KÄHLER DIFFERENTIALS AND Z_p -EXTENSIONS

by

Laurent Berger

Abstract. — Let K be a p-adic field, and let K_{∞}/K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove that K_{∞} is not dense in $(\mathbf{B}_{dR}^+/\operatorname{Fil}^2 \mathbf{B}_{dR}^+)^{\operatorname{Gal}(\overline{K}/K_{\infty})}$. Moreover, the restriction of θ to the closure of K_{∞} is injective, and the image of the closure via θ is the set of vectors of the p-adic completion of K_{∞} that are C^1 with zero derivative for the action of $\operatorname{Gal}(K_{\infty}/K)$. The main ingredient for proving these results is the construction of an explicit lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$, where $d : \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is the canonical differential.

Contents

Introduction	1
1. Kähler differentials	3
2. Ramification in \mathbf{Z}_p -extensions	4
3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$	5
4. The completion of K_{∞} in $\mathbf{B}_2(\mathbf{C})$	6
References	8

Introduction

Let K be a p-adic field, namely a finite extension of W(k)[1/p] where k is a perfect field of characteristic p. Let **C** be the p-adic completion of an algebraic closure \overline{K} of K. Let K_{∞}/K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. Let \widehat{K}_{∞} denote the p-adic completion of K_{∞} , let

²⁰²⁰ Mathematics Subject Classification. — 11S15; 11S20; 13N05.

Key words and phrases. — Ramification; Different; Kähler differentials; Tate traces; rings of *p*-adic periods.

I thank Léo Poyeton and the referee for their remarks.

 $\mathbf{B}_{\mathrm{dR}}(\widehat{K}_{\infty}) = \mathbf{B}_{\mathrm{dR}}(\mathbf{C})^{\mathrm{Gal}(\overline{K}/K_{\infty})} \text{ be Fontaine's field of periods attached to } K_{\infty}/K, \text{ and for } n \ge 1, \text{ let } \mathbf{B}_n(\widehat{K}_{\infty}) = \mathbf{B}_{\mathrm{dR}}^+(\widehat{K}_{\infty})/\operatorname{Fil}^n \mathbf{B}_{\mathrm{dR}}^+(\widehat{K}_{\infty}).$

This note is motivated by Ponsinet's paper [**Pon20**], in which he relates the study of universal norms for the extension K_{∞}/K to the question of whether K_{∞} is dense in $\mathbf{B}_n(\widehat{K}_{\infty})$ for $n \ge 1$. The density result holds for n = 1 since $\mathbf{C}^{\operatorname{Gal}(\overline{K}/K_{\infty})} = \widehat{K}_{\infty}$ by the Ax-Sen-Tate theorem.

Our main result is the following.

Theorem A. — The field K_{∞} is not dense in $\mathbf{B}_2(\widehat{K}_{\infty})$.

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), $\mathbf{B}_2(\mathbf{C}) = \mathbf{B}_{\mathrm{dR}}^+(\mathbf{C})/\operatorname{Fil}^2 \mathbf{B}_{\mathrm{dR}}^+(\mathbf{C})$ is the completion of \overline{K} for a topology defined using the Kähler differentials $\Omega_{\mathcal{O}_{\overline{K}}/\mathcal{O}_K}$. Some partial results towards theorem A have been proved by Iovita-Zaharescu in [IZ99], by studying these Kähler differentials. Let $\Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_K}$ be the Kähler differentials of $\mathcal{O}_{K_{\infty}}/\mathcal{O}_K$ and let $d : \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_K}$ be the differential. Our main technical result is the construction of a lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$. Since the inertia subgroup of $\operatorname{Gal}(K_{\infty}/K)$ is a *p*-adic Lie group of dimension 1, there exists a finite subextension K_0/K of K_{∞} such that K_{∞}/K_0 is a totally ramified \mathbf{Z}_p -extension. Let K_n be the *n*-th layer of this \mathbf{Z}_p -extension.

Theorem B. — The lattices $\sum_{n\geq 0} p^n \mathcal{O}_{K_n}$ and $\mathcal{O}_{K_{\infty}}^{d=0}$ are commensurable.

