SUPER-HÖLDER VECTORS AND THE FIELD OF NORMS

by

Laurent Berger & Sandra Rozensztajn

Abstract. — Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-Hölder vectors in certain E-linear representations of \mathbf{Z}_p . In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_{∞}/K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_{∞} . We show that these super-Hölder vectors are the perfection of the field of norms of K_{∞}/K . By specializing to the case of a Lubin-Tate extension, we are able to recover E(Y) inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathcal{O}_K^{\times} given by the endomorphisms of the corresponding Lubin-Tate group.

Contents

Introduction	2
1. Super-Hölder functions and vectors	3
1.1. Uniform pro- p groups	4
1.2. Super-Hölder functions and vectors	5
2. The field of norms	8
2.1. The field of norms	8
2.2. Decompleting the tilt	9
3. The Lubin-Tate case	10
3.1. Lubin-Tate formal groups	10
3.2. Decompletion of $\tilde{\mathbf{E}}$	12
3.3. The perfectoid commutant of Aut(LT)	13
4. Mahler expansions and super-Hölder functions	14
4.1. Good bases and wavelets	15
4.2. Expansions of continuous functions	16
4.3. Mahler bases	18
References	19

2020 Mathematics Subject Classification. — 11S; 12J; 13J; 22E.

Introduction

Let *E* be a field of characteristic *p*, for example a finite field. In our paper [**BR22**], we defined and studied super-Hölder vectors in certain *E*-linear representations of the *p*-adic Lie group \mathbf{Z}_p . These vectors are a characteristic *p* analogue of locally analytic vectors. They allowed us to recover E((X)) inside the *X*-adic completion of its perfection, seen as a valued *E*-vector space endowed with the action of \mathbf{Z}_p^{\times} given by $a \cdot f(X) = f((1+X)^a - 1)$.

In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_{∞}/K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_{∞} . We show that these super-Hölder vectors are the perfection of the field of norms of K_{∞}/K . By specializing to the case of a Lubin-Tate extension, we are able to recover E((Y)) inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathcal{O}_{K}^{\times} given by the endomorphisms of the corresponding Lubin-Tate group.

We now give more details about the contents of our paper. Let Γ be a p-adic Lie group. It is known that Γ always has a uniform open pro-p subgroup G. Let G be such a subgroup, and let $G_i = G^{p^i}$ for $i \ge 0$. Let M be an E-vector space, endowed with a valuation val_M such that $\operatorname{val}_M(xm) = \operatorname{val}_M(m)$ if $x \in E^{\times}$. We assume that M is separated and complete for the val_M -adic topology. We say that a function $f: G \to M$ is super-Hölder if there exist constants e > 0 and $\lambda, \mu \in \mathbf{R}$ such that $\operatorname{val}_M(f(g) - f(h)) \ge p^{\lambda} \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G_i$, for all $g, h \in G$ and $i \ge 0$. If M is now endowed with an action of G by isometries, and $m \in M$, we say that m is a super-Hölder vector if the orbit map $g \mapsto g \cdot m$ is a super-Hölder function $G \to M$. We let $M^{G\text{-}e\text{-}\operatorname{sh},\lambda}$ denote the space of super-Hölder vectors for given constants e and λ as in the definition above. The space of vectors of M that are super-Hölder for a given e is independent of the choice of the uniform subgroup G, and denoted by $M^{e\text{-}\operatorname{sh}}$. When $G = \mathbf{Z}_p$ and e = 1, we recover the definitions of [**BR22**]. If Γ is a p-adic Lie group and e = 1, we get an analogue of locally \mathbf{Q}_p -analytic vectors. If K is a finite extension of \mathbf{Q}_p , Γ is the Galois group of a Lubin-Tate extension of K, and $e = [K: \mathbf{Q}_p]$, we seem to get an analogue of locally K-analytic vectors.

From now on, assume that $p \neq 2$. Let K be a p-adic field and let K_{∞}/K be an almost totally ramified p-adic Lie extension, with Galois group Γ of dimension $d \ge 1$. The tilt of K_{∞} is the fraction field $\tilde{\mathbf{E}}_{K_{\infty}}$ of $\varprojlim_{x\mapsto x^p} \mathcal{O}_{K_{\infty}}/p$. It is a perfect complete valued field of characteristic p, endowed with an action of Γ by isometries. The field $\tilde{\mathbf{E}}_{K_{\infty}}$ naturally contains the field of norms $X_K(K_{\infty})$ of the extension K_{∞}/K , and it is known that $\tilde{\mathbf{E}}_{K_{\infty}}$ is the completion of the perfection of $X_K(K_{\infty})$. We have the following result (theorem 2.2.3). **Theorem A.** — We have $\widetilde{\mathbf{E}}_{K_{\infty}}^{d-\mathrm{sh}} = \bigcup_{n \ge 0} \varphi^{-n}(X_K(K_{\infty})).$

Assume now that K is a finite extension of \mathbf{Q}_p , with residue field k, and let LT be a Lubin-Tate formal group attached to K. Let K_{∞} be the extension of K generated by the torsion points of LT, so that $\operatorname{Gal}(K_{\infty}/K)$ is isomorphic to \mathcal{O}_K^{\times} . The field of norms $X_K(K_{\infty})$ is isomorphic to k((Y)), and \mathcal{O}_K^{\times} acts on this field by the endomorphisms of the Lubin-Tate group: $a \cdot f(Y) = f([a](Y))$. Let $d = [K : \mathbf{Q}_p]$. The following (theorem 3.2.1) is a more precise version of theorem A in this situation.

Theorem B. — If $j \ge 1$, then $\widetilde{\mathbf{E}}_{K_{\infty}}^{1+p^{j}\mathcal{O}_{K}\text{-d-sh},dj} = k((Y))$.

If $K = \mathbf{Q}_p$ and K_{∞}/K is the cyclotomic extension, theorem B was proved in [**BR22**]. A crucial ingredient of the proof of this theorem was Colmez' analogue of Tate traces for $\tilde{\mathbf{E}}_{K_{\infty}}$. If the Lubin-Tate group if of height ≥ 2 , there are no such traces (we state and prove a precise version of this assertion in §3.2). Instead of Tate traces, we a theorem of Ax and a precise characterization of the field of norms $X_K(K_{\infty})$ inside $\tilde{\mathbf{E}}_{K_{\infty}}$ in order to prove theorem A.

As an application of theorem B, we compute the perfectoid commutant of Aut(LT). If $b \in \mathcal{O}_K^{\times}$ and $n \in \mathbb{Z}$, then $u(Y) = [b](Y^{q^n})$ is an element of $\widetilde{\mathbf{E}}_{K_{\infty}}^+$ that satisfies the functional equation $u \circ [g](Y) = [g] \circ u(Y)$ for all $g \in \mathcal{O}_K^{\times}$. Conversely, we prove the following (theorem 3.3.1).

Theorem C. — If $u \in \widetilde{\mathbf{E}}_{K_{\infty}}^+$ is such that $\operatorname{val}_Y(u) > 0$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_K^{\times}$, there exists $b \in \mathcal{O}_K^{\times}$ and $n \in \mathbf{Z}$ such that $u(Y) = [b](Y^{q^n})$.

In the last section, we give a characterization of super-Hölder functions on a uniform pro-p group in terms of their Mahler expansions (theorem 4.3.4). In order to do so, we prove some results of independent interest on the space of continuous functions on \mathcal{O}_K^d with values in a valued *E*-vector space *M* as above.

At the end of $[\mathbf{BR22}]$, we suggested an application of super-Hölder vectors for the action of \mathbf{Z}_p to the *p*-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$. We hope that this general theory of super-Hölder vectors, especially in the Lubin-Tate case, will have applications to the *p*-adic local Langlands correspondence for other fields than \mathbf{Q}_p .

1. Super-Hölder functions and vectors

In this section, we define Super-Hölder vectors inside a valued *E*-vector space M endowed with an action of a *p*-adic Lie group Γ . The definition is very similar to the one that we gave for $\Gamma = \mathbf{Z}_p$ in our paper [**BR22**]. The main new technical tool is the existence of uniform open subgroups of Γ . These uniform subgroups look very much like \mathbf{Z}_p^d in a sense that we make precise.

1.1. Uniform pro-p groups. — Uniform pro-p groups are defined at the beginning of §4 of [**DdSMS99**]. We do not recall the definition, nor the notion of rank of a uniform pro-p group, but rather point out the following properties of uniform pro-p groups. A coordinate (below) is simply a homeomorphism.

Proposition 1.1.1. — If G is a uniform pro-p group of rank d, then

- 1. $G_i = \{g^{p^i}, g \in G\}$ is an open normal (and uniform) subgroup of G for $i \ge 0$
- 2. We have $[G_i:G_{i+1}] = p^d$ for $i \ge 0$
- 3. There is a coordinate $c: G \to \mathbf{Z}_p^d$ such that $c(G_i) = (p^i \mathbf{Z}_p)^d$ for $i \ge 0$
- 4. If $g, h \in G$, then $gh^{-1} \in G_i$ if and only if $c(g) c(h) \in (p^i \mathbf{Z}_p)^d$

Proof. — Properties (1-4) are proved in §4 of [**DdSMS99**]. Alternatively, a uniform pro-p group G has a natural integer valued p-valuation ω such that (G, ω) is saturated (remark 2.1 of [**Klo05**]). Properties (1-4) are then proved in §26 of [**Sch11**].

For example, the pro-*p* group \mathbf{Z}_p^d is uniform for all $d \ge 1$.

Lemma 1.1.2. — If G is a uniform pro-p group, and H is a uniform open subgroup of G, there exists $j \ge 0$ such that $G_{i+j} \subset H_i$ for all $i \ge 0$.

Proof. — This follows from the fact that $\{G_i\}_{i\geq 0}$ forms a basis of neighborhoods of the identity in G.

A *p*-adic Lie group is a *p*-adic manifold that has a compatible group structure. For example, $\operatorname{GL}_n(\mathbf{Z}_p)$ and its closed subgroups are *p*-adic Lie groups. We refer to [Sch11] for a comprehensive treatment of the theory. Every uniform pro-*p* group is a *p*-adic Lie group. Conversely, we have the following.

Proposition 1.1.3. — Every p-adic Lie group Γ has a uniform open subgroup G, and the rank of G is the dimension of Γ .

