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Abstract. — Let K be a p-adic field, and let K∞/K be a Galois extension that is almost
totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove
that K∞ is not dense in (B+

dR/ Fil2 B+
dR)Gal(K/K∞). Moreover, the restriction of θ to the

closure of K∞ is injective, and the image of the closure via θ is the set of vectors of the
p-adic completion of K∞ that are C1 with zero derivative for the action of Gal(K∞/K).
The main ingredient for proving these results is the construction of an explicit lattice of
OK∞ that is commensurable with Od=0

K∞
, where d : OK∞ → ΩOK∞ /OK

is the canonical
differential.
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Introduction

Let K be a p-adic field, namely a finite extension of W (k)[1/p] where k is a perfect
field of characteristic p. Let C be the p-adic completion of an algebraic closure K of K.
Let K∞/K be a Galois extension that is almost totally ramified, and whose Galois group
is a p-adic Lie group of dimension 1. Let K̂∞ denote the p-adic completion of K∞, let
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BdR(K̂∞) = BdR(C)Gal(K/K∞) be Fontaine’s field of periods attached to K∞/K, and for
n ⩾ 1, let Bn(K̂∞) = B+

dR(K̂∞)/ Filn B+
dR(K̂∞).

This note is motivated by Ponsinet’s paper [Pon20], in which he relates the study
of universal norms for the extension K∞/K to the question of whether K∞ is dense in
Bn(K̂∞) for n ⩾ 1. The density result holds for n = 1 since CGal(K/K∞) = K̂∞ by the
Ax-Sen-Tate theorem.

Our main result is the following.

Theorem A. — The field K∞ is not dense in B2(K̂∞).

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), B2(C) =
B+

dR(C)/ Fil2 B+
dR(C) is the completion of K for a topology defined using the Kähler

differentials ΩO
K

/OK
. Some partial results towards theorem A have been proved by Iovita-

Zaharescu in [IZ99], by studying these Kähler differentials. Let ΩOK∞ /OK
be the Kähler

differentials of OK∞/OK and let d : OK∞ → ΩOK∞ /OK
be the differential. Our main

technical result is the construction of a lattice of OK∞ that is commensurable with Od=0
K∞ .

Since the inertia subgroup of Gal(K∞/K) is a p-adic Lie group of dimension 1, there exists
a finite subextension K0/K of K∞ such that K∞/K0 is a totally ramified Zp-extension.
Let Kn be the n-th layer of this Zp-extension.

Theorem B. — The lattices ∑
n⩾0 pnOKn and Od=0

K∞ are commensurable.

In order to prove this, we use Tate’s results on ramification in Zp-extensions. As
a corollary of theorem B, we can say more about the completion of K∞ in B2(K̂∞).
The field K̂∞ is a Banach representation of the p-adic Lie group Gal(K∞/K). Let c :
Gal(K∞/K0) → Zp be an isomorphism of p-adic Lie groups. If x ∈ K̂∞, we say that x is
C1 with zero derivative for the action of Gal(K∞/K) if g(x) − x = o(c(g)) as c(g) → 0.

Let θ : B2(C) → C be the usual map from p-adic Hodge theory.

Theorem C. — The completion of K∞ in B2(K̂∞) is isomorphic via θ to the set of
vectors of K̂∞ that are C1 with zero derivative for the action of Gal(K∞/K).

This is a field, and it is also the set of y ∈ K̂∞ that can be written as y = ∑
n⩾0 pnyn

with yn ∈ Kn and yn → 0.

We also prove that d(OK∞) contains no nontrivial p-divisible element (coro 3.5), and
that d : OK∞ → ΩOK∞ /OK

is not surjective (coro 3.6). These two statements are equiv-
alent to theorem A by the results of [IZ99]; using our computations, we give a short
independent proof.
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1. Kähler differentials

Let K be a p-adic field. If L/K is a finite extension, let dL/K ⊂ OL denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/K be an algebraic extension.