In order to prove this, we use Tate's results on ramification in \mathbb{Z}_p -extensions. As a corollary of theorem B, we can say more about the completion of K_{∞} in $\mathbb{B}_2(\widehat{K}_{\infty})$. The field \widehat{K}_{∞} is a Banach representation of the *p*-adic Lie group $\operatorname{Gal}(K_{\infty}/K)$. Let c: $\operatorname{Gal}(K_{\infty}/K_0) \to \mathbb{Z}_p$ be an isomorphism of *p*-adic Lie groups. If $x \in \widehat{K}_{\infty}$, we say that x is C^1 with zero derivative for the action of $\operatorname{Gal}(K_{\infty}/K)$ if $g(x) - x = \operatorname{o}(c(g))$ as $c(g) \to 0$.

Let $\theta : \mathbf{B}_2(\mathbf{C}) \to \mathbf{C}$ be the usual map from *p*-adic Hodge theory.

Theorem C. — The completion of K_{∞} in $\mathbf{B}_2(\widehat{K}_{\infty})$ is isomorphic via θ to the set of vectors of \widehat{K}_{∞} that are C^1 with zero derivative for the action of $\operatorname{Gal}(K_{\infty}/K)$.

This is a field, and it is also the set of $y \in \widehat{K}_{\infty}$ that can be written as $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$.

We also prove that $d(\mathcal{O}_{K_{\infty}})$ contains no nontrivial *p*-divisible element (coro 3.5), and that $d: \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is not surjective (coro 3.6). These two statements are equivalent to theorem A by the results of **[IZ99**]; using our computations, we give a short independent proof.

1. Kähler differentials

Let K be a p-adic field. If L/K is a finite extension, let $\mathfrak{d}_{L/K} \subset \mathcal{O}_L$ denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/K be an algebraic extension.

- 1. If L/K is a finite extension, then $\Omega_{\mathcal{O}_L/\mathcal{O}_K} = \mathcal{O}_L/\mathfrak{d}_{L/K}$ as \mathcal{O}_L -modules.
- 2. If M/L/K are finite extensions, then the map $\Omega_{\mathcal{O}_L/\mathcal{O}_K} \to \Omega_{\mathcal{O}_M/\mathcal{O}_K}$ is injective.
- 3. If L/K is an algebraic extension, and $\omega_1, \omega_2 \in \Omega_{\mathcal{O}_L/\mathcal{O}_K}$, then there exists $x \in \mathcal{O}_L$ such that $\omega_2 = x\omega_1$ if and only if $\operatorname{Ann}(\omega_1) \subset \operatorname{Ann}(\omega_2)$.

Proof. — See for instance \$2 of [Fon82].

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set $\{\operatorname{val}_p(\mathfrak{d}_{F/K})\}_F$ is unbounded, as F runs through the set of finite extensions of K contained in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if \hat{L} is a perfectoid field. An extension K_{∞}/K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then $\Omega_{\mathcal{O}_L/\mathcal{O}_K} = L/\mathcal{O}_L$ as \mathcal{O}_L -modules.

Proposition 1.3. — If L/K is deeply ramified, then $d : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective if and only if $d(\mathcal{O}_L)$ is p-divisible.

Proof. — Since L/K is deeply ramified, $\Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is isomorphic to L/\mathcal{O}_L by coro 1.2. The claim now follows from the fact that a nonzero \mathcal{O}_L -submodule of L/\mathcal{O}_L is equal to L/\mathcal{O}_L if and only if it is *p*-divisible.

Proposition 1.4. — Let L/K be a deeply ramified extension, and let $K' \subset L$ be a finite extension of K.

1. $d: \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective if and only if $d': \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$ is surjective. 2. $\mathcal{O}_L^{d=0}$ and $\mathcal{O}_L^{d'=0}$ are commensurable.

Proof. — We have an exact sequence of \mathcal{O}_L -modules, compatible with d and d'

$$\mathcal{O}_L \otimes \Omega_{\mathcal{O}_{K'}/\mathcal{O}_K} \xrightarrow{f} \Omega_{\mathcal{O}_L/\mathcal{O}_K} \xrightarrow{g} \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}} \to 0.$$

