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Abstract. — Let E be a field of characteristic p. In a previous paper of ours, we defined
and studied super-Hoélder vectors in certain E-linear representations of Z,. In the present
paper, we define and study super-Holder vectors in certain E-linear representations of a
general p-adic Lie group. We then consider certain p-adic Lie extensions K, /K of a p-adic
field K, and compute the super-Hélder vectors in the tilt of K,. We show that these super-
Holder vectors are the perfection of the field of norms of K., /K. By specializing to the
case of a Lubin-Tate extension, we are able to recover E((Y)) inside the Y-adic completion
of its perfection, seen as a valued E-vector space endowed with the action of O given by
the endomorphisms of the corresponding Lubin-Tate group.

Contents
Introduction. ... ... 2
1. Super-Holder functions and vectors................................... 3
1.1. Uniform pro-p Groups. .. .....oouret et 4
1.2. Super-Holder functions and vectors............... ... ... ... ... 5
2. The field of norms. ... 8
2.1. The field of norms. ... 8
2.2. Decompleting the tilt........ .. ... .. 9
3. The Lubin-Tate case........ ..o 10
3.1. Lubin-Tate formal groups............. ... i, 10
3.2. Decompletion of E. ... oo 12
3.3. The perfectoid commutant of Aut(LT)................... ... 13
4. Mahler expansions and super-Hoélder functions........................ 14
4.1. Good bases and wavelets. ............ .. i 15
4.2. Expansions of continuous functions.............. ... ... ... 16
4.3. Mahler bases. ... ... 18
References. . ... 19

2020 Mathematics Subject Classification. — 11S; 12J; 13J; 22E.



2 LAURENT BERGER & SANDRA ROZENSZTAJN

Introduction

Let FE be a field of characteristic p, for example a finite field. In our paper [BR22]|, we
defined and studied super-Hoélder vectors in certain E-linear representations of the p-adic
Lie group Z,. These vectors are a characteristic p analogue of locally analytic vectors.
They allowed us to recover F((X)) inside the X-adic completion of its perfection, seen as a
valued E-vector space endowed with the action of Z) given by a- f(X) = f((1+X)*—1).

In the present paper, we define and study super-Holder vectors in certain E-linear rep-
resentations of a general p-adic Lie group. We then consider certain p-adic Lie extensions
K /K of a p-adic field K, and compute the super-Holder vectors in the tilt of K,,. We
show that these super-Hoélder vectors are the perfection of the field of norms of K /K.
By specializing to the case of a Lubin-Tate extension, we are able to recover E((Y)) inside
the Y-adic completion of its perfection, seen as a valued E-vector space endowed with
the action of O given by the endomorphisms of the corresponding Lubin-Tate group.

We now give more details about the contents of our paper. Let I' be a p-adic Lie group.
It is known that I" always has a uniform open pro-p subgroup G. Let GG be such a subgroup,
and let G, = G*' for i > 0. Let M be an E-vector space, endowed with a valuation val,,
such that valy (xm) = valy (m) if x € E*. We assume that M is separated and complete
for the valy;-adic topology. We say that a function f : G — M is super-Hoélder if there
exist constants e > 0 and \, u € R such that valy/(f(g) — f(h)) = p* - p® + p whenever
gh™' € G, for all g,h € G and 7 > 0. If M is now endowed with an action of G by
isometries, and m € M, we say that m is a super-Holder vector if the orbit map g — g-m
is a super-Holder function G — M. We let M%< denote the space of super-Holder
vectors for given constants e and A as in the definition above. The space of vectors of M
that are super-Holder for a given e is independent of the choice of the uniform subgroup
G, and denoted by M*s". When G = Z,, and e = 1, we recover the definitions of [BR22].
If I' is a p-adic Lie group and e = 1, we get an analogue of locally Q,-analytic vectors. If
K is a finite extension of Q,, I' is the Galois group of a Lubin-Tate extension of K, and
e = [K : Q,], we seem to get an analogue of locally K-analytic vectors.

From now on, assume that p # 2. Let K be a p-adic field and let K,,/K be an almost
totally ramified p-adic Lie extension, with Galois group I' of dimension d > 1. The tilt
of K. is the fraction field E__ of l'glcﬁxp Ok../p- It is a perfect complete valued field
of characteristic p, endowed with an action of I by isometries. The field Ex_ naturally
contains the field of norms X (K.) of the extension K /K, and it is known that Ex_
is the completion of the perfection of Xy (K ). We have the following result (theorem
2.2.3).
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Theorem A. — We have ]:jil(f}: = Ups0p "( Xk (Kw))-

Assume now that K is a finite extension of Q,, with residue field k, and let LT be a
Lubin-Tate formal group attached to K. Let K., be the extension of K generated by
the torsion points of LT, so that Gal(K,/K) is isomorphic to Of. The field of norms
Xk (Ky) is isomorphic to k((Y)), and Ok acts on this field by the endomorphisms of the
Lubin-Tate group: a- f(Y) = f([a](Y)). Let d = [K : Q). The following (theorem 3.2.1)

is a more precise version of theorem A in this situation.
Theorem B. — Ifj > 1, then E?@ijK'd'Sh’dj =k(Y)).

If K =Q, and K /K is the cyclotomic extension, theorem B was proved in [BR22].
A crucial ingredient of the proof of this theorem was Colmez” analogue of Tate traces for
EKOO- If the Lubin-Tate group if of height > 2, there are no such traces (we state and
prove a precise version of this assertion in §3.2). Instead of Tate traces, we a theorem of
Ax and a precise characterization of the field of norms Xk (K ) inside EKOO in order to
prove theorem A.

As an application of theorem B, we compute the perfectoid commutant of Aut(LT).
Ifb € Of and n € Z, then u(Y) = [b)(Y?") is an element of Ef;_ that satisfies the
functional equation u o [g](Y) = [g] o u(Y) for all ¢ € Of. Conversely, we prove the
following (theorem 3.3.1).

Theorem C. — Ifu € Ef_ is such that valy (u) > 0 and uo[g] = [g]ou for all g € O,
there exists b € OF and n € Z such that u(Y) = [b](Y").