1. If L/K is a finite extension, then ΩOL/OK
= OL/dL/K as OL-modules.

2. If M/L/K are finite extensions, then the map ΩOL/OK
→ ΩOM /OK

is injective.
3. If L/K is an algebraic extension, and ω1, ω2 ∈ ΩOL/OK

, then there exists x ∈ OL

such that ω2 = xω1 if and only if Ann(ω1) ⊂ Ann(ω2).

Proof. — See for instance §2 of [Fon82].

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set
{valp(dF/K)}F is unbounded, as F runs through the set of finite extensions of K contained
in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if L̂ is a
perfectoid field. An extension K∞/K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then ΩOL/OK
= L/OL as OL-modules.

Proposition 1.3. — If L/K is deeply ramified, then d : OL → ΩOL/OK
is surjective if

and only if d(OL) is p-divisible.

Proof. — Since L/K is deeply ramified, ΩOL/OK
is isomorphic to L/OL by coro 1.2. The

claim now follows from the fact that a nonzero OL-submodule of L/OL is equal to L/OL

if and only if it is p-divisible.

Proposition 1.4. — Let L/K be a deeply ramified extension, and let K ′ ⊂ L be a finite
extension of K.

1. d : OL → ΩOL/OK
is surjective if and only if d′ : OL → ΩOL/OK′ is surjective.

2. Od=0
L and Od′=0

L are commensurable.

Proof. — We have an exact sequence of OL-modules, compatible with d and d′

OL ⊗ ΩOK′ /OK

f−→ ΩOL/OK

g−→ ΩOL/OK′ → 0.

Let us prove (1). If d : OL → ΩOL/OK
is surjective, then clearly d′ : OL → ΩOL/OK′ is

surjective. Conversely, there exists r ⩾ 0 such that pr · ΩOK′ /OK
= {0}. If ω ∈ ΩOL/OK

,
write it as ω = prωr. By hypothesis, there exists αr ∈ OL such that ωr = d′αr in
ΩOL/OK′ . Hence pr(ωr − dαr) = 0 in ΩOL/OK

so that ω = d(prαr). We now prove (2).
The exact sequence above implies that Od=0

L ⊂ Od′=0
L . Conversely, if x ∈ Od′=0

L , then
dx ∈ ker g = im f , so that pr · dx = 0. Hence pr · Od′=0

L ⊂ Od=0
L .
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Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subexten-
sion K ′ of K. In particular, we can assume that K∞/K is a totally ramified Zp-extension.

2. Ramification in Zp-extensions

Let K∞/K be a totally ramified Zp-extension. We recall some of the results of §3.1
of [Tat67] concerning the ramification of K∞/K and the action of Gal(K∞/K) on K∞.
Let Kn denote the n-th layer of K∞/K, so that [Kn : K] = pn.

Proposition 2.1. — There are constants a, b such that for all n ⩾ 0, we have
|valp(dKn/K) − n − b| ⩽ p−na.

Proof. — See §3.1 of [Tat67].

The notation ∑
n⩾0 pnOKn denotes the set of elements of K∞ that are finite sums of

elements of pnOKn .

Corollary 2.2. — There exists n0 ⩾ 0 such that ∑
n⩾0 pn+n0OKn ⊂ Od=0

K∞ .

Proposition 2.3. — There exists c(K∞/K) > 0 such that for all n, k ⩾ 0 and x ∈
OKn+k

, we have valp(NKn+k/Kn(x)/x[Kn+k:Kn] − 1) ⩾ c(K∞/K).

Proof. — The result follows from the fact (see 1.2.2 of [Win83]) that the extension
K∞/K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

If n ⩾ 0 and x ∈ K∞, then Rn(x) = p−k · TrKn+k/Kn(x) is independent of k ≫ 0 such
that x ∈ Kn+k, and is the normalized trace of x.

Proposition 2.4. — There exists c2 ∈ Z⩾0 such that valp(Rn(x)) ⩾ valp(x) − c2 for all
n ⩾ 0 and x ∈ K∞.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172).