Proof. — See Interlude A (pages 97–98) of [DdSMS99].

Proposition 1.1.4. — Let G be a pro-p group of finite rank, and N a closed normal subgroup of G. There exists an open subgroup G' of G such that $G', G' \cap N$ and $G'/G' \cap N$ are all uniform.

Proof. — This is stated and proved on page 64 of [**DdSMS99**] (their H is our G'). \Box

1.2. Super-Hölder functions and vectors. — Let M be an E-vector space, endowed with a valuation val_M such that $\operatorname{val}_M(xm) = \operatorname{val}_M(m)$ if $x \in E^{\times}$. We assume that M is separated and complete for the val_M -adic topology. Throughout this §, G denotes a uniform pro-p group.

Definition 1.2.1. — We say that $f: G \to M$ is super-Hölder if there exist constants $\lambda, \mu \in \mathbf{R}$ and e > 0 such that $\operatorname{val}_M(f(g) - f(h)) \ge p^{\lambda} \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G_i$, for all $g, h \in G$ and $i \ge 0$.

Remark 1.2.2. — If $G = \mathbb{Z}_p$ and e = 1, we recover the functions defined in §1.1 [**BR22**] (see also remark 1.12 of ibid).

In the above definition, e will usually be equal to either 1 or $\dim(G)$.

We let $\mathcal{H}_{e}^{\lambda,\mu}(G,M)$ denote the space of functions such that $\operatorname{val}_{M}(f(g) - f(h)) \ge p^{\lambda} \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G_{i}$, for all $g, h \in G$ and $i \ge 0$, and $\mathcal{H}_{e}^{\lambda}(G,M) = \bigcup_{\mu \in \mathbf{R}} \mathcal{H}_{e}^{\lambda,\mu}(G,M)$ and $\mathcal{H}_{e}(G,M) = \bigcup_{\lambda \in \mathbf{R}} \mathcal{H}_{e}^{\lambda}(G,M)$.

If M, N are two valued E-vector spaces, and $f : M \to N$ is an E-linear map, we say that f is Hölder-continuous if there exists c > 0, $d \in \mathbf{R}$ such that $\operatorname{val}_N(f(x)) \ge c \cdot \operatorname{val}_M(x) + d$ for all $x \in M$.

Proposition 1.2.3. — If $\pi : M \to N$ is a Hölder-continuous linear map, we get a map $\mathcal{H}_e(G, M) \to \mathcal{H}_e(G, N).$

Proof. — Take $c, d \in \mathbf{R}$ of Hölder continuity for π , $f \in \mathcal{H}_{e}^{\lambda,\mu}(G,M)$, and $g, h \in G$ with $gh^{-1} \in G_i$. We have $\operatorname{val}_N(\pi(f(g)) - \pi(f(h))) \ge c \cdot \operatorname{val}_M(f(g) - f(h)) + d \ge cp^{\lambda} \cdot p^{ei} + (\mu + d)$, so that $\pi \circ f \in \mathcal{H}_{e}^{\lambda',\mu'}(G,N)$ with $p^{\lambda'} = cp^{\lambda}$, and $\mu' = \mu + d$.

Proposition 1.2.4. — If $\alpha : G \to H$ is a group homomorphism, we get a map $\alpha^* : \mathcal{H}_e(H, M) \to \mathcal{H}_e(G, M).$

Proof. — By definition of the subgroups G_i and H_i , we have $\alpha(G_i) \subset H_i$ for all i. Take $f \in \mathcal{H}_e^{\lambda,\mu}(H,M)$, and $g,h \in G$ with $gh^{-1} \in G_i$. We have $\operatorname{val}_M(f(\alpha(g)) - f(\alpha(h))) \ge p^{\lambda} \cdot p^{ei} + \mu$ as $\alpha(g)\alpha(h)^{-1} \in H_i$, so that $\alpha^*(f) = f \circ \alpha \in \mathcal{H}_e^{\lambda,\mu}(G,M)$.

Proposition 1.2.5. — Suppose that M is a ring, and that $\operatorname{val}_M(mm') \ge \operatorname{val}_M(m) + \operatorname{val}_M(m')$ for all $m, m' \in M$. If $c \in \mathbf{R}$, let $M_c = M^{\operatorname{val}_M \ge c}$.

- 1. If $f \in \mathcal{H}_{e}^{\lambda,\mu}(G, M_{c})$ and $g \in \mathcal{H}_{e}^{\lambda,\nu}(G, M_{d})$, and $\xi = \min(\mu + d, \nu + c)$, then $fg \in \mathcal{H}_{e}^{\lambda,\xi}(G, M_{c+d})$.
- 2. If $\lambda, \mu \in \mathbf{R}$, then $\mathcal{H}_e^{\lambda,\mu}(G, M_0)$ is a subring of $C^0(G, M)$.
- 3. If $\lambda \in \mathbf{R}$, then $\mathcal{H}_e^{\lambda}(G, M)$ is a subring of $C^0(G, M)$.

Proof. — Items (2) and (3) follow from item (1), which we now prove. If $x, y \in G$, then

$$(fg)(x) - (fg)(y) = (f(x) - f(y))g(x) + (g(x) - g(y))f(y),$$

which implies the claim.

We now assume that M is endowed with an E-linear action by isometries of G. If $m \in M$, let $\operatorname{orb}_m : G \to M$ denote the function defined by $\operatorname{orb}_m(g) = g \cdot m$.

Definition 1.2.6. — Let $M^{G\text{-}e\text{-sh},\lambda,\mu}$ be those $m \in M$ such that $\operatorname{orb}_m \in \mathcal{H}_e^{\lambda,\mu}(G,M)$, and let $M^{G\text{-}e\text{-sh},\lambda}$ and $M^{G\text{-}e\text{-sh}}$ be the corresponding sub-*E*-vector spaces of *M*.

Remark 1.2.7. — We assume that G acts by isometries on M, but not that G acts continuously on M, namely that $G \times M \to M$ is continuous. However, let M^{cont} denote the set of $m \in M$ such that $\operatorname{orb}_m : G \to M$ is continuous. It is easy to see that M^{cont} is a closed sub-E-vector space of M, and that $G \times M^{\text{cont}} \to M^{\text{cont}}$ is continuous (compare with §3 of [**Eme17**]). We then have $M^{\text{sh}} \subset M^{\text{cont}}$.

Lemma 1.2.8. — If $m \in M$, then $m \in M^{G\text{-}e\text{-sh},\lambda,\mu}$ if and only if for all $i \ge 0$, we have $\operatorname{val}_M(g \cdot m - m) \ge p^{\lambda} \cdot p^{ei} + \mu$ for all $g \in G_i$.

Proof. — If $m \in M$, then $m \in M^{G\text{-}e\text{-}\mathrm{sh},\lambda,\mu}$ if and only if the function orb_m is in $\mathcal{H}_e^{\lambda,\mu}(G,M)$, that is, for all g,h with $gh^{-1} \in G_i$, we have $\operatorname{val}_M(g \cdot m - h \cdot m) \ge p^{\lambda} \cdot p^{ei} + \mu$. As G acts by isometries, we have $\operatorname{val}_M(g \cdot m - h \cdot m) = \operatorname{val}_M(h^{-1}g \cdot m - m)$. The result follows, as $h^{-1}g = h^{-1} \cdot gh^{-1} \cdot h \in G_i$.

Lemma 1.2.9. — The space $M^{G\text{-}e\text{-}\operatorname{sh},\lambda,\mu}$ is a closed sub-E-vector space of M.

Lemma 1.2.10. — If $i_0 \ge 0$, and $m \in M$ is such that $\operatorname{val}_M(g \cdot m - m) \ge p^{\lambda} \cdot p^{ei} + \mu$ for all $g \in G_i$ with $i \ge i_0$, then $m \in M^{G\text{-e-sh},\lambda}$.

Proof. — Take $i < i_0$, and let R_i be a set of representatives of $G_{i_0} \setminus G_i$. This is a finite set, so there exists $\mu_i \in \mathbf{R}$ such that $\operatorname{val}_M(r \cdot m - m) \ge p^{\lambda} \cdot p^{ei} + \mu_i$ for all $r \in R_i$. If $g \in G_i$, it can be written as g = hr for some $h \in G_{i_0}$ and $r \in R_i$. We then have $g \cdot m - m = hr \cdot m - h \cdot m + h \cdot m - m$, so that $\operatorname{val}_M(g \cdot m - m) \ge \min(\operatorname{val}_M(r \cdot m - m), \operatorname{val}_M(h \cdot m - m))$ (recall that Gacts by isometries), so $\operatorname{val}_M(g \cdot m - m) \ge \min(p^{\lambda} \cdot p^{ei} + \mu_i, p^{\lambda} \cdot p^{ei_0} + \mu) \ge p^{\lambda} \cdot p^{ei} + \min(\mu, \mu_i)$ as $i_0 > i$. If μ' is the min of μ and the μ_i for $0 \le i < i_0$, then $m \in M^{G\text{-e-sh},\lambda,\mu'}$.

Recall that if $k \ge 0$, then G_k is also a uniform pro-p group.

Lemma 1.2.11. — If $k \ge 0$ then $M^{G\text{-e-sh},\lambda} = M^{G_k\text{-e-sh},\lambda+k}$.

Proof. — Note that $(G_k)_i = G_{i+k}$. The inclusion $M^{G\text{-}e\text{-sh},\lambda} \subset M^{G_k\text{-}e\text{-sh},\lambda+k}$ is obvious, and the reverse inclusion follows from lemma 1.2.10.

Proposition 1.2.12. — The space $M^{H\text{-}e\text{-sh}}$ does not depend on the choice of a uniform open subgroup $H \subset G$.

Proof. — Let H and H' be uniform open subgroups of G. The group $H \cap H'$ contains an open uniform subgroup by prop 1.1.3, so to prove the proposition, we can further assume that $H' \subset H$. We then have $H'_i \subset H_i$ for all i, so that if $m \in M^{H\text{-}e\text{-}\mathrm{sh},\lambda,\mu}$, then $m \in$ $M^{H'\text{-}e\text{-}\mathrm{sh},\lambda,\mu}$. This implies that $M^{H\text{-}e\text{-}\mathrm{sh},\lambda} \subset M^{H'\text{-}e\text{-}\mathrm{sh},\lambda}$. Conversely, by lemma 1.1.2, there exists j such that $H_j \subset H'$. The previous reasoning implies that $M^{H'\text{-}e\text{-}\mathrm{sh},\lambda} \subset M^{H_j\text{-}e\text{-}\mathrm{sh},\lambda}$. Lemma 1.2.11 now implies that $M^{H_j\text{-}e\text{-}\mathrm{sh},\lambda} = M^{H\text{-}e\text{-}\mathrm{sh},\lambda-j}$.

