $M^{G-e-\text { sh }}=M^{G^{\prime}-e-\text {-sh }}$ and $M^{G / N-e-s h}=$ $M^{G^{\prime} / N^{\prime}-e \text {-sh }}$. Let $\pi: G^{\prime} \rightarrow G^{\prime} / N^{\prime}$ denote the projection. We have $\pi\left(G_{i}^{\prime}\right)=\left(G^{\prime} / N^{\prime}\right)_{i}$ for all i. Hence if $m \in M$, then $\operatorname{val}_{M}(g \cdot m-m) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ for all $g \in G_{i}^{\prime}$ if and only if $\operatorname{val}_{M}(\pi(g) \cdot m-m) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ for all $\pi(g) \in\left(G^{\prime} / N^{\prime}\right)_{i}$.

Proposition 1.2.16. - Suppose that M is a ring, and that $g\left(m m^{\prime}\right)=g(m) g\left(m^{\prime}\right)$ and $\operatorname{val}_{M}\left(m m^{\prime}\right) \geqslant \operatorname{val}_{M}(m)+\operatorname{val}_{M}\left(m^{\prime}\right)$ for all $m, m^{\prime} \in M$ and $g \in G$.

1. If $v \in \mathbf{R}$ and $m, m^{\prime} \in M^{G-e-s h, \lambda, \mu} \cap M^{\operatorname{val}_{M} \geqslant v}$, then $m \cdot m^{\prime} \in M^{G-e-s h, \lambda, \mu+v}$.
2. If $m \in M^{G-e-\mathrm{sh}, \lambda, \mu} \cap M^{\times}$, then $1 / m \in M^{G-e-\mathrm{sh}, \lambda, \mu-2 \operatorname{val}_{M}(m)}$.

Proof. - Item (1) follows from prop 1.2.5 and lemma 1.2.8. Item (2) follows from

$$
g\left(\frac{1}{m}\right)-\frac{1}{m}=\frac{m-g(m)}{g(m) m} .
$$

2. The field of norms

Let K be a p-adic field, and let K_{∞} be an algebraic Galois extension of K, whose Galois group G is a p-adic Lie group of dimension $\geqslant 1$. We assume that K_{∞} / K is almost totally ramified, namely that the inertia subgroup of G is open in G. Let $d=\operatorname{dim}(G)$ and let $\ell=p^{d}$. Let $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$denote the ring ${\underset{\varliminf i m}{x \mapsto x^{\ell}}} \mathcal{O}_{K_{\infty}} / p$. This is a perfect domain of characteristic p, which has a natural action of G. The map $\left(y_{j}\right)_{j \geqslant 0} \mapsto\left(y_{d i}\right)_{i \geqslant 0}$ gives an isomorphism between $\lim _{x \rightarrow x^{p}} \mathcal{O}_{K_{\infty}} / p$ and $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$, so that $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$is the ring of integers of the tilt of \hat{K}_{∞} (see §3 of [Sch12]).

If $x=\left(x_{i}\right)_{i \geqslant 0}$, and \hat{x}_{i} is a lift of x_{i} to $\mathcal{O}_{K_{\infty}}$, then $\ell^{i} \operatorname{val}_{p}\left(\hat{x}_{i}\right)$ is independent of $i \geqslant 0$ such that $x_{i} \neq 0$. We define a valuation on $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$by $\operatorname{val}_{\mathrm{E}}(x)=\lim _{i \rightarrow+\infty} \ell^{i} \operatorname{val}_{p}\left(\hat{x}_{i}\right)$.

The aim of this section is to compute $\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{d \text {-sh }}$. Given definition 1.2.13, we assume from now on (replacing K by a finite subextension if necessary) that G is uniform and that K_{∞} / K is totally ramified. Let k denote the common residue field of K and K_{∞}.
2.1. The field of norms. - Let $\mathcal{E}\left(K_{\infty}\right)$ denote the set of finite extensions E of K such that $E \subset K_{\infty}$. Let $X_{K}\left(K_{\infty}\right)$ denote the set of sequences $\left(x_{E}\right)_{E \in \mathcal{E}\left(K_{\infty}\right)}$ such that $x_{E} \in E$ for all $E \in \mathcal{E}\left(K_{\infty}\right)$, and $\mathrm{N}_{F / E}\left(x_{F}\right)=x_{E}$ whenever $E \subset F$ with $E, F \in \mathcal{E}\left(K_{\infty}\right)$.

If $n \geqslant 0$, let $K_{n}=K_{\infty}^{G_{n}}$ so that $\left[K_{n+1}: K_{n}\right]=\ell,\left\{K_{n}\right\}_{n \geqslant 0}$ is a cofinal subset of $\mathcal{E}\left(K_{\infty}\right)$, and $X_{K}\left(K_{\infty}\right)=\lim _{\mathrm{N}_{K_{n} / K_{n-1}}} K_{n}$. If $x=\left(x_{n}\right)_{n \geqslant 0} \in X_{K}\left(K_{\infty}\right)$, let $\operatorname{val}_{\mathrm{E}}(x)=\operatorname{val}_{p}\left(x_{0}\right)$.

Theorem 2.1.1. - Let K and K_{∞} be as above.

1. If $x, y \in X_{K}\left(K_{\infty}\right)$, then $\left\{\mathrm{N}_{K_{n+j} / K_{n}}\left(x_{n+j}+y_{n+j}\right)\right\}_{j \geqslant 0}$ converges for all $n \geqslant 0$.
2. If we set $(x+y)_{n}=\lim _{j \rightarrow+\infty} \mathrm{N}_{K_{n+j} / K_{n}}\left(x_{n+j}+y_{n+j}\right)$, then $x+y \in X_{K}\left(K_{\infty}\right)$, and the set $X_{K}\left(K_{\infty}\right)$ with this addition law, and componentwise multiplication, is a field of characteristic p.
3. The function $\mathrm{val}_{\mathrm{E}}$ is a valuation on $X_{K}\left(K_{\infty}\right)$, for which it is complete
4. If $\varpi=\left(\varpi_{n}\right)_{n \geqslant 0}$ is a norm compatible sequence of uniformizers of $\mathcal{O}_{K_{n}}$, the valued field $X_{K}\left(K_{\infty}\right)$ is isomorphic to $k((\varpi)) \quad$ (with $\left.\operatorname{val}(\varpi)=\operatorname{val}_{p}\left(\varpi_{0}\right)\right)$.

Proof. - By a result of Sen [Sen72], K_{∞} / K is strictly APF in the terminology of $\S 1.2$ of [Win83] (see 1.2.2 of ibid). The theorem is then proved in $\S 2$ of ibid.

Let $X_{K}^{+}\left(K_{\infty}\right)=\lim _{\mathrm{N}_{K_{n} / K_{n-1}}} \mathcal{O}_{K_{n}}$ be the ring of integers of the valued field $X_{K}\left(K_{\infty}\right)$. If $c>0$, let $I_{n}^{c}=\left\{x \in \mathcal{O}_{K_{n}}\right.$ such that $\left.\operatorname{val}_{p}(x) \geqslant c\right\}$. If $m, n \geqslant 0$, the map $\mathcal{O}_{K_{n}} / I_{n}^{c} \rightarrow$ $\mathcal{O}_{K_{m+n}} / I_{m+n}^{c}$ is well-defined and injective.

Proposition 2.1.2. - There exists $c\left(K_{\infty} / K\right) \leqslant 1$ such that if $0<c \leqslant c\left(K_{\infty} / K\right)$, then $\operatorname{val}_{p}\left(\mathrm{~N}_{K_{n+k} / K_{n}}(x) / x^{\left[K_{n+k}: K_{n}\right]}-1\right) \geqslant c$ for all $n, k \geqslant 0$ and $x \in \mathcal{O}_{K_{n+k}}$.

Proof. - See [Win83] as well as §4 of [CD15]. The result follows from the fact (see 1.2.2 of [Win83]) that the extension K_{∞} / K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

Using prop 2.1.2, we get a map $\iota: X_{K}^{+}\left(K_{\infty}\right) \rightarrow \lim _{\leftrightarrows_{x \mapsto x^{\ell}}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ given by $\left(x_{n}\right)_{n \geqslant 0} \in \lim _{\mathrm{N}_{K_{n} / K_{n-1}}} \mathcal{O}_{K_{n}} \mapsto\left(\bar{x}_{n}\right)_{n \geqslant 0}$. Let $\lim _{\mathrm{m}_{x \mapsto x^{\ell}}} \mathcal{O}_{K_{n}} / I_{n}^{c}$ denote the set of $\left(x_{n}\right)_{n \geqslant 0} \in \varliminf_{\rightleftarrows x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ such that $x_{n} \in \mathcal{O}_{K_{n}} / I_{n}^{c}$ for all $n \geqslant 0$.