In particular, Rn(OK∞) ⊂ p−c2OKn for all n ⩾ 0. Let K⊥
0 = K0 and for n ⩾ 1, let

K⊥
n be the kernel of Rn−1 : Kn → Kn−1, let R⊥

n = Rn − Rn−1, and R⊥
0 = R0. Note that

K⊥
n = im(R⊥

n : K∞ → Kn). If x ∈ K∞ and i ⩾ 0, then R⊥
n (x) = 0 for n ≫ 0, and

x = (∑
n⩾i+1 R⊥

n (x)) + Ri(x). Prop 2.4 implies that R⊥
n (OK∞) ⊂ p−c2OKn for all n ⩾ 0.

Let O⊥
Kn

= OKn ∩ K⊥
n .

Corollary 2.5. — If i ⩾ 0, we have OK∞ ⊂ (⊕m⩾i+1p
−c2O⊥

Km
) ⊕ p−c2OKi

.

Proof. — If x ∈ OK∞ , write x = ∑
m⩾i+1 R⊥

m(x) + Ri(x).

For n ⩾ 0, let gn denote a topological generator of Gal(K∞/Kn).
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Lemma 2.6. — There exists a constant c3 such that for all n ⩾ 1 and all x ∈ K⊥
n+1, we

have valp(x) ⩾ valp((1 − gn)(x)) − c3.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172).

3. The lattice Od=0
K∞

We now prove theorem B. Thanks to coro 1.5, we assume that K∞/K is a totally
ramified Zp-extension. Let {ρn}n⩾0 be a norm compatible sequence of uniformizers of the
Kn. Let mc ⩾ 0 be the smallest integer such that pmc · c(K∞/K) ⩾ 1/(p − 1) (where
c(K∞/K) was defined in prop 2.3).

Proposition 3.1. — We have valp(ρpk
n+1 − ρk

n) ⩾ valp(k) − mc.

Proof. — Note that if x, y ∈ C with valp(x − y) ⩾ v, then valp(xp − yp) ⩾ min(v + 1, pv).
Let c = c(K∞/K) and m = mc. We have valp(ρp

n+1 − ρn) ⩾ c by prop 2.3, so that
valp(ρpj+1

n+1 − ρpj

n ) ⩾ pjc if pj−1c ⩽ 1/(p − 1).
In particular, valp(ρpm+1

n+1 − ρpm

n ) ⩾ pmc ⩾ 1/(p − 1), so that we have valp(ρpm+j+1

n+1 −
ρpm+j

n ) ⩾ j + 1/(p − 1) if j ⩾ 0. This implies the result.

Theorem 3.2. — There exists n1 ⩾ 0 such that Od=0
K∞ ⊂ ∑

m⩾n1 pm−n1OKm.

Proof. — We prove the result with n1 = ⌈a − b + mc + 2⌉. Take x ∈ Od=0
Kn

and write
x = ∑pn−1

i=0 xiρ
i
n with xi ∈ OK , so that dx = ∑pn−1

i=0 ixiρ
i−1
n · dρn. Since ρn is a uniformizer

of OKn , the OKn-module ΩOKn /OK
= OKn/dKn/K (see prop 1.1) is generated by dρn. If

dx = 0, then ∑pn−1
i=0 ixiρ

i−1
n belongs to dKn/K so that by prop 2.1 (and since valp(ρpn

n ) ⩽ 1),
for all i we have

valp(xi) ⩾ n − a + b − valp(i) − 1.

For k ⩾ 1, let
yk =

∑
p∤j

xpk−1jρ
j
n−(k−1) +

∑
ℓ

xpkℓ(ρpℓ
n−(k−1) − ρℓ

n−k).

Note that yk ∈ OKn−k+1 . Let us bound valp(yk). We have

valp(xpk−1jρ
j
n−(k−1)) ⩾ n − a + b − k.

We also have valp(xpkℓ) ⩾ n − a + b − k − valp(ℓ) − 1, and by prop 3.1

valp(ρpℓ
n−(k−1) − ρℓ

n−k) ⩾ valp(ℓ) − mc.