These inclusions imply the proposition.

Definition 1.2.13. — If Γ is a *p*-adic Lie group that acts by isometries on M, we let $M^{e-\mathrm{sh}} = M^{G-e-\mathrm{sh}}$ where G is any uniform open subgroup of Γ .

Remark 1.2.14. — If $e \leq f$, then $M^{f-\text{sh}} \subset M^{e-\text{sh}}$.

Recall that G is a uniform pro-p group. If a closed normal subgroup N of G acts trivially on M, then G/N acts on M.

Proposition 1.2.15. — If a closed normal subgroup N of G acts trivially on M, then $M^{G\text{-}e\text{-}sh} = M^{G/N\text{-}e\text{-}sh}$.

Proof. — By prop 1.1.4, *G* has an open subgroup *G'* such that *G'* and *G'/N'* are uniform (where $N' = G' \cap N$). By prop 1.2.12, we have $M^{G\text{-}e\text{-sh}} = M^{G'\text{-}e\text{-sh}}$ and $M^{G/N\text{-}e\text{-sh}} = M^{G'/N'\text{-}e\text{-sh}}$. Let $\pi : G' \to G'/N'$ denote the projection. We have $\pi(G'_i) = (G'/N')_i$ for all *i*. Hence if $m \in M$, then $\operatorname{val}_M(g \cdot m - m) \ge p^{\lambda} \cdot p^{ei} + \mu$ for all $g \in G'_i$ if and only if $\operatorname{val}_M(\pi(g) \cdot m - m) \ge p^{\lambda} \cdot p^{ei} + \mu$ for all $\pi(g) \in (G'/N')_i$. □

Proposition 1.2.16. — Suppose that M is a ring, and that g(mm') = g(m)g(m') and $\operatorname{val}_M(mm') \ge \operatorname{val}_M(m) + \operatorname{val}_M(m')$ for all $m, m' \in M$ and $g \in G$.

1. If $v \in \mathbf{R}$ and $m, m' \in M^{G\text{-}e\text{-}\mathrm{sh},\lambda,\mu} \cap M^{\mathrm{val}_M \geqslant v}$, then $m \cdot m' \in M^{G\text{-}e\text{-}\mathrm{sh},\lambda,\mu+v}$.

2. If $m \in M^{G\text{-}e\text{-}\mathrm{sh},\lambda,\mu} \cap M^{\times}$, then $1/m \in M^{G\text{-}e\text{-}\mathrm{sh},\lambda,\mu-2\operatorname{val}_M(m)}$.

Proof. — Item (1) follows from prop 1.2.5 and lemma 1.2.8. Item (2) follows from

$$g\left(\frac{1}{m}\right) - \frac{1}{m} = \frac{m - g(m)}{g(m)m}.$$

2. The field of norms

Let K be a p-adic field, and let K_{∞} be an algebraic Galois extension of K, whose Galois group G is a p-adic Lie group of dimension ≥ 1 . We assume that K_{∞}/K is almost totally ramified, namely that the inertia subgroup of G is open in G. Let $d = \dim(G)$ and let $\ell = p^d$. Let $\tilde{\mathbf{E}}_{K_{\infty}}^+$ denote the ring $\varprojlim_{x\mapsto x^{\ell}} \mathcal{O}_{K_{\infty}}/p$. This is a perfect domain of characteristic p, which has a natural action of G. The map $(y_j)_{j\geq 0} \mapsto (y_{di})_{i\geq 0}$ gives an isomorphism between $\varprojlim_{x\mapsto x^p} \mathcal{O}_{K_{\infty}}/p$ and $\tilde{\mathbf{E}}_{K_{\infty}}^+$, so that $\tilde{\mathbf{E}}_{K_{\infty}}^+$ is the ring of integers of the tilt of \hat{K}_{∞} (see §3 of [Sch12]).

If $x = (x_i)_{i \ge 0}$, and \hat{x}_i is a lift of x_i to $\mathcal{O}_{K_{\infty}}$, then $\ell^i \operatorname{val}_p(\hat{x}_i)$ is independent of $i \ge 0$ such that $x_i \ne 0$. We define a valuation on $\widetilde{\mathbf{E}}^+_{K_{\infty}}$ by $\operatorname{val}_{\mathrm{E}}(x) = \lim_{i \to +\infty} \ell^i \operatorname{val}_p(\hat{x}_i)$.

The aim of this section is to compute $(\tilde{\mathbf{E}}_{K_{\infty}}^{+})^{d-\mathrm{sh}}$. Given definition 1.2.13, we assume from now on (replacing K by a finite subextension if necessary) that G is uniform and that K_{∞}/K is totally ramified. Let k denote the common residue field of K and K_{∞} .

2.1. The field of norms. — Let $\mathcal{E}(K_{\infty})$ denote the set of finite extensions E of K such that $E \subset K_{\infty}$. Let $X_K(K_{\infty})$ denote the set of sequences $(x_E)_{E \in \mathcal{E}(K_{\infty})}$ such that $x_E \in E$ for all $E \in \mathcal{E}(K_{\infty})$, and $N_{F/E}(x_F) = x_E$ whenever $E \subset F$ with $E, F \in \mathcal{E}(K_{\infty})$.

If $n \ge 0$, let $K_n = K_{\infty}^{G_n}$ so that $[K_{n+1} : K_n] = \ell$, $\{K_n\}_{n\ge 0}$ is a cofinal subset of $\mathcal{E}(K_{\infty})$, and $X_K(K_{\infty}) = \varprojlim_{N_{K_n/K_{n-1}}} K_n$. If $x = (x_n)_{n\ge 0} \in X_K(K_{\infty})$, let $\operatorname{val}_{\mathrm{E}}(x) = \operatorname{val}_p(x_0)$.

Theorem 2.1.1. — Let K and K_{∞} be as above.

- 1. If $x, y \in X_K(K_\infty)$, then $\{N_{K_{n+j}/K_n}(x_{n+j}+y_{n+j})\}_{j\geq 0}$ converges for all $n \geq 0$.
- 2. If we set $(x+y)_n = \lim_{j \to +\infty} N_{K_{n+j}/K_n}(x_{n+j}+y_{n+j})$, then $x+y \in X_K(K_\infty)$, and the set $X_K(K_\infty)$ with this addition law, and componentwise multiplication, is a field of characteristic p.
- 3. The function val_E is a valuation on $X_K(K_{\infty})$, for which it is complete
- 4. If $\varpi = (\varpi_n)_{n \ge 0}$ is a norm compatible sequence of uniformizers of \mathcal{O}_{K_n} , the valued field $X_K(K_\infty)$ is isomorphic to $k((\varpi))$ (with $\operatorname{val}(\varpi) = \operatorname{val}_p(\varpi_0)$).

Proof. — By a result of Sen [Sen72], K_{∞}/K is strictly APF in the terminology of §1.2 of [Win83] (see 1.2.2 of ibid). The theorem is then proved in §2 of ibid.

Let $X_K^+(K_\infty) = \varprojlim_{N_{K_n/K_{n-1}}} \mathcal{O}_{K_n}$ be the ring of integers of the valued field $X_K(K_\infty)$. If c > 0, let $I_n^c = \{x \in \mathcal{O}_{K_n} \text{ such that } \operatorname{val}_p(x) \ge c\}$. If $m, n \ge 0$, the map $\mathcal{O}_{K_n}/I_n^c \to \mathcal{O}_{K_{m+n}}/I_{m+n}^c$ is well-defined and injective.

Proposition 2.1.2. — There exists $c(K_{\infty}/K) \leq 1$ such that if $0 < c \leq c(K_{\infty}/K)$, then $\operatorname{val}_p(\operatorname{N}_{K_{n+k}/K_n}(x)/x^{[K_{n+k}:K_n]}-1) \ge c \text{ for all } n,k \ge 0 \text{ and } x \in \mathcal{O}_{K_{n+k}}.$

Proof. — See [Win83] as well as §4 of [CD15]. The result follows from the fact (see 1.2.2 of [Win83]) that the extension K_{∞}/K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

Using prop 2.1.2, we get a map $\iota : X_K^+(K_\infty) \to \lim_{x \mapsto x^\ell} \mathcal{O}_{K_\infty}/I_\infty^c$ given by $(x_n)_{n\geq 0} \in \varprojlim_{N_{K_n/K_{n-1}}} \mathcal{O}_{K_n} \mapsto (\overline{x}_n)_{n\geq 0}. \quad \text{Let } \varprojlim_{x\mapsto x^\ell} \mathcal{O}_{K_n}/I_n^c \text{ denote the set of } (x_n)_{n\geq 0} \in \varprojlim_{x\mapsto x^\ell} \mathcal{O}_{K_\infty}/I_\infty^c \text{ such that } x_n \in \mathcal{O}_{K_n}/I_n^c \text{ for all } n \geq 0.$

Proposition 2.1.3. — Let $0 < c \leq c(K_{\infty}/K)$ be as in prop 2.1.2.

- 1. the natural map $\widetilde{\mathbf{E}}_{K_{\infty}}^{+} \to \varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c}$ is a bijection 2. the map $\iota : X_{K}^{+}(K_{\infty}) \to \varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}} / I_{\infty}^{c} = \widetilde{\mathbf{E}}_{K_{\infty}}^{+}$ is injective and isometric
- 3. the image of ι is $\varprojlim_{x\mapsto x^{\ell}} \mathcal{O}_{K_n}/I_n^c$.

Proof. — See [Win83] and §4 of [CD15]. We give a few more details for the convenience of the reader. Item (1) is classical (see for instance prop 4.2 of [CD15]). The map ι is obviously injective and isometric. For (3), choose $x = (x_n)_{n \ge 0} \in \varprojlim_{x \mapsto x^\ell} \mathcal{O}_{K_n} / I_n^c$, and choose a lift $\hat{x}_n \in \mathcal{O}_{K_n}$ of x_n . One proves that $\{N_{K_{n+j}/K_n}(\hat{x}_{n+j})\}_{j\geq 0}$ converges to some $y_n \in \mathcal{O}_{K_n}$, and that $(y_n)_{n \ge 0} \in X_K^+(K_\infty)$ is a lift of $(x_n)_{n \ge 0}$. See §4 of [CD15] for details, for instance the proof of lemma 4.1.