In the last section, we give a characterization of super-Holder functions on a uniform
pro-p group in terms of their Mahler expansions (theorem 4.3.4). In order to do so, we
prove some results of independent interest on the space of continuous functions on O%
with values in a valued E-vector space M as above.

At the end of [BR22|, we suggested an application of super-Holder vectors for the
action of Z, to the p-adic local Langlands correspondence for GL2(Q,). We hope that
this general theory of super-Holder vectors, especially in the Lubin-Tate case, will have

applications to the p-adic local Langlands correspondence for other fields than Q,.

1. Super-Holder functions and vectors

In this section, we define Super-Holder vectors inside a valued E-vector space M en-

dowed with an action of a p-adic Lie group I'. The definition is very similar to the one
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that we gave for I' = Z, in our paper [BR22]. The main new technical tool is the exis-
tence of uniform open subgroups of I'. These uniform subgroups look very much like Zg

in a sense that we make precise.

1.1. Uniform pro-p groups. — Uniform pro-p groups are defined at the beginning of
§4 of [DASMS99]|. We do not recall the definition, nor the notion of rank of a uniform
pro-p group, but rather point out the following properties of uniform pro-p groups. A

coordinate (below) is simply a homeomorphism.

Proposition 1.1.1. — If G is a uniform pro-p group of rank d, then
1. G; = {gpi, g € G} is an open normal (and uniform) subgroup of G for i >0
2. We have [G; : Giyqi] = p® fori >0
3. There is a coordinate ¢ : G — Z¢ such that ¢(G;) = (p'Zy,)" fori >0
4. If g,h € G, then gh™ € G, if and only if c(g) — c(h) € (p'Z,)*

Proof. — Properties (1-4) are proved in §4 of [DASMS99|. Alternatively, a uniform
pro-p group G has a natural integer valued p-valuation w such that (G,w) is saturated
(remark 2.1 of [K1o05]). Properties (1-4) are then proved in §26 of [Sch11]. O

For example, the pro-p group Zg is uniform for all d > 1.

Lemma 1.1.2. — If G is a uniform pro-p group, and H is a uniform open subgroup of
G, there exists j > 0 such that Gi; C H; for all i > 0.

Proof. — This follows from the fact that {G;};>o forms a basis of neighborhoods of the
identity in G. O

A p-adic Lie group is a p-adic manifold that has a compatible group structure. For
example, GL,(Z,) and its closed subgroups are p-adic Lie groups. We refer to [Sch11]
for a comprehensive treatment of the theory. Every uniform pro-p group is a p-adic Lie

group. Conversely, we have the following.

Proposition 1.1.3. — FEvery p-adic Lie group " has a uniform open subgroup G, and
the rank of G is the dimension of I.

Proof. — See Interlude A (pages 97-98) of [DASMS99]. O

Proposition 1.1.4. — Let G be a pro-p group of finite rank, and N a closed normal
subgroup of G. There exists an open subgroup G' of G such that G', G'ON and G'/G'NN

are all uniform.

Proof. — This is stated and proved on page 64 of [DASMS99] (their H is our G'). O
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1.2. Super-Holder functions and vectors. — Let M be an E-vector space, endowed
with a valuation valy, such that valy (zm) = valy(m) if x € E*. We assume that M
is separated and complete for the valy;-adic topology. Throughout this §, G denotes a

uniform pro-p group.

Definition 1.2.1. — We say that f : G — M is super-Holder if there exist constants
M\ 1 € R and e > 0 such that valy (f(g) — f(h)) > p* - p° + p whenever gh™t € Gj, for
all g,h € G and 7 > 0.

Remark 1.2.2. — If G =Z, and e = 1, we recover the functions defined in §1.1 [BR22]
(see also remark 1.12 of ibid).

In the above definition, e will usually be equal to either 1 or dim(G).

We let H)*(G, M) denote the space of functions such that valy(f(g) — f(h)) = p* -
p® + p whenever gh™! € Gy, for all g,h € G and i > 0, and H)(G, M) = U,er HI (G, M)
and H.(G, M) = UyerH) (G, M).

If M, N are two valued E-vector spaces, and f : M — N is an E-linear map, we say that
f is Holder-continuous if there exists ¢ > 0, d € R such that valy(f(z)) > ¢-valy(z) +d
for all x € M.

Proposition 1.2.3. — If m: M — N is a Hélder-continuous linear map, we get a map

H.(G, M) — H.(G, N).

Proof. — Take ¢,d € R of Holder continuity for «, f € HM (G, M), and g,h € G with
gh™t € Gy, We have valy (7(f(9) ~m(f(h))) > e-valar(f(g) — f(R))+d > cp pFit (u-+d),
so that 7o f € HY# (G, N) with p» = ¢p*, and p/ = pu + d. ]

Proposition 1.2.4. — If « : G — H is a group homomorphism, we get a map o* :
Ho(H, M) = Ho(G, M).

Proof. — By definition of the subgroups G; and H;, we have a(G;) C H; for all i. Take
f € HM(H,M), and g,h € G with gh™ € G;. We have valy(f(a(g)) — f(a(h))) =
p* - p® + pas a(g)a(h)™t € Hy, so that o*(f) = foa € HIM(G, M). O

Proposition 1.2.5. — Suppose that M is a ring, and that valy (mm') > valy(m) +
valy (m') for all m,m’ € M. If c € R, let M, = M alm=>e,
L If f € HM(G, M,) and g € HIM (G, My), and £ = min(p + d,v + c), then fg €
HM(G, Meyq).
2. If \,;p € R, then HIM(G, My) is a subring of C°(G, M).
3. If A € R, then HXG, M) is a subring of C°(G, M).
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Proof. — Ttems (2) and (3) follow from item (1), which we now prove. If z,y € G, then

(fo)(x) = (fo)y) = (f(z) = f(y)g(x) + (g(x) — g(y)) f(y),

which implies the claim. O

We now assume that M is endowed with an E-linear action by isometries of G. If
m € M, let orb,, : G — M denote the function defined by orb,,(¢) = g - m.

Definition 1.2.6. — Let M *shA% he those m € M such that orb,, € HM(G, M),
and let MsbA and MEesh be the corresponding sub-E-vector spaces of M.