Hence valp(yk) ⩾ n − a + b − k − 1 − mc and therefore yk ∈ pn−k+1−n1OKn−k+1 . Finally,
we have x = y1 + · · · + yn−n1 + ∑

ℓ xpn−n1 ℓρ
ℓ
n1 , and ∑

ℓ xpn−n1 ℓρ
ℓ
n1 belongs to OKn1

, which
implies the result.
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Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].

Corollary 3.4. — We have Od=0
K∞ ⊂ (⊕m⩾n1+1p

m−n1−c2O⊥
Km

) ⊕ p−c2OKn1
.

Proof. — By theorem 3.2, it is enough to prove that

pnOKn ⊂ (⊕m⩾n1+1p
m−c2O⊥

Km
) ⊕ pn1−c2OKn1

for all n ⩾ n1. If x ∈ pnOKn , write x = R⊥
n (x) + R⊥

n−1(x) + · · · + R⊥
n1+1(x) + Rn1(x).

We have R⊥
n−k(x) ∈ pn−c2O⊥

Kn−k
⊂ p(n−k)−c2O⊥

Kn−k
and likewise Rn1(x) ∈ pn−c2OKn1

⊂
pn1−c2OKn1

.

Corollary 3.5. — There are no nontrivial p-divisible elements in d(OK∞).

Proof. — By props 1.3 and 1.4, we can assume that K∞/K is a totally ramified Zp-
extension. Let {αi}i⩾1 be a sequence of OK∞ such that dαi = p · dαi+1 for all i ⩾ 1.

Using coro 2.5, write αi = ∑
αi,m with αi,m = R⊥

m(αi) ∈ p−c2O⊥
Km

for m ⩾ n1 + 1
and αi,n1 = Rn1(αi) ∈ p−c2OKn1

. Since pkαk+i − αi ∈ Od=0
K∞ , coro 3.4 implies that

pkαk+i,m − αi,m ∈ pm−n1−c2OKm for all m ⩾ n1. Taking k ≫ 0 now implies that αi,m ∈
pm−n1−c2OKm for all m ⩾ n1. Coro 2.2 gives pn0+n1+c2αi ∈ Od=0

K∞ . Taking i = n0+n1+c2+1
gives dα1 = 0.

Corollary 3.6. — The differential d : OK∞ → ΩOK∞ /OK
is not surjective.

Proof. — This follows from coro 3.5 and prop 1.3.

4. The completion of K∞ in B2(C)

We now prove theorems A and C. Since we are concerned with the completion of K∞,
we can once again replace K with a finite subextension of K∞ and assume that K∞/K

is a totally ramified Zp-extension. Let K̂2
∞ denote the completion of K∞ in B2(C) =

B+
dR(C)/ Fil2 B+

dR(C), so that R = θ(K̂2
∞) is a subring of K̂∞. Let Γ = Gal(K∞/K),

and let c : Γ → Zp be an isomorphism of p-adic Lie groups. Let w2 be the valuation
on K∞ defined by w2(x) = min{n ∈ Z such that pnx ∈ Od=0

K∞ }. The restriction of the
natural valuation of B2(C) to K∞ is w2 (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of
[Col12]; the natural valuation on B2(C) comes from its definition as the quotient of a
certain Banach space, see ibid.).

The map θ : B2(C) → C has the following property (see §1.4 of [Fon94]).

Lemma 4.1. — If {xk}k⩾1 is a sequence of K∞ that converges to x ∈ B2(C) for w2,
then {xk}k⩾1 is Cauchy for valp, and θ(x) = limk→+∞ xk for the p-adic topology.
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Let M = ⊕n⩾0p
nO⊥

Kn
. Coro 2.2 and theo 3.2 imply that M and Od=0

K∞ are commensu-
rable. Hence K̂2

∞ is the M -adic completion of K∞. Let w′
2 be the M -adic valuation on

K∞, so that w′
2 and w2 are equivalent.