Let us prove (1). If $d : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective, then clearly $d' : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$ is surjective. Conversely, there exists $r \ge 0$ such that $p^r \cdot \Omega_{\mathcal{O}_{K'}/\mathcal{O}_K} = \{0\}$. If $\omega \in \Omega_{\mathcal{O}_L/\mathcal{O}_K}$, write it as $\omega = p^r \omega_r$. By hypothesis, there exists $\alpha_r \in \mathcal{O}_L$ such that $\omega_r = d'\alpha_r$ in $\Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$. Hence $p^r(\omega_r - d\alpha_r) = 0$ in $\Omega_{\mathcal{O}_L/\mathcal{O}_K}$ so that $\omega = d(p^r\alpha_r)$. We now prove (2). The exact sequence above implies that $\mathcal{O}_L^{d=0} \subset \mathcal{O}_L^{d'=0}$. Conversely, if $x \in \mathcal{O}_L^{d'=0}$, then $dx \in \ker g = \operatorname{im} f$, so that $p^r \cdot dx = 0$. Hence $p^r \cdot \mathcal{O}_L^{d=0} \subset \mathcal{O}_L^{d=0}$.

Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subextension K' of K. In particular, we can assume that K_{∞}/K is a totally ramified \mathbf{Z}_p -extension.

2. Ramification in Z_p -extensions

Let K_{∞}/K be a totally ramified \mathbb{Z}_p -extension. We recall some of the results of §3.1 of [**Tat67**] concerning the ramification of K_{∞}/K and the action of $\text{Gal}(K_{\infty}/K)$ on K_{∞} . Let K_n denote the *n*-th layer of K_{∞}/K , so that $[K_n : K] = p^n$.

Proposition 2.1. — There are constants a, b such that for all $n \ge 0$, we have $|\operatorname{val}_p(\mathfrak{d}_{K_n/K}) - n - b| \le p^{-n}a$.

Proof. — See \$3.1 of [**Tat67**].

The notation $\sum_{n\geq 0} p^n \mathcal{O}_{K_n}$ denotes the set of elements of K_{∞} that are finite sums of elements of $p^n \mathcal{O}_{K_n}$.

Corollary 2.2. — There exists $n_0 \ge 0$ such that $\sum_{n \ge 0} p^{n+n_0} \mathcal{O}_{K_n} \subset \mathcal{O}_{K_\infty}^{d=0}$.

Proposition 2.3. — There exists $c(K_{\infty}/K) > 0$ such that for all $n, k \ge 0$ and $x \in \mathcal{O}_{K_{n+k}}$, we have $\operatorname{val}_p(N_{K_{n+k}/K_n}(x)/x^{[K_{n+k}:K_n]}-1) \ge c(K_{\infty}/K)$.

Proof. — The result follows from the fact (see 1.2.2 of [Win83]) that the extension K_{∞}/K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

If $n \ge 0$ and $x \in K_{\infty}$, then $R_n(x) = p^{-k} \cdot \operatorname{Tr}_{K_{n+k}/K_n}(x)$ is independent of $k \gg 0$ such that $x \in K_{n+k}$, and is the normalized trace of x.

Proposition 2.4. — There exists $c_2 \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{val}_p(R_n(x)) \geq \operatorname{val}_p(x) - c_2$ for all $n \geq 0$ and $x \in K_{\infty}$.

Proof. — See §3.1 of [**Tat67**] (including the remark at the bottom of page 172). \Box

In particular, $R_n(\mathcal{O}_{K_{\infty}}) \subset p^{-c_2}\mathcal{O}_{K_n}$ for all $n \ge 0$. Let $K_0^{\perp} = K_0$ and for $n \ge 1$, let K_n^{\perp} be the kernel of $R_{n-1}: K_n \to K_{n-1}$, let $R_n^{\perp} = R_n - R_{n-1}$, and $R_0^{\perp} = R_0$. Note that $K_n^{\perp} = \operatorname{im}(R_n^{\perp}: K_{\infty} \to K_n)$. If $x \in K_{\infty}$ and $i \ge 0$, then $R_n^{\perp}(x) = 0$ for $n \gg 0$, and $x = (\sum_{n \ge i+1} R_n^{\perp}(x)) + R_i(x)$. Prop 2.4 implies that $R_n^{\perp}(\mathcal{O}_{K_{\infty}}) \subset p^{-c_2}\mathcal{O}_{K_n}$ for all $n \ge 0$. Let $\mathcal{O}_{K_n}^{\perp} = \mathcal{O}_{K_n} \cap K_n^{\perp}$.