Remark 1.2.7. — We assume that GG acts by isometries on M, but not that G acts
continuously on M, namely that G x M — M is continuous. However, let M denote
the set of m € M such that orb,, : G — M is continuous. It is easy to see that M is

a closed sub-E-vector space of M, and that G x M@ — M is continuous (compare
with §3 of [Eme17]). We then have M C Meont,

Lemma 1.2.8. — If m € M, then m € MW" M if and only if for all i > 0, we have
valpr(g-m —m) = p* - p® + u for all g € G;.

Proof. — If m € M, then m € MM if and only if the function orb,, is in
HM(G, M), that is, for all g, h with gh™! € G, we have valy;(g-m —h-m) = p*-p® + pu.
As G acts by isometries, we have valy(g-m — h-m) = valy (h™'g - m —m). The result
follows, as htg =h~'-gh™'-h € G;. O

Lemma 1.2.9. — The space MEesPM s g closed sub-E-vector space of M.

Lemma 1.2.10. — Ifiy > 0, and m € M is such that valy(g-m —m) = p* - p® + p
for all g € G; with i > ig, then m € ME-eshA,

Proof. — Take i < iy, and let R; be a set of representatives of G;,\G;. This is a finite set,
so there exists ; € R such that valy (r-m—m) > p* - p“ +p,; for all 7 € R;. If g € Gy, it
can be written as g = hr for some h € G;, and r € R;. We then have g-m—m = hr-m—h-
m+h-m—m, so that valy/(g-m—m) = min(valy, (r-m—m), valy (h-m—m)) (recall that G
acts by isometries), so valy/(g-m—m) > min(p*- p®+ p;, p* - p¥0+p) = p*-p® +min(pu, p;)
as ig > 4. If ¢/ is the min of y and the p; for 0 < i < ig, then m € M&-esbAw’, ]

Recall that if £ > 0, then G}, is also a uniform pro-p group.

Lemma 1.2.11. — If k > 0 then MG = NGreshAtk,
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Proof. — Note that (G); = Gi,r. The inclusion M&eshA C MfGr-eshATr i5 ohvious, and

the reverse inclusion follows from lemma 1.2.10. O

Proposition 1.2.12. — The space M does not depend on the choice of a uniform

open subgroup H C G.

Proof. — Let H and H' be uniform open subgroups of G. The group H N H' contains an
open uniform subgroup by prop 1.1.3, so to prove the proposition, we can further assume
that H' C H. We then have H; C H; for all i, so that if m € MT-eshAr then m €
MH-esh A This implies that MH-estbA ¢ A -eshA - Conversely, by lemma 1.1.2, there
exists j such that H; C H'. The previous reasoning implies that M " -¢shA c pfHi-eshA,
Lemma 1.2.11 now implies that M/ i-eshA = ppH-e-shA=j

These inclusions imply the proposition. O

Definition 1.2.13. — If ' is a p-adic Lie group that acts by isometries on M, we let

Mesh = MG-esh where G is any uniform open subgroup of T.
Remark 1.2.14. — If e < f, then M/t C Mesh,

Recall that G is a uniform pro-p group. If a closed normal subgroup N of G acts
trivially on M, then G/N acts on M.

Proposition 1.2.15. — If a closed normal subgroup N of G acts trivially on M, then
MG—e—sh — MG/N—e—sh‘

Proof. — By prop 1.1.4, G has an open subgroup G’ such that G’ and G’/N" are uniform
(where N’ = G’ N N). By prop 1.2.12, we have MGt = Mf&*-esh apnd MG/N-esh —
MG /N-esh Lot . G' — G'/N' denote the projection. We have (G") = (G'/N'); for
all i. Hence if m € M, then valy/(g-m —m) > p* - p® + u for all g € G, if and only if
valy (m(g) -m —m) = p* - p + p for all 7(g) € (G'/N');. O

Proposition 1.2.16. — Suppose that M is a ring, and that g(mm') = g(m)g(m’) and
valy (mm’) = valy (m) + valpy (m') for all m,m’ € M and g € G.

1. Ifve R and m,m' € MG ppvaluzv then m.m/ € ME-eshhntv,

2. If m € MGesbAnn M> | then 1/m € MGeshAnu=2vala(m)

Proof. — Item (1) follows from prop 1.2.5 and lemma 1.2.8. Item (2) follows from

g(1> I m—g(m)

m

m  glm)m
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2. The field of norms

Let K be a p-adic field, and let K, be an algebraic Galois extension of K, whose
Galois group G is a p-adic Lie group of dimension > 1. We assume that K, /K is almost
totally ramified, namely that the inertia subgroup of G is open in G. Let d = dim(G)
and let ¢ = p?. Let E}Qw denote the ring Y&n%mg Ok /p. This is a perfect domain of
characteristic p, which has a natural action of G. The map (y;);=0 = (Vai)i=o0 gives an
isomorphism between lim Ok../p and E}Qw, so that E}m is the ring of integers of
the tilt of K, (see §3 of [Sch12]).

If 2 = (2;)i0, and Z; is a lift of z; to Ok__, then ¢ val,(#;) is independent of i > 0 such
that z; # 0. We define a valuation on Ef_ by valg(z) = lim;_, o, £/ val,(#;).

The aim of this section is to compute (E}Qw)d‘Sh. Given definition 1.2.13, we assume
from now on (replacing K by a finite subextension if necessary) that G is uniform and
that K, /K is totally ramified. Let k denote the common residue field of K and K.

2.1. The field of norms. — Let £(K ) denote the set of finite extensions E of K
such that £ C K. Let Xk (Ks) denote the set of sequences (2g)pes(k..) such that
rp € E for all E € £(K), and Np/p(xp) = p whenever E C F with B, F' € £(K).

Ifn>0,let K, = K& so that K, : K,] = {, {K,}.>0 is a cofinal subset of £(K,,),
and Xg(Ky) = Jm, K. If v = (2,)n>0 € Xk (Kx), let valg(x) = val,(zo).

Kn/Kp_1

Theorem 2.1.1. — Let K and K, be as above.

L Ifv,y € Xg(Kx), then {Ng, 7k, (Tnij + Yntj) }jz0 converges for all n > 0.