Lemma 4.2. — If x ∈ K∞, then valp(R⊥
n (x)) ⩾ w′

2(x) + n.

Proof. — Write x = ∑
n⩾0 R⊥

n (x). If x ∈ pwM , then R⊥
n (x) ∈ pn+wOKn .

Proposition 4.3. — Every element x ∈ K̂2
∞ can be written in one and only one way as∑

n⩾0 x⊥
n where x⊥

n ∈ K⊥
n and p−nx⊥

n → 0 for valp.

Proof. — Note that such a series converges for w2. The map R⊥
n : K∞ → K⊥

n sends
pwM ⊂ K∞ to pw+nO⊥

Kn
. It is uniformly continuous for the w2-adic topology, so that it

extends to a continuous map R⊥
n : K̂2

∞ → K⊥
n .

Let x ∈ K̂2
∞ be the w2-adic limit of {xk}k⩾1 with xk ∈ K∞. For a given k, the sequence

{p−nR⊥
n (xk)}n⩾0 ∈ ∏

n⩾0 K⊥
n has finite support. As k → +∞, these sequences converge

uniformly in ∏
n⩾0 K⊥

n to {p−nR⊥
n (x)}n⩾0, so that p−nR⊥

n (x) → 0 as n → +∞. Hence∑
n⩾0 R⊥

n (x) converges for w2. Since xk = ∑
n⩾0 R⊥

n (xk) for all k, we have x = ∑
n⩾0 R⊥

n (x).
Finally, if x = ∑

n⩾0 x⊥
n with x⊥

n ∈ K⊥
n and p−nx⊥

n → 0 for valp, then x⊥
n = R⊥

n (x) which
proves unicity.

Corollary 4.4. — The map θ : K̂2
∞ → K̂∞ is injective.

Proof. — If x⊥
n ∈ K⊥

n and x⊥
n → 0 and ∑

n⩾0 x⊥
n = 0 in K̂∞, then x⊥

n = 0 for all n.

Corollary 4.5. — The ring R is the set of y ∈ K̂∞ that can be written as y = ∑
n⩾0 pnyn

with yn ∈ Kn and yn → 0.

Proposition 4.6. — The ring R is a field, and R = {x ∈ K̂∞ such that g(x) − x =
o(c(g)) as g → 1 in Γ}.

Proof. — The fact that R is a field results from the second statement, since g(1/x)−1/x =
(x − g(x))/(xg(x)). Take y = ∑

n⩾0 pnyn with yn ∈ Kn and yn → 0. If m ⩾ 1, then
for all k ≫ 0, we have yn ∈ pm+nOKn . We can write y = xk + ∑

n⩾k pnyn and then
(g − 1)(y) ∈ pk+mOK∞ if g ∈ Gal(K∞/Kk). This proves one implication.

Conversely, take x ∈ K̂∞ such that g(x) − x = o(c(g)). Write x = ∑
k⩾0 xk with

x0 = R0(x) ∈ K0 and xk = R⊥
k (x) ∈ K⊥

k for all k ⩾ 1. For n ⩾ 0, let gn denote
a topological generator of Gal(K∞/Kn). Take m ⩾ 0, and n ≫ 0 such that we have
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valp((gn − 1)(x)) ⩾ m + n. We have (1 − gn)(x) = ∑
k⩾n+1(1 − gn)xk, so that by lemma

2.6 and prop 2.4:

valp(xn+1) ⩾ valp((1 − gn)(xn+1)) − c3

⩾ valp((1 − gn)(x)) − c2 − c3

⩾ n + m − c2 − c3.

This implies the result.

Remark 4.7. — Prop 4.6 says that R is the set of vectors of K̂∞ that are C1 with zero
derivative (flat to order 1) for the action of Γ.

Theorem A follows from coro 4.4 since θ : B2(K̂∞) → K̂∞ is not injective. Finally,
coro 4.4, coro 4.5, and prop 4.6 imply theorem C.
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