Proposition 2.1.3. - Let $0<c \leqslant c\left(K_{\infty} / K\right)$ be as in prop 2.1.2.

1. the natural map $\widetilde{\mathbf{E}}_{K_{\infty}}^{+} \rightarrow \lim _{\underset{x \mapsto x^{\ell}}{ }} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ is a bijection
2. the map $\iota: X_{K}^{+}\left(K_{\infty}\right) \rightarrow \lim _{x \rightarrow x^{\ell}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}=\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$is injective and isometric
3. the image of ι is $\varliminf_{幺} \mathrm{lim}_{x \mapsto x^{\ell}} \mathcal{O}_{K_{n}} / I_{n}^{c}$.

Proof. - See [Win83] and $\S 4$ of [CD15]. We give a few more details for the convenience of the reader. Item (1) is classical (see for instance prop 4.2 of [CD15]). The map ι is obviously injective and isometric. For (3), choose $x=\left(x_{n}\right)_{n \geqslant 0} \in \lim _{\nleftarrow x \mapsto x^{\ell}} \mathcal{O}_{K_{n}} / I_{n}^{c}$, and choose a lift $\hat{x}_{n} \in \mathcal{O}_{K_{n}}$ of x_{n}. One proves that $\left\{\mathrm{N}_{K_{n+j} / K_{n}}\left(\hat{x}_{n+j}\right)\right\}_{j \geqslant 0}$ converges to some $y_{n} \in \mathcal{O}_{K_{n}}$, and that $\left(y_{n}\right)_{n \geqslant 0} \in X_{K}^{+}\left(K_{\infty}\right)$ is a lift of $\left(x_{n}\right)_{n \geqslant 0}$. See $\S 4$ of [CD15] for details, for instance the proof of lemma 4.1.

Prop 2.1.3 allows us to see $X_{K}^{+}\left(K_{\infty}\right)$, and hence $\varphi^{-n}\left(X_{K}^{+}\left(K_{\infty}\right)\right)$ for all $n \geqslant 0$, as a subring of $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$.

Proposition 2.1.4. - The ring $\cup_{n \geqslant 0} \varphi^{-n}\left(X_{K}^{+}\left(K_{\infty}\right)\right)$ is dense in $\widetilde{\mathbf{E}}_{K_{\infty}}^{+}$.
Proof. - See $\S 4.3$ of [Win83].
2.2. Decompleting the tilt. - We now compute $\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{d \text {-sh }}$. Since prop 2.2.1 below is vacuous if $p=2$, we assume in this \S that $p \neq 2$.

Proposition 2.2.1. - If $0<c \leqslant 1-1 /(p-1)$, and $x \in \mathcal{O}_{K_{\infty}}$ is such that $\operatorname{val}_{p}(g(x)-$ $x) \geqslant 1$ for all $g \in G_{n}$, then the image of x in $\mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ belongs to $\mathcal{O}_{K_{n}} / I_{n}^{c}$.

Proof. - If $\operatorname{val}_{p}(g(x)-x) \geqslant 1$ for all $g \in \operatorname{Gal}\left(K^{\text {alg }} / K_{n}\right)$, then by theorem 1.7 of [LB10] (an optimal version of a theorem of Ax), there exists $y \in K_{n}$ such that $\operatorname{val}_{p}(x-y) \geqslant$ $1-1 /(p-1)$. This implies the proposition.

Proposition 2.2.2. - If $c=p^{\gamma}$ is as above, then $X_{K}^{+}\left(K_{\infty}\right) \subset\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{G-d-s h, \gamma, 0}$.

Proof. - Take $x=\left(x_{n}\right)_{n \geqslant 0} \in \lim _{\leftarrow}^{\leftarrow} \rightarrow x^{\ell} \mathcal{O}_{K_{n}} / I_{n}^{c}$. If $g \in G_{i}$, then $g\left(x_{n}\right)=x_{n}$ for $n \leqslant i$, so that $\operatorname{val}_{\mathrm{E}}(g x-x) \geqslant p^{d i} p^{\gamma}$.

Theorem 2.2.3. - We have

1. $\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{G-d-\mathrm{sh}, 0,0} \subset X_{K}^{+}\left(K_{\infty}\right)$
2. $\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{d \text {-sh }}=\cup_{n \geqslant 0} \varphi^{-n}\left(X_{K}^{+}\left(K_{\infty}\right)\right)$ and $\widetilde{\mathbf{E}}_{K_{\infty}}^{d \text {-sh }}=\cup_{n \geqslant 0} \varphi^{-n}\left(X_{K}\left(K_{\infty}\right)\right)$

Proof. - Take $c \leqslant \min \left(c\left(K_{\infty} / K\right), 1-1 /(p-1)\right)$. Take $x=\left(x_{n}\right)_{n \geqslant 0} \in{\underset{幺}{\varliminf}}_{\lim _{x \rightarrow}} \mathcal{O}_{K_{\infty}} / p$. If $n \geqslant 0$ and $x \in\left(\widetilde{\mathbf{E}}_{K_{\infty}}^{+}\right)^{G-d-\text { sh,0,0}}$, then $\operatorname{val}_{\mathrm{E}}(g(x)-x) \geqslant p^{d n}$ if $g \in G_{n}$. This implies that $\operatorname{val}_{p}\left(g\left(x_{n}\right)-x_{n}\right) \geqslant 1$ if $g \in G_{n}$. By prop 2.2.1, the image of x_{n} in $\mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ belongs to $\mathcal{O}_{K_{n}} / I_{n}^{c}$. Hence the image of x in $\varliminf_{\leftarrow} \lim _{x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ belongs to $\varliminf_{\leftarrow}^{l_{x \mapsto x^{\ell}}} \mathcal{O}_{K_{n}} / I_{n}^{c}$. By prop 2.1.3, x belongs to $X_{K}^{+}\left(K_{\infty}\right)$. This proves (1).

Since $\operatorname{val}_{E}(\varphi(x))=p \cdot \operatorname{val}_{E}(x)$, item (2) follows from (1) and props 2.2.2 and 1.2.16.
Remark 2.2.4. - We have $\widetilde{\mathbf{E}}_{K_{\infty}}^{d \text { shh }} \subset \widetilde{\mathbf{E}}_{K_{\infty}}^{1 \text {-sh. }}$. The field $\widetilde{\mathbf{E}}_{K_{\infty}}^{1 \text {-sh }}$ contains the field of norms $X_{K}\left(L_{\infty}\right)$ of any p-adic Lie extension L_{∞} / K contained in K_{∞}. Indeed, $\widetilde{\mathbf{E}}_{L_{\infty}} \subset \widetilde{\mathbf{E}}_{K_{\infty}}$ and if $e=\operatorname{dim} \operatorname{Gal}\left(L_{\infty} / K\right)$, then $X_{K}\left(L_{\infty}\right) \subset \widetilde{\mathbf{E}}_{L_{\infty}}^{e-\text {-sh }} \subset \widetilde{\mathbf{E}}_{K_{\infty}}^{1 \text {-sh }}$ (see prop 1.2.15).

Can one give a description of $\widetilde{\mathbf{E}}_{K_{\infty}}^{1-\text { sh }}$, for example along the lines of $\S 5$ of [Ber16]?

3. The Lubin-Tate case

We now specialize the constructions of the previous section to the case when K_{∞} is generated over K by the torsion points of a Lubin-Tate formal group.
3.1. Lubin-Tate formal groups. - Let K be a finite extension of \mathbf{Q}_{p} of degree d, with ring of integers \mathcal{O}_{K}, inertia index f, ramification index e, and residue field k. Let $q=p^{f}=\operatorname{Card}(k)$ and let π be a uniformizer of \mathcal{O}_{K}. Let LT be the Lubin-Tate formal \mathcal{O}_{K}-module attached to π (see [LT65]). We choose a coordinate Y on LT. For each $a \in \mathcal{O}_{K}$ we get a power series $[a](Y) \in \mathcal{O}_{K} \llbracket Y \rrbracket$, that we now see as an element of $k \llbracket Y \rrbracket$. In particular, $[\pi\rfloor(Y)=Y^{q}$. Let $S(T, U) \in k \llbracket T, U \rrbracket$ denote the reduction $\bmod \pi$ of the power series giving the addition law in LT in that coordinate. Recall that $S(T, 0)=T$ and $S(0, U)=U$.