Prop 2.1.3 allows us to see $X_K^+(K_\infty)$, and hence $\varphi^{-n}(X_K^+(K_\infty))$ for all $n \ge 0$, as a subring of $\mathbf{E}_{K_{\infty}}^+$.

Proposition 2.1.4. — The ring $\bigcup_{n\geq 0}\varphi^{-n}(X_K^+(K_\infty))$ is dense in $\widetilde{\mathbf{E}}_{K_\infty}^+$.

Proof. — See §4.3 of [Win83].

2.2. Decompleting the tilt. — We now compute $(\widetilde{\mathbf{E}}^+_{K_{\infty}})^{d\text{-sh}}$. Since prop 2.2.1 below is vacuous if p = 2, we assume in this § that $p \neq 2$.

Proposition 2.2.1. — If $0 < c \leq 1 - 1/(p-1)$, and $x \in \mathcal{O}_{K_{\infty}}$ is such that $\operatorname{val}_{p}(g(x) - g(x)) = 0$. $x \ge 1$ for all $g \in G_n$, then the image of x in $\mathcal{O}_{K_\infty}/I_\infty^c$ belongs to \mathcal{O}_{K_n}/I_n^c .

Proof. — If $\operatorname{val}_p(g(x) - x) \ge 1$ for all $g \in \operatorname{Gal}(K^{\operatorname{alg}}/K_n)$, then by theorem 1.7 of [LB10] (an optimal version of a theorem of Ax), there exists $y \in K_n$ such that $\operatorname{val}_p(x-y) \ge$ 1 - 1/(p - 1). This implies the proposition.

Proposition 2.2.2. — If $c = p^{\gamma}$ is as above, then $X_K^+(K_{\infty}) \subset (\widetilde{\mathbf{E}}_{K_{\infty}}^+)^{G\text{-d-sh},\gamma,0}$.

Proof. — Take $x = (x_n)_{n \ge 0} \in \varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_n} / I_n^c$. If $g \in G_i$, then $g(x_n) = x_n$ for $n \le i$, so that $\operatorname{val}_{\mathrm{E}}(gx - x) \ge p^{di} p^{\gamma}$.

Theorem 2.2.3. — We have

1.
$$(\widetilde{\mathbf{E}}_{K_{\infty}}^{+})^{G\text{-}d\text{-}\mathrm{sh},0,0} \subset X_{K}^{+}(K_{\infty})$$

2. $(\widetilde{\mathbf{E}}_{K_{\infty}}^{+})^{d\text{-}\mathrm{sh}} = \bigcup_{n \ge 0} \varphi^{-n}(X_{K}^{+}(K_{\infty})) \text{ and } \widetilde{\mathbf{E}}_{K_{\infty}}^{d\text{-}\mathrm{sh}} = \bigcup_{n \ge 0} \varphi^{-n}(X_{K}(K_{\infty}))$

Proof. — Take $c \leq \min(c(K_{\infty}/K), 1 - 1/(p-1))$. Take $x = (x_n)_{n \geq 0} \in \varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}}/p$. If $n \geq 0$ and $x \in (\tilde{\mathbf{E}}^+_{K_{\infty}})^{G\text{-}d\text{-sh},0,0}$, then $\operatorname{val}_{\mathrm{E}}(g(x) - x) \geq p^{dn}$ if $g \in G_n$. This implies that $\operatorname{val}_p(g(x_n) - x_n) \geq 1$ if $g \in G_n$. By prop 2.2.1, the image of x_n in $\mathcal{O}_{K_{\infty}}/I_{\infty}^c$ belongs to \mathcal{O}_{K_n}/I_n^c . Hence the image of x in $\varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_{\infty}}/I_{\infty}^c$ belongs to $\varprojlim_{x \mapsto x^{\ell}} \mathcal{O}_{K_n}/I_n^c$. By prop 2.1.3, x belongs to $X_K^+(K_{\infty})$. This proves (1).

Since $\operatorname{val}_{\mathrm{E}}(\varphi(x)) = p \cdot \operatorname{val}_{\mathrm{E}}(x)$, item (2) follows from (1) and props 2.2.2 and 1.2.16. \Box

Remark 2.2.4. — We have $\tilde{\mathbf{E}}_{K_{\infty}}^{d-\mathrm{sh}} \subset \tilde{\mathbf{E}}_{K_{\infty}}^{1-\mathrm{sh}}$. The field $\tilde{\mathbf{E}}_{K_{\infty}}^{1-\mathrm{sh}}$ contains the field of norms $X_K(L_{\infty})$ of any *p*-adic Lie extension L_{∞}/K contained in K_{∞} . Indeed, $\tilde{\mathbf{E}}_{L_{\infty}} \subset \tilde{\mathbf{E}}_{K_{\infty}}$ and if $e = \dim \operatorname{Gal}(L_{\infty}/K)$, then $X_K(L_{\infty}) \subset \tilde{\mathbf{E}}_{L_{\infty}}^{e-\mathrm{sh}} \subset \tilde{\mathbf{E}}_{K_{\infty}}^{1-\mathrm{sh}}$ (see prop 1.2.15).

Can one give a description of $\tilde{\mathbf{E}}_{K_{\infty}}^{1-\text{sh}}$, for example along the lines of §5 of [Ber16]?

3. The Lubin-Tate case

We now specialize the constructions of the previous section to the case when K_{∞} is generated over K by the torsion points of a Lubin-Tate formal group.

3.1. Lubin-Tate formal groups. — Let K be a finite extension of \mathbf{Q}_p of degree d, with ring of integers \mathcal{O}_K , inertia index f, ramification index e, and residue field k. Let $q = p^f = \operatorname{Card}(k)$ and let π be a uniformizer of \mathcal{O}_K . Let LT be the Lubin-Tate formal \mathcal{O}_K -module attached to π (see [LT65]). We choose a coordinate Y on LT. For each $a \in \mathcal{O}_K$ we get a power series $[a](Y) \in \mathcal{O}_K[\![Y]\!]$, that we now see as an element of $k[\![Y]\!]$. In particular, $[\pi](Y) = Y^q$. Let $S(T, U) \in k[\![T, U]\!]$ denote the reduction mod π of the power series giving the addition law in LT in that coordinate. Recall that S(T, 0) = T and S(0, U) = U.

Lemma 3.1.1. — If $a, b \in \mathcal{O}_K$ and $i \ge 0$, then $\operatorname{val}_Y([a+p^ib](Y)-[a](Y)) \ge p^{di}$. Furthermore, $[1+\pi^i](Y) = Y + Y^{q^i} + O(Y^{q^i+1})$.

Proof. — We have $[\pi](Y) = Y^q$, so $\operatorname{val}_Y([\pi](Y)) \ge p^f$. Writing $p = u\pi^e$ for a unit u, we see that $\operatorname{val}_Y([p^ib](Y)) \ge p^{di}$ if $b \in \mathcal{O}_K$. If $a, b \in \mathcal{O}_K$ and $i \ge 0$, then $[a + bp^i](Y) =$

$$\begin{split} S([a](Y),[bp^i](Y)). \text{ We have } S(T,U) &= T + U + TU \cdot R(T,U), \text{ so that } [a+bp^i](Y) - [a](Y) = \\ S([a](Y),[bp^i](Y)) - [a](Y) \in [bp^i](Y) \cdot k[\![Y]\!]. \text{ This implies the first result.} \end{split}$$

The second claim follows likewise from the fact that $[1 + \pi^i](Y) = S(Y, [\pi^i](Y)) = Y + [\pi^i](Y) + Y \cdot [\pi^i](Y) \cdot R(Y, [\pi^i](Y)).$

Let $\mathbf{E} = k((Y))$. Let $\mathbf{E}_n = k((Y^{1/q^n}))$ and let $\mathbf{E}_{\infty} = \bigcup_{n \ge 0} \mathbf{E}_n$. These fields are endowed with the Y-adic valuation val_Y, and we let \mathbf{E}_{\star}^+ denote the ring of integers of \mathbf{E}_{\star} . The group \mathcal{O}_K^{\times} acts on \mathbf{E}_n by $a \cdot f(Y^{1/q^n}) = f([a](Y^{1/q^n}))$.

Lemma 3.1.2. — If $j \ge 1$ $(j \ge 2$ if p = 2), then $1 + p^j \mathcal{O}_K$ is uniform, and $(1 + p^j \mathcal{O}_K)_i = 1 + p^{i+j} \mathcal{O}_K$.

Proof. — The map $1 + p^j \mathcal{O}_K \to \mathcal{O}_K$, given by $x \mapsto p^{-j} \cdot \log_p(x-1)$, is an isomorphism of pro-*p* groups taking $1 + p^{i+j} \mathcal{O}_K$ to $p^i \mathcal{O}_K$.

Recall that $d = [K : \mathbf{Q}_p]$, that $f = [k : \mathbf{F}_p]$, and that $q = p^f$.

Proposition 3.1.3. — We have $\mathbf{E}_n^+ = (\mathbf{E}_n^+)^{1+p^j} \mathcal{O}_{K^-} d-\mathrm{sh}, dj-fn, 0$.

Proof. — If $b \in \mathcal{O}_K$ and $i, j \ge 0$, then by lemma 3.1.1, we have

$$\operatorname{val}_{Y}([1+p^{i+j}b](Y^{1/q^{n}})-Y^{1/q^{n}}) \ge 1/q^{n} \cdot p^{d(i+j)} = p^{dj-fn} \cdot p^{di}.$$

Lemma 3.1.2 then implies that $Y^{1/q^n} \in (\mathbf{E}_n^+)^{1+p^j \mathcal{O}_K - d - \operatorname{sh}, dj - fn, 0}$. The lemma now follows from prop 1.2.16 and lemma 1.2.9.

Corollary 3.1.4. — We have $\mathbf{E} = \mathbf{E}^{1+p^j \mathcal{O}_K \cdot d \cdot \mathrm{sh}, dj}$.