Corollary 2.5. — If
$$i \ge 0$$
, we have $\mathcal{O}_{K_{\infty}} \subset (\bigoplus_{m \ge i+1} p^{-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{-c_2} \mathcal{O}_{K_i}$.
Proof. — If $x \in \mathcal{O}_{K_{\infty}}$, write $x = \sum_{m \ge i+1} R_m^{\perp}(x) + R_i(x)$.

For $n \ge 0$, let g_n denote a topological generator of $\operatorname{Gal}(K_{\infty}/K_n)$.

Lemma 2.6. — There exists a constant c_3 such that for all $n \ge 1$ and all $x \in K_{n+1}^{\perp}$, we have $\operatorname{val}_p(x) \ge \operatorname{val}_p((1-g_n)(x)) - c_3$.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172).

3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$

We now prove theorem B. Thanks to coro 1.5, we assume that K_{∞}/K is a totally ramified \mathbf{Z}_p -extension. Let $\{\rho_n\}_{n\geq 0}$ be a norm compatible sequence of uniformizers of the K_n . Let $m_c \ge 0$ be the smallest integer such that $p^{m_c} \cdot c(K_\infty/K) \ge 1/(p-1)$ (where $c(K_{\infty}/K)$ was defined in prop 2.3).

Proposition 3.1. — We have $\operatorname{val}_p(\rho_{n+1}^{pk} - \rho_n^k) \ge \operatorname{val}_p(k) - m_c$.

Proof. — Note that if $x, y \in \mathbf{C}$ with $\operatorname{val}_p(x-y) \ge v$, then $\operatorname{val}_p(x^p - y^p) \ge \min(v+1, pv)$. Let $c = c(K_{\infty}/K)$ and $m = m_c$. We have $\operatorname{val}_p(\rho_{n+1}^p - \rho_n) \ge c$ by prop 2.3, so that $\text{val}_{p}(\rho_{n+1}^{p^{j+1}} - \rho_{n}^{p^{j}}) \ge p^{j}c \text{ if } p^{j-1}c \le 1/(p-1).$ In particular, $\text{val}_{p}(\rho_{n+1}^{p^{m+1}} - \rho_{n}^{p^{m}}) \ge p^{m}c \ge 1/(p-1), \text{ so that we have } \text{val}_{p}(\rho_{n+1}^{p^{m+j+1}} - \rho_{n}^{p^{m}}) \ge p^{m}c \ge 1/(p-1).$

 $\rho_n^{p^{m+j}}) \ge j + 1/(p-1)$ if $j \ge 0$. This implies the result.

Theorem 3.2. — There exists $n_1 \ge 0$ such that $\mathcal{O}_{K_{\infty}}^{d=0} \subset \sum_{m \ge n_1} p^{m-n_1} \mathcal{O}_{K_m}$.

Proof. — We prove the result with $n_1 = \lfloor a - b + m_c + 2 \rfloor$. Take $x \in \mathcal{O}_{K_n}^{d=0}$ and write $x = \sum_{i=0}^{p^n-1} x_i \rho_n^i$ with $x_i \in \mathcal{O}_K$, so that $dx = \sum_{i=0}^{p^n-1} i x_i \rho_n^{i-1} \cdot d\rho_n$. Since ρ_n is a uniformizer of \mathcal{O}_{K_n} , the \mathcal{O}_{K_n} -module $\Omega_{\mathcal{O}_{K_n}/\mathcal{O}_K} = \mathcal{O}_{K_n}/\mathfrak{d}_{K_n/K}$ (see prop 1.1) is generated by $d\rho_n$. If dx = 0, then $\sum_{i=0}^{p^n-1} i x_i \rho_n^{i-1}$ belongs to $\mathfrak{d}_{K_n/K}$ so that by prop 2.1 (and since $\operatorname{val}_p(\rho_n^{p^n}) \leq 1$), for all i we have

$$\operatorname{val}_p(x_i) \ge n - a + b - \operatorname{val}_p(i) - 1.$$

For $k \ge 1$, let

$$y_k = \sum_{p \nmid j} x_{p^{k-1}j} \rho_{n-(k-1)}^j + \sum_{\ell} x_{p^k \ell} (\rho_{n-(k-1)}^{p\ell} - \rho_{n-k}^{\ell}).$$