Lemma 3.1.1. - If $a, b \in \mathcal{O}_{K}$ and $i \geqslant 0$, then $\operatorname{val}_{Y}\left(\left[a+p^{i} b\right](Y)-[a](Y)\right) \geqslant p^{d i}$.
Furthermore, $\left[1+\pi^{i}\right](Y)=Y+Y^{q^{i}}+\mathrm{O}\left(Y^{q^{i}+1}\right)$.
Proof. - We have $[\pi](Y)=Y^{q}$, so $\operatorname{val}_{Y}([\pi](Y)) \geqslant p^{f}$. Writing $p=u \pi^{e}$ for a unit u, we see that $\operatorname{val}_{Y}\left(\left[p^{i} b\right](Y)\right) \geqslant p^{d i}$ if $b \in \mathcal{O}_{K}$. If $a, b \in \mathcal{O}_{K}$ and $i \geqslant 0$, then $\left[a+b p^{i}\right](Y)=$
$S\left([a](Y),\left[b p^{i}\right](Y)\right)$. We have $S(T, U)=T+U+T U \cdot R(T, U)$, so that $\left[a+b p^{i}\right](Y)-[a](Y)=$ $S\left([a](Y),\left[b p^{i}\right](Y)\right)-[a](Y) \in\left[b p^{i}\right](Y) \cdot k \llbracket Y \rrbracket$. This implies the first result.
The second claim follows likewise from the fact that $\left[1+\pi^{i}\right](Y)=S\left(Y,\left[\pi^{i}\right](Y)\right)=$ $Y+\left[\pi^{i}\right](Y)+Y \cdot\left[\pi^{i}\right](Y) \cdot R\left(Y,\left[\pi^{i}\right](Y)\right)$.

Let $\mathbf{E}=k((Y))$. Let $\mathbf{E}_{n}=k\left(\left(Y^{1 / q^{n}}\right)\right)$ and let $\mathbf{E}_{\infty}=\cup_{n \geqslant 0} \mathbf{E}_{n}$. These fields are endowed with the Y-adic valuation val $_{Y}$, and we let \mathbf{E}_{\star}^{+}denote the ring of integers of \mathbf{E}_{\star}. The group \mathcal{O}_{K}^{\times}acts on \mathbf{E}_{n} by $a \cdot f\left(Y^{1 / q^{n}}\right)=f\left([a]\left(Y^{1 / q^{n}}\right)\right)$.

Lemma 3.1.2. - If $j \geqslant 1(j \geqslant 2$ if $p=2)$, then $1+p^{j} \mathcal{O}_{K}$ is uniform, and $\left(1+p^{j} \mathcal{O}_{K}\right)_{i}=$ $1+p^{i+j} \mathcal{O}_{K}$.

Proof. - The map $1+p^{j} \mathcal{O}_{K} \rightarrow \mathcal{O}_{K}$, given by $x \mapsto p^{-j} \cdot \log _{p}(x-1)$, is an isomorphism of pro- p groups taking $1+p^{i+j} \mathcal{O}_{K}$ to $p^{i} \mathcal{O}_{K}$.

Recall that $d=\left[K: \mathbf{Q}_{p}\right]$, that $f=\left[k: \mathbf{F}_{p}\right]$, and that $q=p^{f}$.
Proposition 3.1.3. - We have $\mathbf{E}_{n}^{+}=\left(\mathbf{E}_{n}^{+}\right)^{1+p^{j} \mathcal{O}_{K}-d-\text {-sh,dj-fn }, 0}$.
Proof. - If $b \in \mathcal{O}_{K}$ and $i, j \geqslant 0$, then by lemma 3.1.1, we have

$$
\operatorname{val}_{Y}\left(\left[1+p^{i+j} b\right]\left(Y^{1 / q^{n}}\right)-Y^{1 / q^{n}}\right) \geqslant 1 / q^{n} \cdot p^{d(i+j)}=p^{d j-f n} \cdot p^{d i} .
$$

Lemma 3.1.2 then implies that $Y^{1 / q^{n}} \in\left(\mathbf{E}_{n}^{+}\right)^{1+p^{j}} \mathcal{O}_{K-d-s h, d j-f n, 0}$. The lemma now follows from prop 1.2.16 and lemma 1.2.9.

Corollary 3.1.4. - We have $\mathbf{E}=\mathbf{E}^{1+p^{j} \mathcal{O}_{K}-d-\text { sh }, d j}$.
Proof. - This follows from prop 3.1.3 with $n=0$, and prop 1.2.16.
Proposition 3.1.5. - If $\varepsilon>0$, then $k \llbracket Y \rrbracket^{1+p^{j} \mathcal{O}_{K}-d-\mathrm{sh}, d j+\varepsilon} \subset k \llbracket Y^{p} \rrbracket$.
Proof. - Take $f(Y) \in k \llbracket Y \rrbracket$. There is a power series $h(T, U) \in k \llbracket T, U \rrbracket$ such that

$$
f(T+U)=f(T)+U \cdot f^{\prime}(T)+U^{2} \cdot h(T, U)
$$

If $m \geqslant 0$, lemma 3.1.1 implies that $\left[1+\pi^{m}\right](Y)=Y+Y^{q^{m}}+\mathrm{O}\left(Y^{q^{m}+1}\right)$. Therefore,

$$
f\left(\left[1+\pi^{m}\right](Y)\right)=f(Y)+\left(Y^{q^{m}}+\mathrm{O}\left(Y^{q^{m}+1}\right)\right) \cdot f^{\prime}(Y)+\mathrm{O}\left(Y^{2 q^{m}}\right) .
$$

If $f(Y) \notin k \llbracket Y^{p} \rrbracket$, then $f^{\prime}(Y) \neq 0$. Let $\mu=\operatorname{val}_{Y}\left(f^{\prime}(Y)\right)$. The above computations imply that $\operatorname{val}_{Y}\left(f\left(\left[1+\pi^{e i+e j}\right](Y)\right)-f(Y)\right)=p^{d j} \cdot p^{d i}+\mu$ for $i \gg 0$.

This implies the claim, since $\pi^{e} \mathcal{O}_{K}=p \mathcal{O}_{K}$.
Corollary 3.1.6. - We have $\mathbf{E}_{\infty}^{1+p^{j} \mathcal{O}_{K}-d-\mathrm{sh}, d j-f n}=\mathbf{E}_{n}$.

Proof. - We prove that, more generally, $\mathbf{E}_{\infty}^{1+p^{j}} \mathcal{O}_{K}-d$-sh,$d j-\ell=k\left(\left(Y^{1 / p^{\ell}}\right)\right)$. Take $f\left(Y^{1 / p^{m}}\right) \in$ $\left(\mathbf{E}_{\infty}^{+}\right)^{1+p^{j} \mathcal{O}_{K}-d \text {-sh,dj- }}$ where $f(Y) \in k \llbracket Y \rrbracket$. Since $\operatorname{val}_{Y}\left(h^{p}\right)=p \cdot \operatorname{val}_{Y}(h)$ for all $h \in \widetilde{\mathbf{E}}^{+}$, we have $f^{p^{m}}(Y) \in\left(\mathbf{E}_{\infty}^{+}\right)^{1+p^{j}} \mathcal{O}_{K-d-s h, d j-\ell+m}$, where $f^{p^{m}}(Y) \in E \llbracket Y \rrbracket$ is $f^{p^{m}}(Y)=f\left(Y^{1 / p^{m}}\right)^{p^{m}}$. If $m \geqslant \ell+1$, then prop 3.1.5 implies that $f^{p^{m}}(Y) \in E \llbracket Y^{p} \rrbracket$, so that $f(Y)=g\left(Y^{p}\right)$, and $f\left(Y^{1 / p^{m}}\right)=g\left(Y^{1 / p^{m-1}}\right)$. This implies the claim.
3.2. Decompletion of $\widetilde{\mathbf{E}}$. - Since we use the results of $\S 2.2$, we once more assume that $p \neq 2$. Let $\widetilde{\mathbf{E}}$ denote the Y-adic completion of \mathbf{E}_{∞}.