Proof. — This follows from prop 3.1.3 with n = 0, and prop 1.2.16.

Proposition 3.1.5. — If $\varepsilon > 0$, then $k[\![Y]\!]^{1+p^j\mathcal{O}_K\text{-}d\text{-}\mathrm{sh},dj+\varepsilon} \subset k[\![Y^p]\!]$.

Proof. — Take $f(Y) \in k[\![Y]\!]$. There is a power series $h(T, U) \in k[\![T, U]\!]$ such that

$$f(T + U) = f(T) + U \cdot f'(T) + U^2 \cdot h(T, U).$$

If $m \ge 0$, lemma 3.1.1 implies that $[1 + \pi^m](Y) = Y + Y^{q^m} + O(Y^{q^m+1})$. Therefore,

$$f([1 + \pi^m](Y)) = f(Y) + (Y^{q^m} + O(Y^{q^m+1})) \cdot f'(Y) + O(Y^{2q^m}).$$

If $f(Y) \notin k[\![Y^p]\!]$, then $f'(Y) \neq 0$. Let $\mu = \operatorname{val}_Y(f'(Y))$. The above computations imply that $\operatorname{val}_Y(f([1 + \pi^{ei+ej}](Y)) - f(Y)) = p^{dj} \cdot p^{di} + \mu$ for $i \gg 0$.

This implies the claim, since $\pi^e \mathcal{O}_K = p \mathcal{O}_K$.

Corollary 3.1.6. — We have $\mathbf{E}_{\infty}^{1+p^{j}\mathcal{O}_{K}\text{-}d-\mathrm{sh},dj-fn} = \mathbf{E}_{n}$.

Proof. — We prove that, more generally, $\mathbf{E}_{\infty}^{1+p^{j}\mathcal{O}_{K}\text{-}d\text{-}\mathrm{sh},dj-\ell} = k((Y^{1/p^{\ell}}))$. Take $f(Y^{1/p^{m}}) \in (\mathbf{E}_{\infty}^{+})^{1+p^{j}\mathcal{O}_{K}\text{-}d\text{-}\mathrm{sh},dj-\ell}$ where $f(Y) \in k[\![Y]\!]$. Since $\operatorname{val}_{Y}(h^{p}) = p \cdot \operatorname{val}_{Y}(h)$ for all $h \in \widetilde{\mathbf{E}}^{+}$, we have $f^{p^{m}}(Y) \in (\mathbf{E}_{\infty}^{+})^{1+p^{j}\mathcal{O}_{K}\text{-}d\text{-}\mathrm{sh},dj-\ell+m}$, where $f^{p^{m}}(Y) \in E[\![Y]\!]$ is $f^{p^{m}}(Y) = f(Y^{1/p^{m}})^{p^{m}}$. If $m \ge \ell + 1$, then prop 3.1.5 implies that $f^{p^{m}}(Y) \in E[\![Y^{p}]\!]$, so that $f(Y) = g(Y^{p})$, and $f(Y^{1/p^{m}}) = g(Y^{1/p^{m-1}})$. This implies the claim. □

3.2. Decompletion of \tilde{\mathbf{E}}. — Since we use the results of §2.2, we once more assume that $p \neq 2$. Let $\tilde{\mathbf{E}}$ denote the Y-adic completion of \mathbf{E}_{∞} .

Theorem 3.2.1. — We have $\widetilde{\mathbf{E}}^{1+p^{j}\mathcal{O}_{K}-d-\mathrm{sh},dj} = \mathbf{E}$, and $\widetilde{\mathbf{E}}^{d-\mathrm{sh}} = \mathbf{E}_{\infty}$.

Proof. — Let $K_{\infty} = K(\mathrm{LT}[\pi^{\infty}])$ denote the extension of K generated by the torsion points of LT, and let $\Gamma = \mathrm{Gal}(K_{\infty}/K)$. The Lubin-Tate character χ_{π} gives rise to an isomorphism $\chi_{\pi} : \Gamma \to \mathcal{O}_{K}^{\times}$. For $n \ge 1$, let $K_{n} = K(\mathrm{LT}[\pi^{n}])$. If $(\pi_{n})_{n\ge 1}$ is a compatible sequence of primitive π^{n} -torsion points of LT, then π_{n} is a uniformizer of $\mathcal{O}_{K_{n}}, \varpi = (\pi_{n})_{n\ge 0}$ belongs to $\varprojlim_{N_{K_{n}/K_{n-1}}} \mathcal{O}_{K_{n}}$, and $X_{K}(K_{\infty}) = k((\varpi))$ by theorem 2.1.1. If $g \in \Gamma$, then $g(\varpi) = [\chi_{\pi}(g)](\varpi)$, so that if we identify Γ and \mathcal{O}_{K}^{\times} , then $X_{K}(K_{\infty}) = \mathbf{E}$ with its action of \mathcal{O}_{K}^{\times} . Prop 2.1.4 implies that $\widetilde{\mathbf{E}} = \widetilde{\mathbf{E}}_{K_{\infty}}$ as valued fields with an action of (an open subgroup of) \mathcal{O}_{K}^{\times} . We can therefore apply theorem 2.2.3, and get $(\widetilde{\mathbf{E}}^{+})^{d-\mathrm{sh}} = \mathbf{E}_{\infty}^{+}$. This implies the second statement. The first one then follows from coro 3.1.6.

Remark 3.2.2. — In the above proof, note that $K_{\infty}^{1+p^n\mathcal{O}_K} = K_{ne}$, so that the numbering is not the same as in §2.1.

Remark 3.2.3. — We can define Lubin-Tate Γ -modules over **E** as in §3.2 of [**BR22**]. The results proved in that section carry over to the Lubin-Tate setting without difficulty.

In theorem 2.9 of [**BR22**], we proved theorem 3.2.1 above in the cyclotomic case, using Tate traces. There are no such Tate traces in the Lubin-Tate case if $K \neq \mathbf{Q}_p$. We now explain why this is so. More precisely, we prove that there is no Γ -equivariant k-linear projector $\tilde{\mathbf{E}} \to \mathbf{E}$ if $K \neq \mathbf{Q}_p$. Choose a coordinate T on LT such that $\log_{\mathrm{LT}}(T) =$ $\sum_{n\geq 0} T^{q^n}/\pi^n$, so that $\log'_{\mathrm{LT}}(T) \equiv 1 \mod \pi$. Let $\partial = 1/\log'_{\mathrm{LT}}(T) \cdot d/dT$ be the invariant derivative on LT. Let $\varphi_q = \varphi^f$ where $q = p^f$.

Lemma 3.2.4. — We have $d\gamma(Y)/dY \equiv \chi_{\pi}(\gamma)$ in **E** for all $\gamma \in \Gamma$.

Proof. — Since $\log'_{LT} \equiv 1 \mod \pi$, we have $\partial = d/dY$ in **E**. Applying $\partial \circ \gamma = \chi_{\pi}(\gamma)\gamma \circ \partial$ to Y, we get the claim.

Lemma 3.2.5. — If $\gamma \in \Gamma$ is nontorsion, then $\mathbf{E}^{\gamma=1} = k$.

Proposition 3.2.6. If $K \neq \mathbf{Q}_p$, there is no Γ -equivariant map $R : \mathbf{E} \to \mathbf{E}$ such that $R(\varphi_q(f)) = f$ for all $f \in \mathbf{E}$.

Proof. — Suppose that such a map exists, and take $\gamma \in \Gamma$ nontorsion and such that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$. We first show that if $f \in \mathbf{E}$ is such that $(1 - \gamma)f \in \varphi_q(\mathbf{E})$, then $f \in \varphi_q(\mathbf{E})$. Write $f = f_0 + \varphi_q(R(f))$ where $f_0 = f - \varphi_q(R(f))$, so that $R(f_0) = 0$ and $(1 - \gamma)f_0 = \varphi_q(g) \in \varphi_q(\mathbf{E})$. Applying R, we get $0 = (1 - \gamma)R(f_0) = g$. Hence g = 0 so that $(1 - \gamma)f_0 = 0$. Since $\mathbf{E}^{\gamma=1} = k$ by lemma 3.2.5, this implies $f_0 \in k$, so that $f \in \varphi_q(\mathbf{E})$.

However, lemma 3.2.4 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$ imply that $\gamma(Y) = Y + f_{\gamma}(Y^p)$ for some $f_{\gamma} \in \mathbf{E}$, so that $\gamma(Y^{q/p}) = Y^{q/p} + \varphi_q(g_{\gamma})$. Hence $(1 - \gamma)(Y^{q/p}) \in \varphi_q(\mathbf{E})$ even though $Y^{q/p}$ does not belong to $\varphi_q(\mathbf{E})$. Therefore, no such map R can exist. \Box

Corollary 3.2.7. — If $K \neq \mathbf{Q}_p$, there is no Γ -equivariant k-linear projector $\varphi_q^{-1}(\mathbf{E}) \rightarrow \mathbf{E}$. **E**. A fortiori, there is no Γ -equivariant k-linear projector $\widetilde{\mathbf{E}} \rightarrow \mathbf{E}$.

Proof. — Given such a projector Π , we could define R as in prop 3.2.6 by $R = \Pi \circ \varphi_q^{-1}$. \Box

3.3. The perfectoid commutant of Aut(LT). — In §3.1 of [**BR22**], we computed the perfectoid commutant of Aut(\mathbf{G}_{m}). We now use theorem 3.2.1 to do the same for Aut(LT). We still assume that $p \neq 2$.

Theorem 3.3.1. — If $u \in \tilde{\mathbf{E}}^+$ is such that $\operatorname{val}_Y(u) > 0$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_K^{\times}$, there exists $b \in \mathcal{O}_K^{\times}$ and $n \in \mathbf{Z}$ such that $u(Y) = [b](Y^{q^n})$.

Recall that a power series $f(Y) \in k[\![Y]\!]$ is separable if $f'(Y) \neq 0$. If $f(Y) \in Y \cdot k[\![Y]\!]$, we say that f is invertible if $f'(0) \in k^{\times}$, which is equivalent to f being invertible for composition (denoted by \circ). We say that $w(Y) \in Y \cdot k[\![Y]\!]$ is nontorsion if $w^{\circ n}(Y) \neq Y$ for all $n \ge 1$. If $w(Y) = \sum_{i\ge 0} w_i Y^i \in k[\![Y]\!]$ and $m \in \mathbb{Z}$, let $w^{(m)}(Y) = \sum_{i\ge 0} w_i^{p^m} Y^i$. Note that $(w \circ v)^{(m)} = w^{(m)} \circ v^{(m)}$.