2. If we set (x+y)n = limj_y oo Nk, /i, (Trgj + Ynis), then v +y € Xi(Ku), and the
set X (Koo) with this addition law, and componentwise multiplication, is a field of
characteristic p.

3. The function valg is a valuation on Xk (K.), for which it is complete

4. If w = (@Wn)nz0 s a norm compatible sequence of uniformizers of Ok, , the valued

field X (Ko) is isomorphic to k(w)) (with val(w) = val,(wy) ).

Proof. — By a result of Sen [Sen72], K, /K is strictly APF in the terminology of §1.2
of [Win83] (see 1.2.2 of ibid). The theorem is then proved in §2 of ibid. O

Let Xj(Ky) = Jm Ok, be the ring of integers of the valued field X (K ).
Kn/anl
If ¢ >0, let If = {x € O, such that val,(z) > c}. If m,n > 0, the map Ok, /I —

Okporn/ Lo sr is well-defined and injective.
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Proposition 2.1.2. — There exists ¢(Ko/K) < 1 such that if 0 < ¢ < ¢(K/K), then
val,(Ng, ., /i, (z)/aEnrsEnl — 1) > ¢ for all n,k > 0 and x € Ok

n+k°

Proof. — See [Win83] as well as §4 of [CD15]. The result follows from the fact (see
1.2.2 of [Win83]) that the extension K /K is strictly APF. One can then apply 1.2.1,
4.2.2 and 1.2.3 of [Win83|. O

Using prop 2.1.2, we get a map ¢ : XH(Ky) — l'&nxﬁgyZ Ok /IS, given by
(Tn)nso0 € ILHNKTL/KWI Ok, = (@n)azo. Let lim Ok, /I; denote the set of
(Tn)ns0 € fm Ok /1S such that z,, € O, /IS for all n > 0.

Proposition 2.1.8. — Let 0 < ¢ < ¢(Ky/K) be as in prop 2.1.2.
1. the natural map E;}m — @szf Ok /IS, i3~a bijection
2. the map v: Xi(Koo) = lim Ok /IS = Ej_ is injective and isometric

3. the image of v is lim Ok, /1.

Proof. — See [Win83| and §4 of [CD15]. We give a few more details for the convenience
of the reader. Item (1) is classical (see for instance prop 4.2 of [CD15]).The map ¢ is
obviously injective and isometric. For (3), choose # = (#n)nz0 € lim  , Ok, /I}, and
choose a lift 2, € Ok, of z,. One proves that {Ng,, /k,(Znt;)};>0 converges to some
yn € Ok, , and that (y,)ns0 € Xi(Ky) is a lift of (z,,),>0. See §4 of [CD15] for details,

for instance the proof of lemma 4.1. O

Prop 2.1.3 allows us to see X (K), and hence ¢ (X% (Ky)) for all n > 0, as a

subring of Ef_.
Proposition 2.1.4. — The ring Unsop (X3 (Kx)) is dense in Ef_.

Proof. — See §4.3 of [Win83]. O

2.2. Decompleting the tilt. — We now compute (Ef_)**". Since prop 2.2.1 below

is vacuous if p = 2, we assume in this § that p # 2.

Proposition 2.2.1. — If0<c<1—-1/(p—1), and x € Ok, is such that val,(g(z) —
x) =1 for all g € Gy, then the image of v in Ok /IS, belongs to Ok, /IS.

Proof. — 1If val,(g(z) — z) > 1 for all g € Gal(K*¢/K,), then by theorem 1.7 of [LB10]
(an optimal version of a theorem of Ax), there exists y € K, such that val,(z —y) >

1 —1/(p—1). This implies the proposition. O

Proposition 2.2.2. — If c=p7 is as above, then X;H(K.) C (Ef_)¢dsh0,
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Proof. — Take z = (x,)n>0 € I'Lngwm,Z Ok, /I5. If g € G, then g(z,) = x, for n < i, so
that valg(gz — x) > p%ip”. ]

Theorem 2.2.3. — We have

1 (Ef )G +sh00 ¢ X[E(KL)
2. (Ef ) = Upsop ™ (XE(Kw)) and G = U™ (X g (Ks))

Proof. — Take ¢ <~min(c(Koo/K), 1—=1/(p—1)). Take z = (zp)nz0 € lim Ok, /p.
If n>0and z € (B )¢*"00 then valg(g(z) — z) > p™ if g € G,,. This implies that
val,(g(z,) — z,) = 1if g € G,. By prop 2.2.1, the image of z, in Ok, /IS belongs to
Ok, /I;. Hence the image of # in lim O, /IS, belongs to lim Ok, /1. By prop
2.1.3, z belongs to X;-(K). This proves (1).

Since valg(¢(x)) = p-valg(z), item (2) follows from (1) and props 2.2.2 and 1.2.16. [

Remark 2.2.4. — We have E&" ¢ E'. The field Ei#" contains the field of norms
X (Loo) of any p-adic Lie extension Lo, /K contained in K. Indeed, E;_ C Eg_ and
if e = dim Gal(Loo/K), then X (L) C ES™® € ER (see prop 1.2.15).

Can one give a description of E}(i’, for example along the lines of §5 of [Ber16]?

3. The Lubin-Tate case

We now specialize the constructions of the previous section to the case when K, is

generated over K by the torsion points of a Lubin-Tate formal group.

3.1. Lubin-Tate formal groups. — Let K be a finite extension of Q, of degree d,
with ring of integers O, inertia index f, ramification index e, and residue field k. Let
q = p/ = Card(k) and let 7 be a uniformizer of Og. Let LT be the Lubin-Tate formal
Og-module attached to 7 (see [LT65]). We choose a coordinate Y on LT. For each
a € Ok we get a power series [a](Y) € Ok[Y], that we now see as an element of k[Y].
In particular, [7](Y) = Y% Let S(T,U) € k[T,U] denote the reduction mod 7 of the
power series giving the addition law in LT in that coordinate. Recall that S(7,0) = T
and S(0,U) =U.

Lemma 3.1.1. — Ifa,b € Ok and i > 0, then valy ([a + p'b](Y) — [a](Y)) = p®.
Furthermore, [1 +7'](Y) =Y + Y9 + O(Y+).