Theorem 3.2.1. - We have $\widetilde{\mathbf{E}}^{1+p^{j} \mathcal{O}_{K}-d \text {-sh }, d j}=\mathbf{E}$, and $\widetilde{\mathbf{E}}^{d-\mathrm{sh}}=\mathbf{E}_{\infty}$.
Proof. - Let $K_{\infty}=K\left(\operatorname{LT}\left[\pi^{\infty}\right]\right)$ denote the extension of K generated by the torsion points of LT, and let $\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)$. The Lubin-Tate character χ_{π} gives rise to an isomorphism $\chi_{\pi}: \Gamma \rightarrow \mathcal{O}_{K}^{\times}$. For $n \geqslant 1$, let $K_{n}=K\left(\operatorname{LT}\left[\pi^{n}\right]\right)$. If $\left(\pi_{n}\right)_{n \geqslant 1}$ is a compatible sequence of primitive π^{n}-torsion points of LT, then π_{n} is a uniformizer of $\mathcal{O}_{K_{n}}, \varpi=\left(\pi_{n}\right)_{n \geqslant 0}$ belongs to ${\underset{\lim }{\mathrm{N}_{K_{n} / K_{n-1}}}} \mathcal{O}_{K_{n}}$, and $X_{K}\left(K_{\infty}\right)=k((\varpi))$ by theorem 2.1.1. If $g \in \Gamma$, then $g(\varpi)=\left[\chi_{\pi}(g)\right](\varpi)$, so that if we identify Γ and \mathcal{O}_{K}^{\times}, then $X_{K}\left(K_{\infty}\right)=\mathbf{E}$ with its action of \mathcal{O}_{K}^{\times}. Prop 2.1.4 implies that $\widetilde{\mathbf{E}}=\widetilde{\mathbf{E}}_{K_{\infty}}$ as valued fields with an action of (an open subgroup of) \mathcal{O}_{K}^{\times}. We can therefore apply theorem 2.2.3, and get $\left(\widetilde{\mathbf{E}}^{+}\right)^{d \text {-sh }}=\mathbf{E}_{\infty}^{+}$. This implies the second statement. The first one then follows from coro 3.1.6.

Remark 3.2.2. - In the above proof, note that $K_{\infty}^{1+p^{n} \mathcal{O}_{K}}=K_{n e}$, so that the numbering is not the same as in $\S 2.1$.

Remark 3.2.3. - We can define Lubin-Tate Γ-modules over \mathbf{E} as in $\S 3.2$ of [BR22]. The results proved in that section carry over to the Lubin-Tate setting without difficulty.

In theorem 2.9 of [BR22], we proved theorem 3.2.1 above in the cyclotomic case, using Tate traces. There are no such Tate traces in the Lubin-Tate case if $K \neq \mathbf{Q}_{p}$. We now explain why this is so. More precisely, we prove that there is no Γ-equivariant k-linear projector $\widetilde{\mathbf{E}} \rightarrow \mathbf{E}$ if $K \neq \mathbf{Q}_{p}$. Choose a coordinate T on LT such that $\log _{\mathrm{LT}}(T)=$ $\sum_{n \geqslant 0} T^{q^{n}} / \pi^{n}$, so that $\log _{\mathrm{LT}}^{\prime}(T) \equiv 1 \bmod \pi$. Let $\partial=1 / \log _{\mathrm{LT}}^{\prime}(T) \cdot d / d T$ be the invariant derivative on LT. Let $\varphi_{q}=\varphi^{f}$ where $q=p^{f}$.

Lemma 3.2.4. - We have $d \gamma(Y) / d Y \equiv \chi_{\pi}(\gamma)$ in \mathbf{E} for all $\gamma \in \Gamma$.
Proof. - Since $\log _{\mathrm{LT}}^{\prime} \equiv 1 \bmod \pi$, we have $\partial=d / d Y$ in E. Applying $\partial \circ \gamma=\chi_{\pi}(\gamma) \gamma \circ \partial$ to Y, we get the claim.

Lemma 3.2.5. - If $\gamma \in \Gamma$ is nontorsion, then $\mathbf{E}^{\gamma=1}=k$.

Proposition 3.2.6. - If $K \neq \mathbf{Q}_{p}$, there is no Γ-equivariant map $R: \mathbf{E} \rightarrow \mathbf{E}$ such that $R\left(\varphi_{q}(f)\right)=f$ for all $f \in \mathbf{E}$.

Proof. - Suppose that such a map exists, and take $\gamma \in \Gamma$ nontorsion and such that $\chi_{\pi}(\gamma) \equiv 1 \bmod \pi$. We first show that if $f \in \mathbf{E}$ is such that $(1-\gamma) f \in \varphi_{q}(\mathbf{E})$, then $f \in \varphi_{q}(\mathbf{E})$. Write $f=f_{0}+\varphi_{q}(R(f))$ where $f_{0}=f-\varphi_{q}(R(f))$, so that $R\left(f_{0}\right)=0$ and $(1-\gamma) f_{0}=\varphi_{q}(g) \in \varphi_{q}(\mathbf{E})$. Applying R, we get $0=(1-\gamma) R\left(f_{0}\right)=g$. Hence $g=0$ so that $(1-\gamma) f_{0}=0$. Since $\mathbf{E}^{\gamma=1}=k$ by lemma 3.2.5, this implies $f_{0} \in k$, so that $f \in \varphi_{q}(\mathbf{E})$.

However, lemma 3.2.4 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \bmod \pi$ imply that $\gamma(Y)=Y+f_{\gamma}\left(Y^{p}\right)$ for some $f_{\gamma} \in \mathbf{E}$, so that $\gamma\left(Y^{q / p}\right)=Y^{q / p}+\varphi_{q}\left(g_{\gamma}\right)$. Hence $(1-\gamma)\left(Y^{q / p}\right) \in \varphi_{q}(\mathbf{E})$ even though $Y^{q / p}$ does not belong to $\varphi_{q}(\mathbf{E})$. Therefore, no such map R can exist.

Corollary 3.2.7. - If $K \neq \mathbf{Q}_{p}$, there is no Γ-equivariant k-linear projector $\varphi_{q}^{-1}(\mathbf{E}) \rightarrow$ E. A fortiori, there is no Γ-equivariant k-linear projector $\widetilde{\mathbf{E}} \rightarrow \mathbf{E}$.

Proof. - Given such a projector Π, we could define R as in prop 3.2.6 by $R=\Pi \circ \varphi_{q}^{-1}$.
3.3. The perfectoid commutant of $\operatorname{Aut}(\mathrm{LT})$. - In $\S 3.1$ of [BR22], we computed the perfectoid commutant of $\operatorname{Aut}\left(\mathbf{G}_{\mathrm{m}}\right)$. We now use theorem 3.2.1 to do the same for Aut(LT). We still assume that $p \neq 2$.

Theorem 3.3.1. - If $u \in \widetilde{\mathbf{E}}^{+}$is such that $\operatorname{val}_{Y}(u)>0$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{K}^{\times}$, there exists $b \in \mathcal{O}_{K}^{\times}$and $n \in \mathbf{Z}$ such that $u(Y)=[b]\left(Y^{q^{n}}\right)$.

Recall that a power series $f(Y) \in k \llbracket Y \rrbracket$ is separable if $f^{\prime}(Y) \neq 0$. If $f(Y) \in Y \cdot k \llbracket Y \rrbracket$, we say that f is invertible if $f^{\prime}(0) \in k^{\times}$, which is equivalent to f being invertible for composition (denoted by o). We say that $w(Y) \in Y \cdot k \llbracket Y \rrbracket$ is nontorsion if $w^{\circ n}(Y) \neq Y$ for all $n \geqslant 1$. If $w(Y)=\sum_{i \geqslant 0} w_{i} Y^{i} \in k \llbracket Y \rrbracket$ and $m \in \mathbf{Z}$, let $w^{(m)}(Y)=\sum_{i \geqslant 0} w_{i}^{p^{m}} Y^{i}$. Note that $(w \circ v)^{(m)}=w^{(m)} \circ v^{(m)}$.

Proposition 3.3.2. - Let $w(Y) \in Y+Y^{2} \cdot k \llbracket Y \rrbracket$ be a nontorsion series, and let $f(Y) \in$ $Y \cdot k \llbracket Y \rrbracket$ be a separable power series. If $w^{(m)} \circ f=f \circ w$ for some $m \in \mathbf{Z}$, then f is invertible.

Proof. - This is a slight generalization of lemma 6.2 of [Lub94]. Write

$$
\begin{aligned}
f(Y) & =f_{n} Y^{n}+\mathrm{O}\left(Y^{n+1}\right) \\
f^{\prime}(Y) & =g_{j} Y^{j}+\mathrm{O}\left(Y^{j+1}\right) \\
w(Y) & =Y+w_{r} Y^{r}+\mathrm{O}\left(Y^{r+1}\right)
\end{aligned}
$$

with $f_{n}, g_{j}, w_{r} \neq 0$. Since w is nontorsion, we can replace w by $w^{\circ p^{\ell}}$ for $\ell \gg 0$ and assume that $r \geqslant j+1$. We have

$$
\begin{aligned}
w^{(m)} \circ f & =f(Y)+w_{r}^{(m)} f(Y)^{r}+\mathrm{O}\left(Y^{n(r+1)}\right) \\
& =f(Y)+w_{r}^{(m)} f_{n}^{r} Y^{n r}+\mathrm{O}\left(Y^{n r+1}\right)
\end{aligned}
$$

If $j=0$, then $n=1$ and we are done, so assume that $j \geqslant 1$. We have

$$
\begin{aligned}
f \circ w & =f\left(Y+w_{r} Y^{r}+\mathrm{O}\left(Y^{r+1}\right)\right) \\
& =f(Y)+w_{r} Y^{r} f^{\prime}(Y)+\mathrm{O}\left(Y^{2 r}\right) \\
& =f(Y)+w_{r} g_{j} Y^{r+j}+\mathrm{O}\left(Y^{r+j+1}\right) .
\end{aligned}
$$

This implies that $n r=r+j$, hence $(n-1) r=j$, which is impossible if $r>j$ unless $n=1$. Hence $n=1$ and f is invertible.