Proposition 3.3.2. — Let $w(Y) \in Y + Y^2 \cdot k[\![Y]\!]$ be a nontorsion series, and let $f(Y) \in Y \cdot k[\![Y]\!]$ be a separable power series. If $w^{(m)} \circ f = f \circ w$ for some $m \in \mathbb{Z}$, then f is invertible.

Proof. — This is a slight generalization of lemma 6.2 of [Lub94]. Write

$$f(Y) = f_n Y^n + O(Y^{n+1})$$

$$f'(Y) = g_j Y^j + O(Y^{j+1})$$

$$w(Y) = Y + w_r Y^r + O(Y^{r+1}),$$

with $f_n, g_j, w_r \neq 0$. Since w is nontorsion, we can replace w by $w^{\circ p^{\ell}}$ for $\ell \gg 0$ and assume that $r \ge j + 1$. We have

$$w^{(m)} \circ f = f(Y) + w_r^{(m)} f(Y)^r + O(Y^{n(r+1)})$$

= $f(Y) + w_r^{(m)} f_n^r Y^{nr} + O(Y^{nr+1}).$

If j = 0, then n = 1 and we are done, so assume that $j \ge 1$. We have

$$f \circ w = f(Y + w_r Y^r + O(Y^{r+1}))$$

= $f(Y) + w_r Y^r f'(Y) + O(Y^{2r})$
= $f(Y) + w_r g_j Y^{r+j} + O(Y^{r+j+1}).$

This implies that nr = r + j, hence (n - 1)r = j, which is impossible if r > j unless n = 1. Hence n = 1 and f is invertible.

Lemma 3.3.3. — If $u \in \widetilde{\mathbf{E}}^+$ is such that $\operatorname{val}_X(u) > 0$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_K^{\times}$, then $u \in (\widetilde{\mathbf{E}}^+)^{d-\mathrm{sh}}$.

Proof. — The group \mathcal{O}_K^{\times} acts on $\widetilde{\mathbf{E}}^+$ by $g \cdot u = u \circ [g]$. By lemmas 3.1.1 and 3.1.2, the function $g \mapsto [g] \circ u$ is in $\mathcal{H}_d^{\lambda}(1 + p\mathcal{O}_K, \widetilde{\mathbf{E}}^+)$, where $p^{\lambda} = \operatorname{val}_Y(u)$.

Proof of theorem 3.3.1. — Take $u \in \tilde{\mathbf{E}}$ such that $\operatorname{val}_Y(u) > 0$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_K^{\times}$. By lemma 3.3.3 and theorem 3.2.1, there is an $m \in \mathbf{Z}$ such that $f(Y) = u(Y)^{p^m}$ belongs to $Y \cdot k[\![Y]\!]$ and is separable. Take $g \in 1 + \pi \mathcal{O}_K$ such that g is nontorsion, and let w(Y) = [g](Y) so that $u \circ w = w \circ u$. We have $f \circ w = w^{(m)} \circ f$. By prop 3.3.2, f is invertible. In addition, $f \circ w = w^{(m)} \circ f$ if w(Y) = [g](Y) for all $g \in \mathcal{O}_K^{\times}$. Hence $f_0 \cdot \overline{g} = \overline{g}^{p^m} \cdot f_0$, so that $a^{p^m} = a$ for all $a = \overline{g} \in k$. This implies that $\mathbf{F}_q \subset \mathbf{F}_{p^{|m|}}$, so that m = fn for some $n \in \mathbf{Z}$. Hence $w^{(m)} = w$, and $f \circ [g] = [g] \circ f$ for all $g \in \mathcal{O}_K^{\times}$. Theorem 6 of [**LS07**] implies that $f \in \operatorname{Aut}(\operatorname{LT})$. Hence there exists $b \in \mathcal{O}_K^{\times}$ such that $u(Y) = [b](Y^{q^n})$.

4. Mahler expansions and super-Hölder functions

In §1.3 of [**BR22**], we proved an analogue of Mahler's theorem for continuous functions $\mathbf{Z}_p \to M$, and then gave a characterization of super-Hölder functions in terms of their Mahler expansions. We now indicate how these results generalize to functions $G \to M$ for a uniform pro-p group G. Given the definition of super-Hölder functions and the existence of a coordinate $c : G \to \mathbf{Z}_p^d$ as in prop 1.1.1, it is enough to study functions $\mathbf{Z}_p^d \to M$. We generalize the setting a little bit, and study functions $\mathcal{O}_K^d \to M$ where K

4.1. Good bases and wavelets. — Let $X = \mathcal{O}_K^d$, which we endow with the valuation $\operatorname{val}_X(x_1, \ldots, x_d) = \min_i \operatorname{val}_\pi(x_i)$. For $n \ge 0$, let $X_n = \pi^n X = \{x \in X, \operatorname{val}_X(x) \ge n\}$.

We endow X with the val_X-adic topology. For any set Y, we denote by LC(X, Y) the set of locally constant functions $X \to Y$. For $n \ge 0$ we denote by $LC_n(X, Y)$ the subset of elements of LC(X, Y) that factor through X/X_n . Let $I = \bigcup_{n\ge 0} I_n$ be a set of indices, where $I_n \subset I_{n+1}$ for all $n \ge 0$, and $Card(I_n) = Card(X/X_n) = q^{nd}$. Let E be a field of characteristic p.

Definition 4.1.1. — A family $\{h_i\}_{i \in I}$ is a good basis of LC(X, E) if it is a basis of the *E*-vector space LC(X, E) such that for all $n \ge 0$, $\{h_i\}_{i \in I_n}$ is a basis of $LC_n(X, E)$.

Let M be (as usual) an E-vector space with a valuation val_M , such that $\operatorname{val}_M(ax) = \operatorname{val}_M(x)$ for all $a \in E^{\times}$ and $x \in M$. We assume that M is separated and complete for the val_M -adic topology.

Proposition 4.1.2. — Every $f \in LC_n(X, M)$ can be written uniquely as $\sum_{i \in I_n} h_i \cdot m_i$ for some elements $m_i \in M$. Moreover, $\inf_{x \in X} val_M(f(x)) = \inf_{i \in I_n} val_M(m_i)$.

Proof. — Let $\{\delta_x\}_{x \in X/X_n}$ be the basis of $LC_n(X, E)$ defined as follows: δ_x is the characteristic function of $x + X_n$. Then $f \in LC_n(X, M)$ is equal to $\sum_{x \in X/X_n} \delta_x \cdot f(x)$.

As $\{h_i\}_{i\in I_n}$ is also a basis of $\mathrm{LC}_n(X, E)$, we can write $\delta_x = \sum_{i\in I_n} a_{i,x}h_i$ for some elements $a_{i,x} \in E$. We now have $f = \sum_{i\in I_n} h_i \cdot m_i$ where $m_i = \sum_{x\in X/X_n} a_{i,x}f(x)$. This formula implies that $\inf_{i\in I_n} \mathrm{val}_M(m_i) \ge \inf_{x\in X} \mathrm{val}_M(f(x))$.

On the other hand we can also write $h_i = \sum_{x \in X/X_n} b_{x,i} \delta_x$ for some elements $b_{x,i} \in E$, so that $f(x) = \sum_{i \in I_n} b_{x,i} m_i$. This implies that $\inf_{i \in I_n} \operatorname{val}_M(m_i) \leq \inf_{x \in X} \operatorname{val}_M(f(x))$. \Box

We now give an example of a particularly nice good basis of LC(X, E), the basis of wavelets (see §I.3 of [Col10] and §2.1 of [dS16]). Let \mathcal{T} be a set of representatives of X/X_1 in X, chosen so that the representative of 0 is 0. For each $n \ge 0$, let \mathcal{R}_n be the set of representatives of X/X_n defined as follows: $\mathcal{R}_0 = \{0\}$, and for $n \ge 1$, $\mathcal{R}_n = \{\sum_{i=0}^{n-1} \pi^i x_i, x_i \in \mathcal{T} \text{ for all } i\}$. We have $\mathcal{R}_1 = \mathcal{T}$, and $\mathcal{R}_n \subset \mathcal{R}_{n+1}$ for all n. Let $\mathcal{R} = \bigcup_{n\ge 0} \mathcal{R}_n$. If $r \in \mathcal{R}$ let $\ell(r)$ be the smallest n such that $r \in \mathcal{R}_n$. For $r \in \mathcal{R}$, let χ_r be the characteristic function of the closed disc $r + X_{\ell(r)} = \{x \in X, \operatorname{val}_X(x - r) \ge \ell(r)\}$.

Proposition 4.1.3. — The set $\{\chi_r\}_{r\in\mathcal{R}}$ is a good basis of LC(X, E).

Proof. — We prove that for all $n \ge 0$, the set $\{\chi_r\}_{r \in \mathcal{R}_n}$ is a basis of $\mathrm{LC}_n(X, E)$. Consider the basis $\{\delta_r\}_{r \in \mathcal{R}_n}$ of $\mathrm{LC}_n(X, E)$, where δ_r is the characteristic function of $r + X_n$. We have

$$\chi_r = \sum_{r' \in \mathcal{R}_{n-\ell(r)}} \delta_{r+\pi^{\ell(r)}r'}.$$

This implies that if we write $\mathcal{R}_n = (\mathcal{R}_n \setminus \mathcal{R}_{n-1}) \sqcup \ldots \sqcup (\mathcal{R}_1 \setminus \mathcal{R}_0) \sqcup \mathcal{R}_0$ and we express the family $\{\chi_r\}_{r \in \mathcal{R}_n}$ in terms of the basis $\{\delta_r\}_{r \in \mathcal{R}_n}$, we get a unipotent matrix. This shows that $\{\chi_r\}_{r \in \mathcal{R}_n}$ is also a basis of $\mathrm{LC}_n(X, E)$.

4.2. Expansions of continuous functions. — We show that every continuous function $X \to M$ has a convergent expansion along a good basis of X, and prove some continuity estimates in terms of the coefficients of the expansion. If $\{m_i\}_{i\in I}$ is a family of M, we say that $m_i \to 0$ if $\inf_{i\notin I_n} \operatorname{val}_M(m_i) \to +\infty$ as $n \to +\infty$.