Proof. — We have [7](Y) = Y9, so valy([7](Y)) > p. Writing p = un® for a unit u,
we see that valy ([p'b](Y)) = p¥ if b € Ok. If a,b € Ok and i > 0, then [a + bp'](Y) =
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S([a)(Y), [bp*](Y)). We have S(T,U) = T+U+TU-R(T,U), so that [a+bp'|(Y)—[a](Y) =
S([al(Y), [bp'](Y)) — [a](Y) € [bp'](Y) - k[Y]. This implies the first result.

The second claim follows likewise from the fact that [1 + 7¢|(Y) = S(Y,[r](Y)) =
Y4 (1Y) + V- [7)(Y) - ROY; [7(Y)). a

Let E = k(Y)). Let E, = k(Y9")) and let Eo, = U,,50E,. These fields are endowed
with the Y-adic valuation valy, and we let Ef denote the ring of integers of E,. The
group OF acts on E,, by a - f(YV") = f([a](YV/")).

Lemma 3.1.2. — Ifj > 1 (j > 2ifp=2), then 14+p’ Ok is uniform, and (1+p’ Ok ); =
1—|—pi+j0K.

Proof. — The map 1+ p’Ox — Ok, given by x + p~7 - log, (7 — 1), is an isomorphism
of pro-p groups taking 1 + p Ok to p'Ok. n

Recall that d = [K : Q,], that f = [k : F,], and that ¢ = p’.
Proposition 3.1.3. — We have Ej = (E )1+’ Ox-dshdj—fn0_
Proof. — If b € Ok and 7,5 > 0, then by lemma 3.1.1, we have
valy ([1 +pi+jb](yl/qn) _ Yl/q") >1/q" plH) — pdi=fn i

Lemma 3.1.2 then implies that Y'/4" e (BE)!+#/Ox-dshdi—fn.0  The Jemma now follows

from prop 1.2.16 and lemma 1.2.9. O

Corollary 3.1.4. — We have E = 7 Ox-dshdj

Proof. — This follows from prop 3.1.3 with n = 0, and prop 1.2.16. O

Proposition 3.1.5. — If e > 0, then k[Y]'?' Ox-dshdite — L[y?].

Proof. — Take f(Y) € k[Y]. There is a power series h(T,U) € k[T, U] such that

f(T+U)=f(T)+U-f(T)+U>n(T,U).

If m > 0, lemma 3.1.1 implies that [1 +7™](Y) =Y + Y7 + O(Y?"*1). Therefore,

F(L4+ () = f(V) + (Y + O ) - f/(Y) + O(Y*).

If f(Y) ¢ E[Y?], then f'(Y) # 0. Let u = valy(f'(Y)). The above computations imply
that valy (f([1 + 7T¢)(Y)) — f(Y)) = p¥ - p% + p for i > 0.

This implies the claim, since 7¢Og = pOg. O

Corollary 3.1.6. — We have EijpjoK‘d‘Sh’dj*f" =E,.
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Proof. — We prove that, more generally, EL# Ox-dshdi—t — p(y1/p") Take f(Y1/?") €
(E) 149 Ox-dshdi~t where f(Y) € k[Y]. Since valy (h?) = p - valy (h) for all h € ET, we
have f7"(Y) € (EL)"Ox-dshdi—ttm where fP"(Y) € E[Y] is f7"(Y) = f(Y'1/P")r".
If m > ¢+ 1, then prop 3.1.5 implies that f*"(Y) € E[Y?], so that f(Y) = g(Y?), and
FOYVP™y = g(Y/P""). This implies the claim. O

3.2. Decompletion of E. — Since we use the results of §2.2, we once more assume
that p # 2. Let E denote the Y-adic completion of E..

Theorem 38.2.1. — We have EMP'Ox-dshdi — E gnd E-" = B

Proof. — Let K, = K(LT[r*]) denote the extension of K generated by the torsion
points of LT, and let I' = Gal(K./K). The Lubin-Tate character . gives rise to
an isomorphism x, : I' — Og. For n > 1, let K,, = K(LT[r"]). If (mp)n>1 is a
compatible sequence of primitive 7w"-torsion points of LT, then m, is a uniformizer of
Ok, , @w = (T,)n>0 belongs to @an/Kn_l Ok, , and Xg(K) = k(w)) by theorem 2.1.1.
If g €T, then g(w) = [xx(9)](w), so that if we identify I" and Of, then Xx(Ky) = E
with its action of @. Prop 2.1.4 implies that E = Ex_ as valued fields with an action of
(an open subgroup of) O . We can therefore apply theorem 2.2.3, and get (ET)dsh = EL.

This implies the second statement. The first one then follows from coro 3.1.6. O]

Remark 3.2.2. — In the above proof, note that K ;jpnOK = K., so that the numbering

is not the same as in §2.1.

Remark 3.2.3. — We can define Lubin-Tate I-modules over E as in §3.2 of [BR22].
The results proved in that section carry over to the Lubin-Tate setting without difficulty.

In theorem 2.9 of [BR22], we proved theorem 3.2.1 above in the cyclotomic case, using
Tate traces. There are no such Tate traces in the Lubin-Tate case if K # Q,. We now
explain why this is so. More precisely, we prove that there is no I'-equivariant k-linear
projector E — E if K # Q,. Choose a coordinate T on LT such that log;(T) =
Snso T4 /7", so that logi(T) = 1 mod . Let & = 1/log+(T) - d/dT be the invariant
derivative on LT. Let ¢, = ¢/ where ¢ = p’.

Lemma 3.2.4. — We have dy(Y)/dY = x(7) in E for all v € T.

Proof. — Since logir = 1 mod 7, we have 0 = d/dY in E. Applying 0o~y = x(7)y0d
to Y, we get the claim. O]

Lemma 3.2.5. — If v €T is nontorsion, then EY=! = k.



SUPER-HOLDER VECTORS AND THE FIELD OF NORMS 13

Proposition 3.2.6. — If K # Q,, there is no I'-equivariant map R : E — E such that
R(gy(f)) = [ for all f € E.