Lemma 3.3.3. - If $u \in \widetilde{\mathbf{E}}^{+}$is such that $\operatorname{val}_{X}(u)>0$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{K}^{\times}$, then $u \in\left(\widetilde{\mathbf{E}}^{+}\right)^{d \text {-sh }}$.

Proof. - The group \mathcal{O}_{K}^{\times}acts on $\widetilde{\mathbf{E}}^{+}$by $g \cdot u=u \circ[g]$. By lemmas 3.1.1 and 3.1.2, the function $g \mapsto[g] \circ u$ is in $\mathcal{H}_{d}^{\lambda}\left(1+p \mathcal{O}_{K}, \widetilde{\mathbf{E}}^{+}\right)$, where $p^{\lambda}=\operatorname{val}_{Y}(u)$.

Proof of theorem 3.3.1. - Take $u \in \widetilde{\mathbf{E}}$ such that $\operatorname{val}_{Y}(u)>0$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{K}^{\times}$. By lemma 3.3.3 and theorem 3.2.1, there is an $m \in \mathbf{Z}$ such that $f(Y)=u(Y)^{p^{m}}$ belongs to $Y \cdot k \llbracket Y \rrbracket$ and is separable. Take $g \in 1+\pi \mathcal{O}_{K}$ such that g is nontorsion, and let $w(Y)=[g](Y)$ so that $u \circ w=w \circ u$. We have $f \circ w=w^{(m)} \circ f$. By prop 3.3.2, f is invertible. In addition, $f \circ w=w^{(m)} \circ f$ if $w(Y)=[g](Y)$ for all $g \in \mathcal{O}_{K}^{\times}$. Hence $f_{0} \cdot \bar{g}=\bar{g}^{p^{m}} \cdot f_{0}$, so that $a^{p^{m}}=a$ for all $a=\bar{g} \in k$. This implies that $\mathbf{F}_{q} \subset \mathbf{F}_{p^{|m|} \mid}$, so that $m=f n$ for some $n \in \mathbf{Z}$. Hence $w^{(m)}=w$, and $f \circ[g]=[g] \circ f$ for all $g \in \mathcal{O}_{K}^{\times}$. Theorem 6 of $[\mathbf{L S 0 7}]$ implies that $f \in \operatorname{Aut}(\mathrm{LT})$. Hence there exists $b \in \mathcal{O}_{K}^{\times}$such that $u(Y)=[b]\left(Y^{q^{n}}\right)$.

4. Mahler expansions and super-Hölder functions

In $\S 1.3$ of [BR22], we proved an analogue of Mahler's theorem for continuous functions $\mathbf{Z}_{p} \rightarrow M$, and then gave a characterization of super-Hölder functions in terms of their Mahler expansions. We now indicate how these results generalize to functions $G \rightarrow M$ for a uniform pro-p group G. Given the definition of super-Hölder functions and the existence of a coordinate $c: G \rightarrow \mathbf{Z}_{p}^{d}$ as in prop 1.1.1, it is enough to study functions $\mathbf{Z}_{p}^{d} \rightarrow M$. We generalize the setting a little bit, and study functions $\mathcal{O}_{K}^{d} \rightarrow M$ where K
is a finite extension of \mathbf{Q}_{p}. Let K be such a field, fix a uniformizer π of \mathcal{O}_{K} and let k be the residue field of K. Let $q=\operatorname{Card}(k)$.
4.1. Good bases and wavelets. - Let $X=\mathcal{O}_{K}^{d}$, which we endow with the valuation $\operatorname{val}_{X}\left(x_{1}, \ldots, x_{d}\right)=\min _{i} \operatorname{val}_{\pi}\left(x_{i}\right)$. For $n \geqslant 0$, let $X_{n}=\pi^{n} X=\left\{x \in X, \operatorname{val}_{X}(x) \geqslant n\right\}$.

We endow X with the val_{X}-adic topology. For any set Y, we denote by $\operatorname{LC}(X, Y)$ the set of locally constant functions $X \rightarrow Y$. For $n \geqslant 0$ we denote by $\mathrm{LC}_{n}(X, Y)$ the subset of elements of $\mathrm{LC}(X, Y)$ that factor through X / X_{n}. Let $I=\cup_{n \geqslant 0} I_{n}$ be a set of indices, where $I_{n} \subset I_{n+1}$ for all $n \geqslant 0$, and $\operatorname{Card}\left(I_{n}\right)=\operatorname{Card}\left(X / X_{n}\right)=q^{n d}$. Let E be a field of characteristic p.

Definition 4.1.1. - A family $\left\{h_{i}\right\}_{i \in I}$ is a good basis of $\mathrm{LC}(X, E)$ if it is a basis of the E-vector space $\mathrm{LC}(X, E)$ such that for all $n \geqslant 0,\left\{h_{i}\right\}_{i \in I_{n}}$ is a basis of $\operatorname{LC}_{n}(X, E)$.

Let M be (as usual) an E-vector space with a valuation val_{M}, such that $\operatorname{val}_{M}(a x)=$ $\operatorname{val}_{M}(x)$ for all $a \in E^{\times}$and $x \in M$. We assume that M is separated and complete for the val_{M}-adic topology.

Proposition 4.1.2. - Every $f \in \mathrm{LC}_{n}(X, M)$ can be written uniquely as $\sum_{i \in I_{n}} h_{i} \cdot m_{i}$ for some elements $m_{i} \in M$. Moreover, $\inf _{x \in X} \operatorname{val}_{M}(f(x))=\inf _{i \in I_{n}} \operatorname{val}_{M}\left(m_{i}\right)$.

Proof. - Let $\left\{\delta_{x}\right\}_{x \in X / X_{n}}$ be the basis of $\operatorname{LC}_{n}(X, E)$ defined as follows: δ_{x} is the characteristic function of $x+X_{n}$. Then $f \in \mathrm{LC}_{n}(X, M)$ is equal to $\sum_{x \in X / X_{n}} \delta_{x} \cdot f(x)$.

As $\left\{h_{i}\right\}_{i \in I_{n}}$ is also a basis of $\mathrm{LC}_{n}(X, E)$, we can write $\delta_{x}=\sum_{i \in I_{n}} a_{i, x} h_{i}$ for some elements $a_{i, x} \in E$. We now have $f=\sum_{i \in I_{n}} h_{i} \cdot m_{i}$ where $m_{i}=\sum_{x \in X / X_{n}} a_{i, x} f(x)$. This formula implies that $\inf _{i \in I_{n}} \operatorname{val}_{M}\left(m_{i}\right) \geqslant \inf _{x \in X} \operatorname{val}_{M}(f(x))$.

On the other hand we can also write $h_{i}=\sum_{x \in X / X_{n}} b_{x, i} \delta_{x}$ for some elements $b_{x, i} \in E$, so that $f(x)=\sum_{i \in I_{n}} b_{x, i} m_{i}$. This implies that $\inf _{i \in I_{n}} \operatorname{val}_{M}\left(m_{i}\right) \leqslant \inf _{x \in X} \operatorname{val}_{M}(f(x))$.

We now give an example of a particularly nice good basis of $\mathrm{LC}(X, E)$, the basis of wavelets (see \S I. 3 of [Col10] and $\S 2.1$ of [dS16]). Let \mathcal{T} be a set of representatives of X / X_{1} in X, chosen so that the representative of 0 is 0 . For each $n \geqslant 0$, let \mathcal{R}_{n} be the set of representatives of X / X_{n} defined as follows: $\mathcal{R}_{0}=\{0\}$, and for $n \geqslant 1, \mathcal{R}_{n}=\left\{\sum_{i=0}^{n-1} \pi^{i} x_{i}\right.$, $x_{i} \in \mathcal{T}$ for all $\left.i\right\}$. We have $\mathcal{R}_{1}=\mathcal{T}$, and $\mathcal{R}_{n} \subset \mathcal{R}_{n+1}$ for all n. Let $\mathcal{R}=\cup_{n \geqslant 0} \mathcal{R}_{n}$. If $r \in \mathcal{R}$ let $\ell(r)$ be the smallest n such that $r \in \mathcal{R}_{n}$. For $r \in \mathcal{R}$, let χ_{r} be the characteristic function of the closed disc $r+X_{\ell(r)}=\left\{x \in X, \operatorname{val}_{X}(x-r) \geqslant \ell(r)\right\}$.