Note that $y_k \in \mathcal{O}_{K_{n-k+1}}$. Let us bound $\operatorname{val}_p(y_k)$. We have

$$\operatorname{val}_p(x_{p^{k-1}j}\rho_{n-(k-1)}^j) \ge n-a+b-k$$

We also have $\operatorname{val}_p(x_{p^k\ell}) \ge n - a + b - k - \operatorname{val}_p(\ell) - 1$, and by prop 3.1

$$\operatorname{val}_p(\rho_{n-(k-1)}^{p\ell} - \rho_{n-k}^{\ell}) \geqslant \operatorname{val}_p(\ell) - m_c.$$

Hence $\operatorname{val}_p(y_k) \ge n - a + b - k - 1 - m_c$ and therefore $y_k \in p^{n-k+1-n_1}\mathcal{O}_{K_{n-k+1}}$. Finally, we have $x = y_1 + \cdots + y_{n-n_1} + \sum_{\ell} x_{p^{n-n_1}\ell} \rho_{n_1}^{\ell}$, and $\sum_{\ell} x_{p^{n-n_1}\ell} \rho_{n_1}^{\ell}$ belongs to $\mathcal{O}_{K_{n_1}}$, which implies the result.

Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].

Corollary 3.4. — We have $\mathcal{O}_{K_{\infty}}^{d=0} \subset (\bigoplus_{m \ge n_1+1} p^{m-n_1-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{-c_2} \mathcal{O}_{K_{n_1}}.$

Proof. — By theorem 3.2, it is enough to prove that

 $p^n \mathcal{O}_{K_n} \subset (\bigoplus_{m \ge n_1+1} p^{m-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{n_1-c_2} \mathcal{O}_{K_{n_1}}$

for all $n \ge n_1$. If $x \in p^n \mathcal{O}_{K_n}$, write $x = R_n^{\perp}(x) + R_{n-1}^{\perp}(x) + \cdots + R_{n_1+1}^{\perp}(x) + R_{n_1}(x)$. We have $R_{n-k}^{\perp}(x) \in p^{n-c_2} \mathcal{O}_{K_{n-k}}^{\perp} \subset p^{(n-k)-c_2} \mathcal{O}_{K_{n-k}}^{\perp}$ and likewise $R_{n_1}(x) \in p^{n-c_2} \mathcal{O}_{K_{n_1}} \subset p^{n_1-c_2} \mathcal{O}_{K_{n_1}}$.

Corollary 3.5. — There are no nontrivial p-divisible elements in $d(\mathcal{O}_{K_{\infty}})$.

Proof. — By props 1.3 and 1.4, we can assume that K_{∞}/K is a totally ramified \mathbb{Z}_{p} extension. Let $\{\alpha_i\}_{i\geq 1}$ be a sequence of $\mathcal{O}_{K_{\infty}}$ such that $d\alpha_i = p \cdot d\alpha_{i+1}$ for all $i \geq 1$.

Using coro 2.5, write $\alpha_i = \sum \alpha_{i,m}$ with $\alpha_{i,m} = R_m^{\perp}(\alpha_i) \in p^{-c_2} \mathcal{O}_{K_m}^{\perp}$ for $m \ge n_1 + 1$ and $\alpha_{i,n_1} = R_{n_1}(\alpha_i) \in p^{-c_2} \mathcal{O}_{K_{n_1}}$. Since $p^k \alpha_{k+i} - \alpha_i \in \mathcal{O}_{K_{\infty}}^{d=0}$, coro 3.4 implies that $p^k \alpha_{k+i,m} - \alpha_{i,m} \in p^{m-n_1-c_2} \mathcal{O}_{K_m}$ for all $m \ge n_1$. Taking $k \gg 0$ now implies that $\alpha_{i,m} \in p^{m-n_1-c_2} \mathcal{O}_{K_m}$ for all $m \ge n_1$. Coro 2.2 gives $p^{n_0+n_1+c_2} \alpha_i \in \mathcal{O}_{K_{\infty}}^{d=0}$. Taking $i = n_0+n_1+c_2+1$ gives $d\alpha_1 = 0$.

Corollary 3.6. — The differential $d: \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is not surjective.

Proof. — This follows from coro 3.5 and prop 1.3.