Proof. — Suppose that such a map exists, and take v € T" nontorsion and such that
X~(7) = 1 mod m. We first show that if f € E is such that (1 —v)f € ¢,(E), then
F € py(B). Write f = fo+ py(R()) where fy = f — gq(R(f)), s0 that R(fo) = 0 and
(1 =) fo = ¢4(9) € ¢,(E). Applying R, we get 0 = (1 — v)R(fy) = g. Hence g =0
so that (1 —7)fo = 0. Since E'=! = k by lemma 3.2.5, this implies fy € k, so that

f € ¢q(E).

However, lemma 3.2.4 and the fact that x,(v) = 1 mod 7 imply that v(Y') = Y+ £, (Y?)
for some f, € E, so that v(Y9?) = Y9/? + ,(g,). Hence (1 —7)(Y??) € ¢,(E) even
though Y9/P does not belong to ¢,(E). Therefore, no such map R can exist. [

Corollary 3.2.7. — If K # Q,, there is no I'-equivariant k-linear projector gp;l(E) —

E. A fortiori, there is no I'-equivariant k-linear projector E > E.

Proof. — Given such a projector II, we could define R as in prop 3.2.6 by R = Howgl. O

3.3. The perfectoid commutant of Aut(LT). — In §3.1 of [BR22|, we computed
the perfectoid commutant of Aut(Gy,). We now use theorem 3.2.1 to do the same for
Aut(LT). We still assume that p # 2.

Theorem 38.3.1. — If u € Bt is such that valy(u) > 0 and u o [g] = [g] o u for all
g € OF, there exists b € O and n € Z such that u(Y') = [b](Y").

Recall that a power series f(Y) € k[Y] is separable if f/(Y) # 0. If f(Y) € Y - k[Y],
we say that f is invertible if f’(0) € k*, which is equivalent to f being invertible for
composition (denoted by o). We say that w(Y) € Y - k[Y] is nontorsion if w*"(Y) #Y
for all n > 1. If w(Y) = Yisow; Y € k[Y] and m € Z, let w™(Y) = X,oow?” Y. Note
that (w o v)™ = w(™ o™,

Proposition 3.3.2. — Let w(Y) € Y +Y2-k[Y] be a nontorsion series, and let f(Y) €
Y - k[Y] be a separable power series. If w™ o f = fow for somem € Z, then f is

invertible.

Proof. — This is a slight generalization of lemma 6.2 of [Lub94|. Write
fY) = Y™+ 0y
fIY) = g;Y7 +O(Y7*)
w(Y) =Y +w,Y" +O(Y" ),
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with f,,, g;, w, # 0. Since w is nontorsion, we can replace w by w°?" for £ >> 0 and assume
that » > j + 1. We have

w™ o f = f(Y) +w™ f(Y) +O(Y"tY)
= f(Y) +wl™ fY" + Oy ),
If 7 =0, then n = 1 and we are done, so assume that j > 1. We have
fow=f(Y +w,Y" +0O(Y")
=f(Y)+w.Y"f'(Y)+0(Y*)
= f(Y) +w,g; Y™ + O(Y"HH),

This implies that nr = r + j, hence (n — 1)r = j, which is impossible if » > j unless

n = 1. Hence n = 1 and f is invertible. m

Lemma 3.3.3. — Ifu € ET is such that valx (u) > 0 and uo[g] = [glou for all g € OF,
then u € (E*+)®",

Proof. — The group O acts on E* by g-u = uo [g]. By lemmas 3.1.1 and 3.1.2, the
function g — [g] o w is in H)(1 + pOk, ET), where p* = valy (u). O

Proof of theorem 3.3.1. — Take u € E such that valy (u) > 0 and u o [g] = [g] o u for all
g € Of. By lemma 3.3.3 and theorem 3.2.1, there is an m € Z such that f(Y) = u(Y)?"
belongs to Y - k[Y] and is separable. Take g € 1+ 7O such that g is nontorsion, and
let w(Y) = [g](Y) so that wow = wowu. We have fow = w™ o f. By prop 3.3.2,
f is invertible. In addition, f o w = w™ o f if w(Y) = [¢](Y) for all ¢ € OF. Hence
fo-9=9"" - fo, so that a?" = a for all @ = g € k. This implies that F; C Fm|, so
that m = fn for some n € Z. Hence w™ = w, and fo[g] = [g] o f for all g € OF.
Theorem 6 of [LS07] implies that f € Aut(LT). Hence there exists b € Oj such that
uw(Y) = [b(Y"). O

4. Mahler expansions and super-Holder functions

In §1.3 of [BR22]|, we proved an analogue of Mahler’s theorem for continuous functions
Z, — M, and then gave a characterization of super-Hoélder functions in terms of their
Mabhler expansions. We now indicate how these results generalize to functions G — M
for a uniform pro-p group G. Given the definition of super-Holder functions and the
existence of a coordinate ¢ : G — ZZ as in prop 1.1.1, it is enough to study functions
Zg — M. We generalize the setting a little bit, and study functions O% — M where K
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is a finite extension of Q,. Let K be such a field, fix a uniformizer 7 of O and let k be
the residue field of K. Let ¢ = Card(k).

4.1. Good bases and wavelets. — Let X = O%, which we endow with the valuation
valx(z1,...,24) = min; val (z;). For n > 0, let X,, = "X = {z € X,valx(z) > n}.

We endow X with the valx-adic topology. For any set Y, we denote by LC(X,Y) the
set of locally constant functions X — Y. For n > 0 we denote by LC, (X,Y’) the subset
of elements of LC(X,Y) that factor through X/X,. Let I = U0/, be a set of indices,
where I, C I,,;; for all n > 0, and Card(I,,) = Card(X/X,) = ¢"®. Let E be a field of

characteristic p.

Definition 4.1.1. — A family {h;};c; is a good basis of LC(X, E) if it is a basis of the
E-vector space LC(X, E) such that for all n > 0, {h; }ies, is a basis of LC, (X, F).

Let M be (as usual) an E-vector space with a valuation valy,, such that valy (az) =
valy/(z) for all @ € E* and € M. We assume that M is separated and complete for the

val-adic topology.