Proposition 4.1.3. - The set $\left\{\chi_{r}\right\}_{r \in \mathcal{R}}$ is a good basis of $\mathrm{LC}(X, E)$.

Proof. - We prove that for all $n \geqslant 0$, the set $\left\{\chi_{r}\right\}_{r \in \mathcal{R}_{n}}$ is a basis of $\mathrm{LC}_{n}(X, E)$. Consider the basis $\left\{\delta_{r}\right\}_{r \in \mathcal{R}_{n}}$ of $\operatorname{LC}_{n}(X, E)$, where δ_{r} is the characteristic function of $r+X_{n}$. We have

$$
\chi_{r}=\sum_{r^{\prime} \in \mathcal{R}_{n-\ell(r)}} \delta_{r+\pi^{\ell(r)} r^{\prime}}
$$

This implies that if we write $\mathcal{R}_{n}=\left(\mathcal{R}_{n} \backslash \mathcal{R}_{n-1}\right) \sqcup \ldots \sqcup\left(\mathcal{R}_{1} \backslash \mathcal{R}_{0}\right) \sqcup \mathcal{R}_{0}$ and we express the family $\left\{\chi_{r}\right\}_{r \in \mathcal{R}_{n}}$ in terms of the basis $\left\{\delta_{r}\right\}_{r \in \mathcal{R}_{n}}$, we get a unipotent matrix. This shows that $\left\{\chi_{r}\right\}_{r \in \mathcal{R}_{n}}$ is also a basis of $\operatorname{LC}_{n}(X, E)$.
4.2. Expansions of continuous functions. - We show that every continuous function $X \rightarrow M$ has a convergent expansion along a good basis of X, and prove some continuity estimates in terms of the coefficients of the expansion. If $\left\{m_{i}\right\}_{i \in I}$ is a family of M, we say that $m_{i} \rightarrow 0$ if $\inf _{i \notin I_{n}} \operatorname{val}_{M}\left(m_{i}\right) \rightarrow+\infty$ as $n \rightarrow+\infty$.

Theorem 4.2.1. - Let $\left\{h_{i}\right\}_{i \in I}$ be a good basis of $\operatorname{LC}(X, E)$.
If $\left\{m_{i}\right\}_{i \in I}$ is a family of M such that $m_{i} \rightarrow 0$, the function $f: X \rightarrow M$ given by $f=\sum_{i \in I} h_{i} \cdot m_{i}$ belongs to $C^{0}(X, M)$, and $\inf _{x \in X} \operatorname{val}_{M}(f(x))=\inf _{i \in I} \operatorname{val}_{M}\left(m_{i}\right)$.

Conversely, if $f \in C^{0}(X, M)$, there exists a unique family $\left\{m_{i}(f)\right\}_{i \in I}$ of elements of M such that $m_{i}(f) \rightarrow 0$ and such that $f=\sum_{i \in I} h_{i} \cdot m_{i}(f)$.

Proof. - Let $\left\{m_{i}\right\}_{i \in I}$ be a family of M such that $m_{i} \rightarrow 0$. If $f_{n}=\sum_{i \in I_{n}} h_{i} \cdot m_{i}$, then $f_{n} \in C^{0}(X, M)$, and f is the uniform limit of the f_{n}. We have $\inf _{X} \operatorname{val}_{M}\left(f_{n}(x)\right)=$ $\inf _{i \in I_{n}} \operatorname{val}_{M}\left(m_{i}\right)$ by prop 4.1.2. Since $m_{i} \rightarrow 0$, we have $\inf _{i \in I} \operatorname{val}_{M}\left(m_{i}\right)=\inf _{i \in I_{n}} \operatorname{val}_{M}\left(m_{i}\right)$ for $n \gg 0$. Hence $\inf _{X} \operatorname{val}_{M}\left(f_{n}(x)\right)=\inf _{i \in I} \operatorname{val}_{M}\left(m_{i}\right)$ for $n \gg 0$. Since $\inf _{x \in X} \operatorname{val}_{M}(f(x))=$ $\lim _{n} \inf _{x} \operatorname{val}_{M}\left(f_{n}(x)\right)$, we have $\inf _{x \in X} \operatorname{val}_{M}(f(x))=\inf _{i \in I} \operatorname{val}_{M}\left(m_{i}\right)$.

We now prove the converse. Let $M_{n}=\left\{m \in M, \operatorname{val}_{M}(m) \geqslant n\right\}$, let $\pi_{n}: M \rightarrow M / M_{n}$ be the projection, and for each n, fix a lift $\psi_{n}: M / M_{n} \rightarrow M$. Take $f \in C^{0}(X, M)$, and let $f_{n}=\psi_{n} \circ \pi_{n} \circ f$. As f and f_{n} coïncide modulo M_{n}, f is the uniform limit of the f_{n}. On the other hand, $\pi_{n} \circ f$ is locally constant, and therefore so is f_{n}. As X is compact, there exists some $k(n) \geqslant 0$ such that $f_{n} \in \operatorname{LC}_{k(n)}(X, M)$. By prop 4.1.2, we can write $f_{n}=\sum_{i \in I} h_{i} \cdot m_{i, n}$, where $m_{i, n}=0$ if $i \notin I_{k(n)}$. We have $\operatorname{val}_{M}\left(m_{i, n}-m_{i, n^{\prime}}\right) \geqslant \min \left(n, n^{\prime}\right)$ by construction, so that for each i, the sequence $\left\{m_{i, n}\right\}_{n}$ converges to some $m_{i} \in M$. Moreover, if $i \notin I_{k(n)}$, then $\operatorname{val}_{M}\left(m_{i}\right) \geqslant n$, so that $m_{i} \rightarrow 0$. The continuous function $\sum_{i \in I} h_{i} \cdot m_{i}$ is the uniform limit of the f_{n}, so that finally $f=\sum_{i \in I} h_{i} \cdot m_{i}$.

Proposition 4.2.2. - Take $f \in C^{0}(X, M)$ and $t \in \mathbf{Z}_{\geqslant 0}$. If $\left\{h_{i}\right\}_{i \in I}$ is a good basis of $\mathrm{LC}(X, E)$, and we write $f=\sum_{i} h_{i} \cdot m_{i}$ with $m_{i} \rightarrow 0$, then $\inf _{i \notin I_{t}} \operatorname{val}_{M}\left(m_{i}\right)$ depends only on f and not on the choice of the good basis.

Proof. - Fix two good bases $\left\{h_{i}\right\}_{i \in I}$ and $\left\{h_{i}^{\prime}\right\}_{i \in I}$ of $\operatorname{LC}(X, E)$. There exists a family $\left\{\lambda_{i, j}\right\}_{(i, j) \in I \times I}$ of elements of E such that $h_{i}=\sum_{j} \lambda_{i, j} h_{j}^{\prime}$ for all i. Moreover, if $i \in I_{c}$ then $\lambda_{i, j}=0$ for all $j \notin I_{c}$. Now write $f=\sum_{i \in I} h_{i} \cdot m_{i}(f)=\sum_{i \in I} h_{i}^{\prime} \cdot m_{i}^{\prime}(f)$. We also have

$$
f=\sum_{i}\left(\sum_{j} \lambda_{i, j} h_{j}^{\prime}\right) \cdot m_{i}(f)=\sum_{j} h_{j}^{\prime} \cdot\left(\sum_{i} \lambda_{i, j} m_{i}(f)\right),
$$

so that $m_{j}^{\prime}(f)=\sum_{i} \lambda_{i, j} m_{i}(f)$. If $j \notin I_{t}$, then $m_{j}^{\prime}(f)=\sum_{i \notin I_{t}} \lambda_{i, j} m_{i}(f)$, as $\lambda_{i, j}=0$ if $i \in I_{t}$ and $j \notin I_{t}$. This implies that $\inf _{j \notin I_{t}} \operatorname{val}_{M}\left(m_{j}^{\prime}(f)\right) \geqslant \inf _{i \notin I_{t}} \operatorname{val}_{M}\left(m_{i}(f)\right)$.