Theorem 4.2.1. — Let $\{h_i\}_{i \in I}$ be a good basis of LC(X, E).

If $\{m_i\}_{i\in I}$ is a family of M such that $m_i \to 0$, the function $f : X \to M$ given by $f = \sum_{i\in I} h_i \cdot m_i$ belongs to $C^0(X, M)$, and $\inf_{x\in X} \operatorname{val}_M(f(x)) = \inf_{i\in I} \operatorname{val}_M(m_i)$.

Conversely, if $f \in C^0(X, M)$, there exists a unique family $\{m_i(f)\}_{i \in I}$ of elements of M such that $m_i(f) \to 0$ and such that $f = \sum_{i \in I} h_i \cdot m_i(f)$.

Proof. — Let $\{m_i\}_{i\in I}$ be a family of M such that $m_i \to 0$. If $f_n = \sum_{i\in I_n} h_i \cdot m_i$, then $f_n \in C^0(X, M)$, and f is the uniform limit of the f_n . We have $\inf_X \operatorname{val}_M(f_n(x)) = \inf_{i\in I_n} \operatorname{val}_M(m_i)$ by prop 4.1.2. Since $m_i \to 0$, we have $\inf_{i\in I} \operatorname{val}_M(m_i) = \inf_{i\in I_n} \operatorname{val}_M(m_i)$ for $n \gg 0$. Hence $\inf_X \operatorname{val}_M(f_n(x)) = \inf_{i\in I} \operatorname{val}_M(m_i)$ for $n \gg 0$. Since $\inf_{x\in X} \operatorname{val}_M(f(x)) = \lim_n \inf_x \operatorname{val}_M(f_n(x))$, we have $\inf_{x\in X} \operatorname{val}_M(f(x)) = \inf_{i\in I} \operatorname{val}_M(m_i)$.

We now prove the converse. Let $M_n = \{m \in M, \operatorname{val}_M(m) \ge n\}$, let $\pi_n : M \to M/M_n$ be the projection, and for each n, fix a lift $\psi_n : M/M_n \to M$. Take $f \in C^0(X, M)$, and let $f_n = \psi_n \circ \pi_n \circ f$. As f and f_n coïncide modulo M_n , f is the uniform limit of the f_n . On the other hand, $\pi_n \circ f$ is locally constant, and therefore so is f_n . As X is compact, there exists some $k(n) \ge 0$ such that $f_n \in \operatorname{LC}_{k(n)}(X, M)$. By prop 4.1.2, we can write $f_n = \sum_{i \in I} h_i \cdot m_{i,n}$, where $m_{i,n} = 0$ if $i \notin I_{k(n)}$. We have $\operatorname{val}_M(m_{i,n} - m_{i,n'}) \ge \min(n, n')$ by construction, so that for each i, the sequence $\{m_{i,n}\}_n$ converges to some $m_i \in M$. Moreover, if $i \notin I_{k(n)}$, then $\operatorname{val}_M(m_i) \ge n$, so that $m_i \to 0$. The continuous function $\sum_{i \in I} h_i \cdot m_i$ is the uniform limit of the f_n , so that finally $f = \sum_{i \in I} h_i \cdot m_i$.

Proposition 4.2.2. — Take $f \in C^0(X, M)$ and $t \in \mathbb{Z}_{\geq 0}$. If $\{h_i\}_{i \in I}$ is a good basis of LC(X, E), and we write $f = \sum_i h_i \cdot m_i$ with $m_i \to 0$, then $\inf_{i \notin I_t} val_M(m_i)$ depends only on f and not on the choice of the good basis.

Proof. — Fix two good bases $\{h_i\}_{i \in I}$ and $\{h'_i\}_{i \in I}$ of LC(X, E). There exists a family $\{\lambda_{i,j}\}_{(i,j)\in I\times I}$ of elements of E such that $h_i = \sum_j \lambda_{i,j} h'_j$ for all i. Moreover, if $i \in I_c$ then $\lambda_{i,j} = 0$ for all $j \notin I_c$. Now write $f = \sum_{i \in I} h_i \cdot m_i(f) = \sum_{i \in I} h'_i \cdot m'_i(f)$. We also have

$$f = \sum_{i} \left(\sum_{j} \lambda_{i,j} h'_{j}\right) \cdot m_{i}(f) = \sum_{j} h'_{j} \cdot \left(\sum_{i} \lambda_{i,j} m_{i}(f)\right)$$

so that $m'_j(f) = \sum_i \lambda_{i,j} m_i(f)$. If $j \notin I_t$, then $m'_j(f) = \sum_{i \notin I_t} \lambda_{i,j} m_i(f)$, as $\lambda_{i,j} = 0$ if $i \in I_t$ and $j \notin I_t$. This implies that $\inf_{j \notin I_t} \operatorname{val}_M(m'_i(f)) \ge \inf_{i \notin I_t} \operatorname{val}_M(m_i(f))$.

By symmetry, we get that $\inf_{j \notin I_t} \operatorname{val}_M(m'_i(f)) = \inf_{i \notin I_t} \operatorname{val}_M(m_i(f)).$

Theorem 4.2.3. — Take $f \in C^0(X, M)$ and $t \in \mathbb{Z}_{\geq 0}$.

If $\{h_i\}_{i\in I}$ is a good basis of LC(X, E), and we write $f = \sum_i h_i \cdot m_i$ with $m_i \to 0$, then

$$\inf_{i \notin I_t} \operatorname{val}_M(m_i) = \inf_{\substack{x, y \in X \\ \operatorname{val}_X(x-y) \ge t}} \operatorname{val}_M(f(x) - f(y))$$

Proof. — Let $C_t(f) = \inf_{x,y \in X, \operatorname{val}_X(x-y) \ge t} \operatorname{val}_M(f(x) - f(y))$ and $B_t(f) = \inf_{i \notin I_t} \operatorname{val}_M(m_i)$. If $x \in X$ and $z \in X_t$, then $f(x+z) - f(x) = \sum_{i \in I} (h_i(x+z) - h_i(z)) \cdot m_i(f)$. As

 $h_i \in \mathrm{LC}_t(X, E)$ for $i \in I_t$, the above equality gives us $f(x+z) - f(x) = \sum (h_i(x+z) - h_i(z)) \cdot m_i(f).$

$$\int (\omega + z) \int (\omega) = \sum_{i \notin I_t} (v_i(\omega + z)) + v_i(z))$$

This implies that $C_t(f) \ge B_t(f)$.

We now prove the converse inequality. By prop 4.2.2, $B_t(f)$ is independent of the choice of a good basis, and we choose the wavelet basis of prop 4.1.3. Write $f = \sum_{r \in \mathcal{R}} \chi_r \cdot m_r(f)$, so that we want to show that $\operatorname{val}_M(m_r(f)) \ge C_t(f)$ for all $r \notin \mathcal{R}_t$. If $x \in X$, define $g_x : X \to M$ by $g_x(z) = f(x + \pi^t z) - f(x)$, and write $g_x = \sum_{r \in \mathcal{R}} \chi_r \cdot m_r(g_x)$. For each $r \in \mathcal{R}$, we can write uniquely $r = r_t + \pi^t s$ with $r_t \in \mathcal{R}_t$, where s = 0 if $r \in \mathcal{R}_t$, and $s \neq 0 \in \mathcal{R}_{\ell(r)-t}$ if $r \notin \mathcal{R}_t$. For $x \in \mathcal{R}_t$ and $r \notin \mathcal{R}_t$, the map $z \mapsto \chi_r(x + \pi^t z) - \chi_r(x)$ is the zero function if $r_t \neq x$, and is χ_s if $r_t = x$. This implies that if $x \in \mathcal{R}_t$, then

$$g_x(z) = \sum_{r \in \mathcal{R}} \left(\chi_r(x + \pi^t z) - \chi_r(x) \right) \cdot m_r(f)$$

=
$$\sum_{r \notin \mathcal{R}_t} \left(\chi_r(x + \pi^t z) - \chi_r(x) \right) \cdot m_r(f)$$

=
$$\sum_{s \notin \mathcal{R}_0} \chi_s(z) \cdot m_{x + \pi^t s}(f).$$

Therefore if $x \in \mathcal{R}_t$, then $m_0(g_x) = 0$ and $m_s(g_x) = m_{x+\pi^t s}(f)$ if $s \neq 0$. We have $\inf_{s \in \mathcal{R}} \operatorname{val}_M(m_s(g_x)) = \inf_{z \in X} \operatorname{val}_M(g_x(z)) \ge C_t(f)$, so that $\operatorname{val}_M(m_s(g_x)) \ge C_t(f)$ for all $x \in X$ and $s \in \mathcal{R}$. This implies that for all $x \in \mathcal{R}_t$ and $s \neq 0$, $\operatorname{val}_M(m_{x+\pi^t s}(f)) \ge C_t(f)$. Hence for all $r \notin \mathcal{R}_t$, we have $\operatorname{val}_M(m_r(f)) \ge C_t(f)$.

4.3. Mahler bases. — We now construct some other examples of good bases. For $n \ge 0$, let $\operatorname{Int}_n(\mathcal{O}_K)$ denote the set of polynomials $f(T) \in K[T]$ such that $\deg(P) \le n$ and $f(\mathcal{O}_K) \subset \mathcal{O}_K$. Recall (see for instance §1.2 of [**dS16**]) that a Mahler basis for \mathcal{O}_K is a sequence $\{h_n\}_{n\ge 0}$ with $h_n(T) \in K[T]$ of degree n, and such that $\{h_0, \ldots, h_n\}$ is a basis of the free \mathcal{O}_K -module $\operatorname{Int}_n(\mathcal{O}_K)$ for all $n \ge 0$. For example, if $K = \mathbf{Q}_p$, we can take $h_n(T) = \binom{T}{n}$. Let $\{h_n\}_{n\ge 0}$ be a Mahler basis for \mathcal{O}_K . Each h_n defines a function $\mathcal{O}_K \to \mathcal{O}_K$ and hence $\mathcal{O}_K \to k$. Let $I = \mathbf{Z}_{\ge 0}$ and let $I_n = \{0, \ldots, q^n - 1\}$ for $n \ge 0$.