Proposition 4.1.2. — FEvery f € LC,(X, M) can be written uniquely as Y ;cy. hi - m;

for some elements m; € M. Moreover, inf,cx valy(f(z)) = infer, valp(m;).

Proof. — Let {6, }scx/x, be the basis of LC, (X, E) defined as follows: 6, is the charac-
teristic function of # + X,,. Then f € LC, (X, M) is equal to > cx/x, 6. - f(7).

As {h;}ier, is also a basis of LC, (X, E), we can write 0, = Y;c; aizh; for some
elements a;, € E. We now have f = 3 ,c; h; - m; where m; = 3 cx/x, a; . f(x). This
formula implies that inf,c;, valy (m;) > inf,ex valy (f(2)).

On the other hand we can also write h; = 3", cx/x, b, 0, for some elements b,,; € E,
so that f(z) = Y ey, brimi. This implies that inf,c;, valy(m;) < infiex valy (f(x)). O

We now give an example of a particularly nice good basis of LC(X, E), the basis of
wavelets (see §1.3 of [Coll0] and §2.1 of [dS16]). Let T be a set of representatives of
X/X; in X, chosen so that the representative of 0 is 0. For each n > 0, let R,, be the set
of representatives of X/X,, defined as follows: Ry = {0}, and forn > 1, R,, = {>0) mla;,
x; € T for all i}. We have Ry = T, and R,, C R, for all n. Let R = U,>0R,. If
r € R let £(r) be the smallest n such that r € R,,. For r € R, let x, be the characteristic
function of the closed disc r 4+ Xy, = {z € X, valx(x —r) > {(r)}.

Proposition 4.1.3. — The set {x;}rer is a good basis of LC(X, E).
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Proof. — We prove that for all n > 0, the set {x, },er, is a basis of LC,, (X, F). Consider
the basis {0, },er, of LC,(X, E), where §, is the characteristic function of r + X,,. We

have
Xr = Z (ST+TFE(T)T/ .

T/ERn,g(T)
This implies that if we write R,, = (R, \Rn-1)U...LU(R1\Ro)URo and we express the
family {x,}rer, in terms of the basis {0, },er,, we get a unipotent matrix. This shows
that {x,}rer, is also a basis of LC, (X, E). O

4.2. Expansions of continuous functions. — We show that every continuous func-
tion X — M has a convergent expansion along a good basis of X, and prove some
continuity estimates in terms of the coefficients of the expansion. If {m;};c; is a family

of M, we say that m; — 0 if inf,¢;, valy(m;) — 400 as n — 4o00.

Theorem 4.2.1. — Let {h;}icr be a good basis of LC(X, E).
If {m;}icr is a family of M such that m; — 0, the function f : X — M given by
[ = Yicr hi - m; belongs to C°(X, M), and inf,cx valy(f(x)) = inf;e; valpr(m;).
Conversely, if f € CO(X, M), there exists a unique family {m;(f)}ics of elements of
M such that m;(f) — 0 and such that f =Y ;e hi - m;(f).

Proof. — Let {m;};c; be a family of M such that m; — 0. If f,, = > ;c; h; - m;, then
fn € CY%X, M), and f is the uniform limit of the f,. We have infx valy/(fn(z)) =
inf;e s, valp(m;) by prop 4.1.2. Since m; — 0, we have inf;c; valy (m;) = inf;e;, valy (m;)
for n > 0. Hence inf x valy/(fn(x)) = inf;e; valp (m;) for n > 0. Since inf, e x valy (f(z)) =
lim,, inf, valp/(fn(2)), we have inf,cx valy (f(x)) = inf;er valp (m;).

We now prove the converse. Let M, = {m € M,valy(m) > n}, let n, : M — M/M,
be the projection, and for each n, fix a lift ¢, : M/M,, — M. Take f € C°(X, M), and
let f, =Y, om, o f. As f and f, coincide modulo M,,, f is the uniform limit of the f,.
On the other hand, 7, o f is locally constant, and therefore so is f,,. As X is compact,
there exists some k(n) > 0 such that f, € LCyp, (X, M). By prop 4.1.2, we can write
fr = Yier hi - M, where my,, = 0 if i & I;,). We have valy (m;,, — myn) = min(n,n’)
by construction, so that for each ¢, the sequence {m;,}, converges to some m; € M.
Moreover, if ¢ ¢ Iy, then valy(m;) = n, so that m; — 0. The continuous function
> icr hi - m; is the uniform limit of the f,,, so that finally f = >;c; hi - m,. O]

Proposition 4.2.2. — Take f € C°(X, M) and t € Z=o. If {h;}ics is a good basis of
LC(X, E), and we write f = Y; h; - m; with m; — 0, then inf;g;, valpy(m;) depends only

on f and not on the choice of the good basis.
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Proof. — Fix two good bases {h;}ier and {h.};cr of LC(X, E). There exists a family
{AZ"]‘}(iJ)e]X[ of elements of E such that h; =3, )\”h; for all 2. Moreover, if 7 € I, then

Nij =0forall j € I.. Now write f = Y ;c;hi - mi(f) = Xier b - mj(f). We also have
= Z(Z )\i,jh;) -m;(f) = Zh; : (Z Ai,jmi(f»

so that m’;(f) = 32, i ymi(f ) If j & I;, then m ](f) Sigr, Aigmi(f), as Ay = 0ifi € I,
and j & I;. This implies that inf g, valy (m}(f)) > infigr, valy (mq(f)).
By symmetry, we get that inf;g;, valy (m/;(f)) = infigr, valy (mi(f)). O

Theorem 4.2.3. — Take f € CO(X, M) and t € Zy.
If {h;}icr is a good basis of LC(X, E), and we write f =Y, h; - m; with m; — 0, then
1;1; valyr(m;) = inf valy(f(z) — f(y)).

z,yeX
valx (z—y)>t

Proof. — Let Cy(f) = inf, yex valy (z—y)>t Valar (f(x) — f(y)) and By(f) = inf;gy, valpy(m;).

If 2 € X and z € Xy, then f(z + 2) — f(x) = Yicr (hi(x + 2) — hi(2)) - mi(f). As
h; € LCy(X, E) for i € I, the above equality gives us

fla+z2) = f(z) = % (hi(z + 2) = hi(2)) - mi(f).
This implies that Cy(f) = Bi(f).