By symmetry, we get that $\inf _{j \notin I_{t}} \operatorname{val}_{M}\left(m_{j}^{\prime}(f)\right)=\inf _{i \notin I_{t}} \operatorname{val}_{M}\left(m_{i}(f)\right)$.
Theorem 4.2.3. - Take $f \in C^{0}(X, M)$ and $t \in \mathbf{Z}_{\geqslant 0}$.
If $\left\{h_{i}\right\}_{i \in I}$ is a good basis of $\operatorname{LC}(X, E)$, and we write $f=\sum_{i} h_{i} \cdot m_{i}$ with $m_{i} \rightarrow 0$, then

$$
\inf _{i \notin I_{t}} \operatorname{val}_{M}\left(m_{i}\right)=\inf _{\substack{x, y \in X \\ \operatorname{val}_{X}(x-y) \geqslant t}} \operatorname{val}_{M}(f(x)-f(y)) .
$$

Proof. - Let $C_{t}(f)=\inf _{x, y \in X, \operatorname{val}_{X}(x-y) \geqslant t} \operatorname{val}_{M}(f(x)-f(y))$ and $B_{t}(f)=\inf _{i \notin I_{t}} \operatorname{val}_{M}\left(m_{i}\right)$. If $x \in X$ and $z \in X_{t}$, then $f(x+z)-f(x)=\sum_{i \in I}\left(h_{i}(x+z)-h_{i}(z)\right) \cdot m_{i}(f)$. As $h_{i} \in \mathrm{LC}_{t}(X, E)$ for $i \in I_{t}$, the above equality gives us

$$
f(x+z)-f(x)=\sum_{i \notin I_{t}}\left(h_{i}(x+z)-h_{i}(z)\right) \cdot m_{i}(f) .
$$

This implies that $C_{t}(f) \geqslant B_{t}(f)$.
We now prove the converse inequality. By prop 4.2.2, $B_{t}(f)$ is independent of the choice of a good basis, and we choose the wavelet basis of prop 4.1.3. Write $f=\sum_{r \in \mathcal{R}} \chi_{r} \cdot m_{r}(f)$, so that we want to show that $\operatorname{val}_{M}\left(m_{r}(f)\right) \geqslant C_{t}(f)$ for all $r \notin \mathcal{R}_{t}$. If $x \in X$, define $g_{x}: X \rightarrow M$ by $g_{x}(z)=f\left(x+\pi^{t} z\right)-f(x)$, and write $g_{x}=\sum_{r \in \mathcal{R}} \chi_{r} \cdot m_{r}\left(g_{x}\right)$. For each $r \in \mathcal{R}$, we can write uniquely $r=r_{t}+\pi^{t} s$ with $r_{t} \in \mathcal{R}_{t}$, where $s=0$ if $r \in \mathcal{R}_{t}$, and $s \neq 0 \in \mathcal{R}_{\ell(r)-t}$ if $r \notin \mathcal{R}_{t}$. For $x \in \mathcal{R}_{t}$ and $r \notin \mathcal{R}_{t}$, the map $z \mapsto \chi_{r}\left(x+\pi^{t} z\right)-\chi_{r}(x)$ is the zero function if $r_{t} \neq x$, and is χ_{s} if $r_{t}=x$. This implies that if $x \in \mathcal{R}_{t}$, then

$$
\begin{aligned}
g_{x}(z) & =\sum_{r \in \mathcal{R}}\left(\chi_{r}\left(x+\pi^{t} z\right)-\chi_{r}(x)\right) \cdot m_{r}(f) \\
& =\sum_{r \notin \mathcal{R}_{t}}\left(\chi_{r}\left(x+\pi^{t} z\right)-\chi_{r}(x)\right) \cdot m_{r}(f) \\
& =\sum_{s \notin \mathcal{R}_{0}} \chi_{s}(z) \cdot m_{x+\pi^{t} s}(f) .
\end{aligned}
$$

Therefore if $x \in \mathcal{R}_{t}$, then $m_{0}\left(g_{x}\right)=0$ and $m_{s}\left(g_{x}\right)=m_{x+\pi^{t} s}(f)$ if $s \neq 0$. We have $\inf _{s \in \mathcal{R}} \operatorname{val}_{M}\left(m_{s}\left(g_{x}\right)\right)=\inf _{z \in X} \operatorname{val}_{M}\left(g_{x}(z)\right) \geqslant C_{t}(f)$, so that $\operatorname{val}_{M}\left(m_{s}\left(g_{x}\right)\right) \geqslant C_{t}(f)$ for all $x \in X$ and $s \in \mathcal{R}$. This implies that for all $x \in \mathcal{R}_{t}$ and $s \neq 0, \operatorname{val}_{M}\left(m_{x+\pi^{t} s}(f)\right) \geqslant C_{t}(f)$. Hence for all $r \notin \mathcal{R}_{t}$, we have $\operatorname{val}_{M}\left(m_{r}(f)\right) \geqslant C_{t}(f)$.
4.3. Mahler bases. - We now construct some other examples of good bases. For $n \geqslant 0$, let $\operatorname{Int}_{n}\left(\mathcal{O}_{K}\right)$ denote the set of polynomials $f(T) \in K[T]$ such that $\operatorname{deg}(P) \leqslant n$ and $f\left(\mathcal{O}_{K}\right) \subset \mathcal{O}_{K}$. Recall (see for instance $\S 1.2$ of [dS16]) that a Mahler basis for \mathcal{O}_{K} is a sequence $\left\{h_{n}\right\}_{n \geqslant 0}$ with $h_{n}(T) \in K[T]$ of degree n, and such that $\left\{h_{0}, \ldots, h_{n}\right\}$ is a basis of the free \mathcal{O}_{K}-module $\operatorname{Int}_{n}\left(\mathcal{O}_{K}\right)$ for all $n \geqslant 0$. For example, if $K=\mathbf{Q}_{p}$, we can take $h_{n}(T)=\binom{T}{n}$. Let $\left\{h_{n}\right\}_{n \geqslant 0}$ be a Mahler basis for \mathcal{O}_{K}. Each h_{n} defines a function $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K}$ and hence $\mathcal{O}_{K} \rightarrow k$. Let $I=\mathbf{Z}_{\geqslant 0}$ and let $I_{n}=\left\{0, \ldots, q^{n}-1\right\}$ for $n \geqslant 0$.

Proposition 4.3.1. - If $\left\{h_{n}\right\}_{n \geqslant 0}$ is a Mahler basis for \mathcal{O}_{K}, then $\left\{h_{i}\right\}_{i \in I}$ is a good basis of $\mathrm{LC}\left(\mathcal{O}_{K}, k\right)$.

Proof. - By theorem 1.2 of [dS16], $\left\{h_{0}, \ldots, h_{q^{m}-1}\right\}$ is a basis of the k-vector space $\mathrm{LC}_{m}\left(\mathcal{O}_{K}, k\right)$ for all $m \geqslant 0$. This implies the claim.

We now specialize to $K=\mathbf{Q}_{p}$. Write \mathbf{N} for $\mathbf{Z}_{\geqslant 0}$ and \mathbf{n} for an element $\left(n_{1}, \ldots, n_{d}\right) \in \mathbf{N}^{d}$. For each $\mathbf{n} \in \mathbf{N}^{d}$, we denote by $h_{\mathbf{n}}$ the function $\mathbf{Z}_{p}^{d} \rightarrow E$ given by $\left(x_{1}, \ldots, x_{d}\right) \mapsto$ $\binom{x_{1}}{n_{1}} \cdots\binom{x_{d}}{n_{d}}$. For $m \in \mathbf{Z}_{\geqslant 0}$, let $I_{m}=\left\{\mathbf{n} \in \mathbf{N}^{d}\right.$ such that $\left.\max \left(n_{1}, \ldots, n_{d}\right) \leqslant p^{m}-1\right\}$.

Proposition 4.3.2. - The functions $\left\{h_{\mathbf{n}}\right\}_{\mathbf{n} \in \mathbf{N}^{d}}$ form a good basis of $\operatorname{LC}\left(\mathbf{Z}_{p}^{d}, \mathbf{F}_{p}\right)$.
Proof. - The claim follows from prop 4.3.1 for $K=\mathbf{Q}_{p}$, and lemma 4.3.3 below.
Lemma 4.3.3. - If X and X^{\prime} are as in §4.1, and $\left\{h_{i}\right\}_{i \in I}$ and $\left\{h_{j}^{\prime}\right\}_{j \in J}$ are good bases of $\mathrm{LC}(X, E)$ and $\operatorname{LC}\left(X^{\prime}, E\right)$, then $\left\{h_{i} \otimes h_{j}^{\prime}\right\}_{(i, j) \in I \times J}$ is a good basis of $\mathrm{LC}\left(X \times X^{\prime}, E\right)$, with $(I \times J)_{n}=I_{n} \times J_{n}$.