4. The completion of K_{∞} in $\mathbf{B}_2(\mathbf{C})$

We now prove theorems A and C. Since we are concerned with the completion of K_{∞} , we can once again replace K with a finite subextension of K_{∞} and assume that K_{∞}/K is a totally ramified \mathbf{Z}_p -extension. Let \widehat{K}_{∞}^2 denote the completion of K_{∞} in $\mathbf{B}_2(\mathbf{C}) =$ $\mathbf{B}_{dR}^+(\mathbf{C})/\operatorname{Fil}^2 \mathbf{B}_{dR}^+(\mathbf{C})$, so that $R = \theta(\widehat{K}_{\infty}^2)$ is a subring of \widehat{K}_{∞} . Let $\Gamma = \operatorname{Gal}(K_{\infty}/K)$, and let $c : \Gamma \to \mathbf{Z}_p$ be an isomorphism of p-adic Lie groups. Let w_2 be the valuation on K_{∞} defined by $w_2(x) = \min\{n \in \mathbf{Z} \text{ such that } p^n x \in \mathcal{O}_{K_{\infty}}^{d=0}\}$. The restriction of the natural valuation of $\mathbf{B}_2(\mathbf{C})$ to K_{∞} is w_2 (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of [Col12]; the natural valuation on $\mathbf{B}_2(\mathbf{C})$ comes from its definition as the quotient of a certain Banach space, see ibid.).

The map $\theta : \mathbf{B}_2(\mathbf{C}) \to \mathbf{C}$ has the following property (see §1.4 of [Fon94]).

Lemma 4.1. — If $\{x_k\}_{k\geq 1}$ is a sequence of K_{∞} that converges to $x \in \mathbf{B}_2(\mathbf{C})$ for w_2 , then $\{x_k\}_{k\geq 1}$ is Cauchy for val_p , and $\theta(x) = \lim_{k \to +\infty} x_k$ for the p-adic topology.

Let $M = \bigoplus_{n \ge 0} p^n \mathcal{O}_{K_n}^{\perp}$. Coro 2.2 and theo 3.2 imply that M and $\mathcal{O}_{K_\infty}^{d=0}$ are commensurable. Hence \widehat{K}_{∞}^2 is the M-adic completion of K_{∞} . Let w'_2 be the M-adic valuation on K_{∞} , so that w'_2 and w_2 are equivalent.

Lemma 4.2. — If $x \in K_{\infty}$, then $\operatorname{val}_p(R_n^{\perp}(x)) \ge w'_2(x) + n$.

Proof. — Write $x = \sum_{n \ge 0} R_n^{\perp}(x)$. If $x \in p^w M$, then $R_n^{\perp}(x) \in p^{n+w} \mathcal{O}_{K_n}$.

Proposition 4.3. — Every element $x \in \widehat{K}^2_{\infty}$ can be written in one and only one way as $\sum_{n \ge 0} x_n^{\perp}$ where $x_n^{\perp} \in K_n^{\perp}$ and $p^{-n} x_n^{\perp} \to 0$ for val_p.

Proof. — Note that such a series converges for w_2 . The map $R_n^{\perp} : K_{\infty} \to K_n^{\perp}$ sends $p^w M \subset K_{\infty}$ to $p^{w+n} \mathcal{O}_{K_n}^{\perp}$. It is uniformly continuous for the w_2 -adic topology, so that it extends to a continuous map $R_n^{\perp} : \widehat{K}_{\infty}^2 \to K_n^{\perp}$.

Let $x \in \widehat{K}_{\infty}^2$ be the w_2 -adic limit of $\{x_k\}_{k \ge 1}$ with $x_k \in K_{\infty}$. For a given k, the sequence $\{p^{-n}R_n^{\perp}(x_k)\}_{n\ge 0} \in \prod_{n\ge 0} K_n^{\perp}$ has finite support. As $k \to +\infty$, these sequences converge uniformly in $\prod_{n\ge 0} K_n^{\perp}$ to $\{p^{-n}R_n^{\perp}(x)\}_{n\ge 0}$, so that $p^{-n}R_n^{\perp}(x) \to 0$ as $n \to +\infty$. Hence $\sum_{n\ge 0} R_n^{\perp}(x)$ converges for w_2 . Since $x_k = \sum_{n\ge 0} R_n^{\perp}(x_k)$ for all k, we have $x = \sum_{n\ge 0} R_n^{\perp}(x)$. Finally, if $x = \sum_{n\ge 0} x_n^{\perp}$ with $x_n^{\perp} \in K_n^{\perp}$ and $p^{-n}x_n^{\perp} \to 0$ for val_p, then $x_n^{\perp} = R_n^{\perp}(x)$ which proves unicity.