We now prove the converse inequality. By prop 4.2.2, B;(f) is independent of the choice
of a good basis, and we choose the wavelet basis of prop 4.1.3. Write f = > c x»-m,(f),
so that we want to show that valy (m.(f)) = Ci(f) for all r ¢ R,. If x € X, define
gz : X = M by g.(2) = f(x +7'2) — f(x), and write g, = >,cr Xo - Mr(g2). For each
r € R, we can write uniquely r = r;, + w's with r, € R;, where s = 0 if r € R, and
s #0 € Rypy—y if r ¢ Ry. For x € Ry and r ¢ Ry, the map z — x,(z + 7'z) — x,(2) is
the zero function if r; # x, and is x, if r; = x. This implies that if x € R;, then

9:(2) = 3 (el + 7'2) = xo(@)) - ()

reR

= (Xr(m +7tz) — Xr(w)) -my(f)
r¢R¢

= 3 x(2)  Mapris(f)-
s¢Ro

Therefore if z € Ry, then my(g,) = 0 and my(g,) = meins(f) if s # 0. We have
infser valyr(ms(g.)) = inf,ex valp(g:(2)) = Ci(f), so that valy (ms(g.)) = Ci(f) for all
x € X and s € R. This implies that for all x € R; and s # 0, valy(marts(f)) = Ci(f).
Hence for all » ¢ R;, we have valy (m,(f)) = Ci(f). O
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4.3. Mahler bases. — We now construct some other examples of good bases. For
n > 0, let Int,(Ok) denote the set of polynomials f(T) € K[T] such that deg(P) < n
and f(Ok) C Ok. Recall (see for instance §1.2 of [dS16]) that a Mahler basis for Og
is a sequence {hy,},>0 with h,(T) € K[T] of degree n, and such that {hg,...,h,} is a
basis of the free Ox-module Int, (Ok) for all n > 0. For example, if K = Q,, we can
take h,(T) = (;‘C) Let {h,}n>0 be a Mahler basis for Ok. Each h,, defines a function
Ok — Ok and hence Og — k. Let [ = Z-( and let [, = {0,...,¢" — 1} for n > 0.

Proposition 4.3.1. — If {h,}n>0 is a Mahler basis for Ok, then {h;}icr is a good basis
of LC(Ok, k).

Proof. — By theorem 1.2 of [dS16], {h¢,...,hgm_1} is a basis of the k-vector space

LC,,(Ok, k) for all m > 0. This implies the claim. O
We now specialize to K = Q,,. Write N for Z-( and n for an element (ny, ..., ng) € N%
For each n € N% we denote by hy, the function Zg — E given by (z1,...,74) —

)

Proposition 4.3.2. — The functions {hn}nend form a good basis of LC(ZZ, F,).

(xd). For m € Zy, let I, = {n € N? such that max(ny,...,ng) < p™ — 1}.

nd

Proof. — The claim follows from prop 4.3.1 for K = Q,,, and lemma 4.3.3 below. O

Lemma 4.3.3. — If X and X' are as in §4.1, and {hi}ic; and {N);};cs are good bases
of LC(X, E) and LC(X', E), then {h; ® I} jerxs is a good basis of LC(X x X', E),
with (I X J)p = Iy X Jy.

Let G be a uniform pro-p group, and let ¢ : G — Zg be a coordinate as in prop 1.1.1.
The theorem below follows from prop 4.3.2, theorem 4.2.1, and theorem 4.2.3.

Theorem 4.3.4. — If {mn}nene @s a sequence of M such that my, — 0, the function
f: G —= M given by f(g9) = X pend (Cln(fi)> ...<Ci(5))mn belongs to CO(G, M). We have
inf e valy(f(g)) = infpena valp (ma).

Conversely, if f € C°(G, M), there exists a unique sequence {my(f)}nena Such that
mn(f) — 0 and such that f(g) = > pend (Cz(f)) e (c‘jl(j)>mn(f).

We have f € HM(G, M) if and only if for all i > 0, we have valp(my(f)) = p*-p® +pu

whenever max(ny, ..., ng) = p'.

Remark 4.3.5. — The first two assertions in the above theorem also follow from theo-
rem 1.2.4 in §III of [Laz65] (we thank Konstantin Ardakov for pointing this out).
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We finish by considering the case G = Ok for K a finite extension of Q,, and working
with a Mahler basis for Ok. Let K be a finite extension of Q, as before. Assume that
E is an extension of k. Let {h,},>0 be a Mahler basis for Og. If f € C%(Og, M), write
f =00 hnmy,(f) with m,(f) — 0. Let e denote the ramification index of K.

Proposition 4.3.6. — If f = 3,0 homn(f) as above, then f € HM* (O, M) if and

only if valy (m,(f)) = p* - p' + pu whenever n > p¥.

Proof. — This follows from theorem 4.2.3, since val,(z—y) > i if and only if val, (z—y) >
ei, and since ¢¢ = p?. O

In this situation we can also define a slightly different version of super-Holder functions.
We say that a function f: Ox — M is in ’H}\(’fﬁ((’)K, M) if valy (f(z) — f(y)) = p*-pli+u
whenever val,(z — y) > i. We then have

?e+t(671)7u(OK7 M) - Hi\éﬁ(OKa M) - Hi\éu(olﬁ M)

In particular, Hy (O, M) = He(Ox, M). If K/Q,, is unramified then 3 (Og, M) =
H* (O, M). Moreover we have the following criterion:
Proposition 4.3.7. — If f = Y50 homn(f) as above, then f € ’H}\(‘;((’)K,M) if and
only if valy (m,(f)) = p* - p' + pu whenever n > ¢'.
Ezxzample 4.3.8. — For all n > 0, there exists ¢,(T") € Int,(Ok) such that [a](Y) =

Ym0 Cn(@)Y™. This implies that valy (my(a — [a](Y))) > n, so that the function a —
[a](Y) is in H)?(Ok, E[Y]), and in ’H?}?f(OK, E[Y]) where ¢ = p’.
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