Let G be a uniform pro- p group, and let $c: G \rightarrow \mathbf{Z}_{p}^{d}$ be a coordinate as in prop 1.1.1. The theorem below follows from prop 4.3.2, theorem 4.2.1, and theorem 4.2.3.

Theorem 4.3.4. - If $\left\{m_{\mathbf{n}}\right\}_{\mathbf{n} \in \mathbf{N}^{d}}$ is a sequence of M such that $m_{\mathbf{n}} \rightarrow 0$, the function $f: G \rightarrow M$ given by $f(g)=\sum_{\mathbf{n} \in \mathbf{N}^{d}}\binom{c_{1}(g)}{n_{1}} \cdots\binom{c_{d}(g)}{n_{d}} m_{\mathbf{n}}$ belongs to $C^{0}(G, M)$. We have $\inf _{g \in G} \operatorname{val}_{M}(f(g))=\inf _{\mathbf{n} \in \mathbf{N}^{d}} \operatorname{val}_{M}\left(m_{\mathbf{n}}\right)$.

Conversely, if $f \in C^{0}(G, M)$, there exists a unique sequence $\left\{m_{\mathbf{n}}(f)\right\}_{\mathbf{n} \in \mathbf{N}^{d}}$ such that $m_{\mathbf{n}}(f) \rightarrow 0$ and such that $f(g)=\sum_{\mathbf{n} \in \mathbf{N}^{d}}\binom{c_{1}(g)}{n_{1}} \cdots\binom{c_{d}(g)}{n_{d}} m_{\mathbf{n}}(f)$.

We have $f \in \mathcal{H}_{e}^{\lambda, \mu}(G, M)$ if and only if for all $i \geqslant 0$, we have $\operatorname{val}_{M}\left(m_{\mathbf{n}}(f)\right) \geqslant p^{\lambda} \cdot p^{e i}+\mu$ whenever $\max \left(n_{1}, \ldots, n_{d}\right) \geqslant p^{i}$.

Remark 4.3.5. - The first two assertions in the above theorem also follow from theorem 1.2.4 in §III of [Laz65] (we thank Konstantin Ardakov for pointing this out).

We finish by considering the case $G=\mathcal{O}_{K}$ for K a finite extension of \mathbf{Q}_{p}, and working with a Mahler basis for \mathcal{O}_{K}. Let K be a finite extension of \mathbf{Q}_{p} as before. Assume that E is an extension of k. Let $\left\{h_{n}\right\}_{n \geqslant 0}$ be a Mahler basis for \mathcal{O}_{K}. If $f \in C^{0}\left(\mathcal{O}_{K}, M\right)$, write $f=\sum_{n \geqslant 0} h_{n} m_{n}(f)$ with $m_{n}(f) \rightarrow 0$. Let e denote the ramification index of K.

Proposition 4.3.6. - If $f=\sum_{n \geqslant 0} h_{n} m_{n}(f)$ as above, then $f \in \mathcal{H}_{t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right)$ if and only if $\operatorname{val}_{M}\left(m_{n}(f)\right) \geqslant p^{\lambda} \cdot p^{t i}+\mu$ whenever $n \geqslant p^{d i}$.

Proof. - This follows from theorem 4.2.3, ${\text { since } \operatorname{val}_{p}(x-y) \geqslant i \text { if and only if } \operatorname{val}_{\pi}(x-y) \geqslant}$ $e i$, and since $q^{e}=p^{d}$.

In this situation we can also define a slightly different version of super-Hölder functions. We say that a function $f: \mathcal{O}_{K} \rightarrow M$ is in $\mathcal{H}_{K, t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right)$ if $\operatorname{val}_{M}(f(x)-f(y)) \geqslant p^{\lambda} \cdot p^{t i}+\mu$ whenever $\operatorname{val}_{\pi}(x-y) \geqslant i$. We then have

$$
\mathcal{H}_{t e}^{\lambda+t(e-1), \mu}\left(\mathcal{O}_{K}, M\right) \subset \mathcal{H}_{K, t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right) \subset \mathcal{H}_{t e}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right) .
$$

In particular, $\mathcal{H}_{K, t}\left(\mathcal{O}_{K}, M\right)=\mathcal{H}_{t e}\left(\mathcal{O}_{K}, M\right)$. If K / \mathbf{Q}_{p} is unramified then $\mathcal{H}_{K, t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right)=$ $\mathcal{H}_{t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right)$. Moreover we have the following criterion:

Proposition 4.3.7. - If $f=\sum_{n \geqslant 0} h_{n} m_{n}(f)$ as above, then $f \in \mathcal{H}_{K, t}^{\lambda, \mu}\left(\mathcal{O}_{K}, M\right)$ if and only if $\operatorname{val}_{M}\left(m_{n}(f)\right) \geqslant p^{\lambda} \cdot p^{t i}+\mu$ whenever $n \geqslant q^{i}$.

Example 4.3.8. - For all $n \geqslant 0$, there exists $c_{n}(T) \in \operatorname{Int}_{n}\left(\mathcal{O}_{K}\right)$ such that $[a](Y)=$ $\sum_{n \geqslant 0} c_{n}(a) Y^{n}$. This implies that $\operatorname{val}_{Y}\left(m_{n}(a \mapsto[a](Y))\right) \geqslant n$, so that the function $a \mapsto$ $[a\rfloor(Y)$ is in $\mathcal{H}_{d}^{0,0}\left(\mathcal{O}_{K}, E \llbracket Y \rrbracket\right)$, and in $\mathcal{H}_{K, f}^{0,0}\left(\mathcal{O}_{K}, E \llbracket Y \rrbracket\right)$ where $q=p^{f}$.

References

[Ber16] L. Berger - "Multivariable (φ, Γ)-modules and locally analytic vectors", Duke Math. J. 165 (2016), no. 18, p. 3567-3595.
[BR22] L. Berger \& S. Rozensztajn - "Decompletion of cyclotomic perfectoid fields in positive characteristic", Ann. H. Lebesgue 5 (2022), p. 1261-1276.
[CD15] B. Cais \& C. Davis - "Canonical Cohen rings for norm fields", Int. Math. Res. Not. IMRN (2015), no. 14, p. 5473-5517.
[Col10] P. Colmez - "Fonctions d'une variable p-adique", Astérisque (2010), no. 330, p. 13-59.
[DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann \& D. Segal - Analytic pro-p groups, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999.
[dS16] E. de Shalit - "Mahler bases and elementary p-adic analysis", J. Théor. Nombres Bordeaux 28 (2016), no. 3, p. 597-620.
[Eme17] M. Emerton - "Locally analytic vectors in representations of locally p-adic analytic groups", Mem. Amer. Math. Soc. 248 (2017), no. 1175, p. iv+158.
[Klo05] B. Klopsch - "On the Lie theory of p-adic analytic groups", Math. Z. 249 (2005), no. 4, p. 713-730.
[Laz65] M. Lazard - "Groupes analytiques p-adiques", Inst. Hautes Études Sci. Publ. Math. (1965), no. 26, p. 389-603.
[LB10] J. Le Borgne - "Optimisation du théorème d'Ax-Sen-Tate et application à un calcul de cohomologie galoisienne p-adique", Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, p. 1105-1123.
[LS07] J. Lubin \& G. Sarkis - "Extrinsic properties of automorphism groups of formal groups", J. Algebra 315 (2007), no. 2, p. 874-884.
[LT65] J. Lubin \& J. Tate - "Formal complex multiplication in local fields", Ann. of Math. (2) 81 (1965), p. 380-387.
[Lub94] J. Lubin - "Nonarchimedean dynamical systems", Compositio Math. 94 (1994), no. 3, p. 321-346.
[Sch11] P. Schneider - p-adic Lie groups, Grundlehren der mathematischen Wissenschaften, vol. 344, Springer, Heidelberg, 2011.
[Sch12] P. Scholze - "Perfectoid spaces", Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245-313.
[Sen72] S. Sen - "Ramification in p-adic Lie extensions", Invent. Math. 17 (1972), p. 44-50.
[Win83] J.-P. Wintenberger - "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59-89.

March 15, 2023
Laurent Berger, UMPA de l'ENS de Lyon, UMR 5669 du CNRS
E-mail: laurent.berger@ens-lyon.fr • Url: perso.ens-lyon.fr/laurent.berger/
Sandra Rozensztajn, UMPA de l'ENS de Lyon, UMR 5669 du CNRS
E-mail: sandra.rozensztajn@ens-lyon.fr
Url : perso.ens-lyon.fr/sandra.rozensztajn/