Proposition 4.3.1. — If $\{h_n\}_{n\geq 0}$ is a Mahler basis for \mathcal{O}_K , then $\{h_i\}_{i\in I}$ is a good basis of $LC(\mathcal{O}_K, k)$.

Proof. — By theorem 1.2 of [dS16], $\{h_0, \ldots, h_{q^m-1}\}$ is a basis of the k-vector space $\operatorname{LC}_m(\mathcal{O}_K, k)$ for all $m \ge 0$. This implies the claim.

We now specialize to $K = \mathbf{Q}_p$. Write **N** for $\mathbf{Z}_{\geq 0}$ and **n** for an element $(n_1, \ldots, n_d) \in \mathbf{N}^d$. For each $\mathbf{n} \in \mathbf{N}^d$, we denote by $h_{\mathbf{n}}$ the function $\mathbf{Z}_p^d \to E$ given by $(x_1, \ldots, x_d) \mapsto \binom{x_1}{n_1} \cdots \binom{x_d}{n_d}$. For $m \in \mathbf{Z}_{\geq 0}$, let $I_m = \{\mathbf{n} \in \mathbf{N}^d \text{ such that } \max(n_1, \ldots, n_d) \leq p^m - 1\}$.

Proposition 4.3.2. — The functions $\{h_n\}_{n \in \mathbb{N}^d}$ form a good basis of $LC(\mathbf{Z}_p^d, \mathbf{F}_p)$.

Proof. — The claim follows from prop 4.3.1 for $K = \mathbf{Q}_p$, and lemma 4.3.3 below.

Lemma 4.3.3. — If X and X' are as in §4.1, and $\{h_i\}_{i\in I}$ and $\{h'_j\}_{j\in J}$ are good bases of LC(X, E) and LC(X', E), then $\{h_i \otimes h'_j\}_{(i,j)\in I\times J}$ is a good basis of $LC(X \times X', E)$, with $(I \times J)_n = I_n \times J_n$.

Let G be a uniform pro-p group, and let $c: G \to \mathbb{Z}_p^d$ be a coordinate as in prop 1.1.1. The theorem below follows from prop 4.3.2, theorem 4.2.1, and theorem 4.2.3.

Theorem 4.3.4. — If $\{m_{\mathbf{n}}\}_{\mathbf{n}\in\mathbf{N}^{d}}$ is a sequence of M such that $m_{\mathbf{n}} \to 0$, the function $f: G \to M$ given by $f(g) = \sum_{\mathbf{n}\in\mathbf{N}^{d}} {c_1(g) \choose n_1} \cdots {c_d(g) \choose n_d} m_{\mathbf{n}}$ belongs to $C^0(G, M)$. We have $\inf_{g\in G} \operatorname{val}_M(f(g)) = \inf_{\mathbf{n}\in\mathbf{N}^{d}} \operatorname{val}_M(m_{\mathbf{n}})$.

Conversely, if $f \in C^0(G, M)$, there exists a unique sequence $\{m_{\mathbf{n}}(f)\}_{\mathbf{n}\in\mathbf{N}^d}$ such that $m_{\mathbf{n}}(f) \to 0$ and such that $f(g) = \sum_{\mathbf{n}\in\mathbf{N}^d} {c_1(g) \choose n_1} \cdots {c_d(g) \choose n_d} m_{\mathbf{n}}(f)$.

We have $f \in \mathcal{H}_e^{\lambda,\mu}(G,M)$ if and only if for all $i \ge 0$, we have $\operatorname{val}_M(m_n(f)) \ge p^{\lambda} \cdot p^{ei} + \mu$ whenever $\max(n_1,\ldots,n_d) \ge p^i$.

Remark 4.3.5. — The first two assertions in the above theorem also follow from theorem 1.2.4 in §III of [Laz65] (we thank Konstantin Ardakov for pointing this out). We finish by considering the case $G = \mathcal{O}_K$ for K a finite extension of \mathbf{Q}_p , and working with a Mahler basis for \mathcal{O}_K . Let K be a finite extension of \mathbf{Q}_p as before. Assume that E is an extension of k. Let $\{h_n\}_{n\geq 0}$ be a Mahler basis for \mathcal{O}_K . If $f \in C^0(\mathcal{O}_K, M)$, write $f = \sum_{n\geq 0} h_n m_n(f)$ with $m_n(f) \to 0$. Let e denote the ramification index of K.

Proposition 4.3.6. — If $f = \sum_{n \ge 0} h_n m_n(f)$ as above, then $f \in \mathcal{H}_t^{\lambda,\mu}(\mathcal{O}_K, M)$ if and only if $\operatorname{val}_M(m_n(f)) \ge p^{\lambda} \cdot p^{ti} + \mu$ whenever $n \ge p^{di}$.

Proof. — This follows from theorem 4.2.3, since $\operatorname{val}_p(x-y) \ge i$ if and only if $\operatorname{val}_{\pi}(x-y) \ge ei$, and since $q^e = p^d$.

In this situation we can also define a slightly different version of super-Hölder functions. We say that a function $f : \mathcal{O}_K \to M$ is in $\mathcal{H}_{K,t}^{\lambda,\mu}(\mathcal{O}_K, M)$ if $\operatorname{val}_M(f(x) - f(y)) \ge p^{\lambda} \cdot p^{ti} + \mu$ whenever $\operatorname{val}_{\pi}(x - y) \ge i$. We then have

$$\mathcal{H}_{te}^{\lambda+t(e-1),\mu}(\mathcal{O}_K,M) \subset \mathcal{H}_{K,t}^{\lambda,\mu}(\mathcal{O}_K,M) \subset \mathcal{H}_{te}^{\lambda,\mu}(\mathcal{O}_K,M).$$

In particular, $\mathcal{H}_{K,t}(\mathcal{O}_K, M) = \mathcal{H}_{te}(\mathcal{O}_K, M)$. If K/\mathbf{Q}_p is unramified then $\mathcal{H}_{K,t}^{\lambda,\mu}(\mathcal{O}_K, M) = \mathcal{H}_t^{\lambda,\mu}(\mathcal{O}_K, M)$. Moreover we have the following criterion:

Proposition 4.3.7. — If $f = \sum_{n \ge 0} h_n m_n(f)$ as above, then $f \in \mathcal{H}_{K,t}^{\lambda,\mu}(\mathcal{O}_K, M)$ if and only if $\operatorname{val}_M(m_n(f)) \ge p^{\lambda} \cdot p^{ti} + \mu$ whenever $n \ge q^i$.

Example 4.3.8. — For all $n \ge 0$, there exists $c_n(T) \in \operatorname{Int}_n(\mathcal{O}_K)$ such that $[a](Y) = \sum_{n\ge 0} c_n(a)Y^n$. This implies that $\operatorname{val}_Y(m_n(a\mapsto [a](Y))) \ge n$, so that the function $a\mapsto [a](Y)$ is in $\mathcal{H}^{0,0}_d(\mathcal{O}_K, E[\![Y]\!])$, and in $\mathcal{H}^{0,0}_{K,f}(\mathcal{O}_K, E[\![Y]\!])$ where $q = p^f$.

References

- [Ber16] L. BERGER "Multivariable (φ, Γ) -modules and locally analytic vectors", *Duke Math. J.* **165** (2016), no. 18, p. 3567–3595.
- [BR22] L. BERGER & S. ROZENSZTAJN "Decompletion of cyclotomic perfectoid fields in positive characteristic", Ann. H. Lebesgue 5 (2022), p. 1261–1276.
- [CD15] B. CAIS & C. DAVIS "Canonical Cohen rings for norm fields", Int. Math. Res. Not. IMRN (2015), no. 14, p. 5473–5517.
- [Col10] P. COLMEZ "Fonctions d'une variable *p*-adique", Astérisque (2010), no. 330, p. 13–59.
- [DdSMS99] J. D. DIXON, M. P. F. DU SAUTOY, A. MANN & D. SEGAL Analytic pro-p groups, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999.
- [dS16] E. DE SHALIT "Mahler bases and elementary *p*-adic analysis", *J. Théor. Nombres Bordeaux* **28** (2016), no. 3, p. 597–620.
- [Eme17] M. EMERTON "Locally analytic vectors in representations of locally *p*-adic analytic groups", *Mem. Amer. Math. Soc.* **248** (2017), no. 1175, p. iv+158.

[Klo05]	B. KLOPSCH – "On the Lie theory of <i>p</i> -adic analytic groups", Math. Z. 249 (2005),
	no. 4, p. 713–730.

- [Laz65] M. LAZARD "Groupes analytiques *p*-adiques", *Inst. Hautes Études Sci. Publ. Math.* (1965), no. 26, p. 389–603.
- [LB10] J. LE BORGNE "Optimisation du théorème d'Ax-Sen-Tate et application à un calcul de cohomologie galoisienne *p*-adique", Ann. Inst. Fourier (Grenoble) **60** (2010), no. 3, p. 1105–1123.
- [LS07] J. LUBIN & G. SARKIS "Extrinsic properties of automorphism groups of formal groups", J. Algebra 315 (2007), no. 2, p. 874–884.
- [LT65] J. LUBIN & J. TATE "Formal complex multiplication in local fields", Ann. of Math. (2) 81 (1965), p. 380–387.
- [Lub94] J. LUBIN "Nonarchimedean dynamical systems", *Compositio Math.* 94 (1994), no. 3, p. 321–346.
- [Sch11] P. SCHNEIDER *p-adic Lie groups*, Grundlehren der mathematischen Wissenschaften, vol. 344, Springer, Heidelberg, 2011.
- [Sch12] P. SCHOLZE "Perfectoid spaces", Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245–313.
- [Sen72] S. SEN "Ramification in *p*-adic Lie extensions", *Invent. Math.* **17** (1972), p. 44–50.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

- *E-mail*:laurent.berger@ens-lyon.fr *Url*:perso.ens-lyon.fr/laurent.berger/ SANDRA ROZENSZTAJN, UMPA de l'ENS de Lyon, UMR 5669 du CNRS
 - E-mail : sandra.rozensztajn@ens-lyon.fr
 - $\mathit{Url}: \texttt{perso.ens-lyon.fr/sandra.rozensztajn/}$

 $\mathbf{20}$

March 15, 2023

LAURENT BERGER, UMPA de l'ENS de Lyon, UMR 5669 du CNRS