Corollary 4.4. — The map $\theta : \widehat{K}^2_{\infty} \to \widehat{K}_{\infty}$ is injective.

Proof. — If $x_n^{\perp} \in K_n^{\perp}$ and $x_n^{\perp} \to 0$ and $\sum_{n \ge 0} x_n^{\perp} = 0$ in \widehat{K}_{∞} , then $x_n^{\perp} = 0$ for all n. \Box

Corollary 4.5. — The ring R is the set of $y \in \widehat{K}_{\infty}$ that can be written as $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$.

Proposition 4.6. — The ring R is a field, and $R = \{x \in \widehat{K}_{\infty} \text{ such that } g(x) - x = o(c(g)) \text{ as } g \to 1 \text{ in } \Gamma\}.$

Proof. — The fact that R is a field results from the second statement, since g(1/x)-1/x = (x - g(x))/(xg(x)). Take $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$. If $m \ge 1$, then for all $k \ge 0$, we have $y_n \in p^{m+n}\mathcal{O}_{K_n}$. We can write $y = x_k + \sum_{n \ge k} p^n y_n$ and then $(g-1)(y) \in p^{k+m}\mathcal{O}_{K_\infty}$ if $g \in \operatorname{Gal}(K_\infty/K_k)$. This proves one implication.

Conversely, take $x \in \widehat{K}_{\infty}$ such that g(x) - x = o(c(g)). Write $x = \sum_{k \ge 0} x_k$ with $x_0 = R_0(x) \in K_0$ and $x_k = R_k^{\perp}(x) \in K_k^{\perp}$ for all $k \ge 1$. For $n \ge 0$, let g_n denote a topological generator of $\operatorname{Gal}(K_{\infty}/K_n)$. Take $m \ge 0$, and $n \gg 0$ such that we have

 $\operatorname{val}_{p}((g_{n}-1)(x)) \ge m+n$. We have $(1-g_{n})(x) = \sum_{k \ge n+1} (1-g_{n})x_{k}$, so that by lemma 2.6 and prop 2.4:

$$\operatorname{val}_p(x_{n+1}) \ge \operatorname{val}_p((1-g_n)(x_{n+1})) - c_3$$
$$\ge \operatorname{val}_p((1-g_n)(x)) - c_2 - c_3$$
$$\ge n + m - c_2 - c_3.$$

This implies the result.

Remark 4.7. — Prop 4.6 says that R is the set of vectors of \widehat{K}_{∞} that are C^1 with zero derivative (flat to order 1) for the action of Γ .

Theorem A follows from coro 4.4 since $\theta : \mathbf{B}_2(\widehat{K}_{\infty}) \to \widehat{K}_{\infty}$ is not injective. Finally, coro 4.4, coro 4.5, and prop 4.6 imply theorem C.

References

- [CG96] J. COATES & R. GREENBERG "Kummer theory for abelian varieties over local fields", Invent. Math. 124 (1996), no. 1-3, p. 129–174.
- [Col12] P. COLMEZ "Une construction de B⁺_{dR}", Rend. Semin. Mat. Univ. Padova 128 (2012), p. 109–130 (2013).
- [Fon94] J.-M. FONTAINE "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Fon82] _____, "Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux", *Invent. Math.* 65 (1981/82), no. 3, p. 379–409.
- [Fou05] L. FOURQUAUX "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", Ph.D. Thesis, Université Paris 6, 2005.
- [IZ99] A. IOVITA & A. ZAHARESCU "Galois theory of B_{dR}^+ ", Compositio Math. 117 (1999), no. 1, p. 1–31.
- [Pon20] G. PONSINET "Universal norms and the Fargues-Fontaine curve", preprint, 2020.
- [Sch12] P. SCHOLZE "Perfectoid spaces", Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245–313.
- [Tat67] J. T. TATE "p-divisible groups", in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

October 31, 2023

LAURENT BERGER, UMPA de l'ENS de Lyon, UMR 5669 du CNRS

E-mail : laurent.berger@ens-lyon.fr • *Url* : perso.ens-lyon.fr/laurent.berger/