KÄHLER DIFFERENTIALS AND Z_{p}-EXTENSIONS

by

Laurent Berger

Abstract

Let K be a p-adic field, and let K_{∞} / K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1 . We prove that K_{∞} is not dense in $\left(\mathbf{B}_{\mathrm{dR}}^{+} / \mathrm{Fil}^{2} \mathbf{B}_{\mathrm{dR}}^{+}\right)^{\mathrm{Gal}\left(\bar{K} / K_{\infty}\right)}$. Moreover, the restriction of θ to the closure of K_{∞} is injective, and the image of the closure via θ is the set of vectors of the p-adic completion of K_{∞} that are C^{1} with zero derivative for the action of $\operatorname{Gal}\left(K_{\infty} / K\right)$. The main ingredient for proving these results is the construction of an explicit lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$, where $d: \mathcal{O}_{K_{\infty}} \rightarrow \Omega_{\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}}$ is the canonical differential.

\section*{Contents} Introduction 1 1. Kähler differentials 3 2. Ramification in \mathbf{Z}_{p}-extensions 4 3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$ 5 4. The completion of K_{∞} in $\mathbf{B}_{2}(\mathbf{C})$ 6 References. 8

Introduction

Let K be a p-adic field, namely a finite extension of $W(k)[1 / p]$ where k is a perfect field of characteristic p. Let \mathbf{C} be the p-adic completion of an algebraic closure \bar{K} of K. Let K_{∞} / K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1 . Let \widehat{K}_{∞} denote the p-adic completion of K_{∞}, let periods.

I thank Léo Poyeton and the referee for their remarks.
$\mathbf{B}_{\mathrm{dR}}\left(\widehat{K}_{\infty}\right)=\mathbf{B}_{\mathrm{dR}}(\mathbf{C})^{\operatorname{Gal}\left(\bar{K} / K_{\infty}\right)}$ be Fontaine's field of periods attached to K_{∞} / K, and for $n \geqslant 1$, let $\mathbf{B}_{n}\left(\widehat{K}_{\infty}\right)=\mathbf{B}_{\mathrm{dR}}^{+}\left(\widehat{K}_{\infty}\right) / \mathrm{Fil}^{n} \mathbf{B}_{\mathrm{dR}}^{+}\left(\widehat{K}_{\infty}\right)$.

This note is motivated by Ponsinet's paper [Pon20], in which he relates the study of universal norms for the extension K_{∞} / K to the question of whether K_{∞} is dense in $\mathbf{B}_{n}\left(\widehat{K}_{\infty}\right)$ for $n \geqslant 1$. The density result holds for $n=1$ since $\mathbf{C}^{\mathrm{Gal}\left(\bar{K} / K_{\infty}\right)}=\widehat{K}_{\infty}$ by the Ax-Sen-Tate theorem.

Our main result is the following.
Theorem A. - The field K_{∞} is not dense in $\mathbf{B}_{2}\left(\widehat{K}_{\infty}\right)$.
By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), $\mathbf{B}_{2}(\mathbf{C})=$ $\mathbf{B}_{\mathrm{dR}}^{+}(\mathbf{C}) / \mathrm{Fil}^{2} \mathbf{B}_{\mathrm{dR}}^{+}(\mathbf{C})$ is the completion of \bar{K} for a topology defined using the Kähler differentials $\Omega_{\mathcal{O}_{\bar{K}} / \mathcal{O}_{K}}$. Some partial results towards theorem A have been proved by IovitaZaharescu in [IZ99], by studying these Kähler differentials. Let $\Omega_{\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}}$ be the Kähler differentials of $\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}$ and let $d: \mathcal{O}_{K_{\infty}} \rightarrow \Omega_{\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}}$ be the differential. Our main technical result is the construction of a lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$. Since the inertia subgroup of $\operatorname{Gal}\left(K_{\infty} / K\right)$ is a p-adic Lie group of dimension 1, there exists a finite subextension K_{0} / K of K_{∞} such that K_{∞} / K_{0} is a totally ramified \mathbf{Z}_{p}-extension. Let K_{n} be the n-th layer of this \mathbf{Z}_{p}-extension.

Theorem B. - The lattices $\sum_{n \geqslant 0} p^{n} \mathcal{O}_{K_{n}}$ and $\mathcal{O}_{K_{\infty}}^{d=0}$ are commensurable.
In order to prove this, we use Tate's results on ramification in \mathbf{Z}_{p}-extensions. As a corollary of theorem B , we can say more about the completion of K_{∞} in $\mathbf{B}_{2}\left(\widehat{K}_{\infty}\right)$. The field \widehat{K}_{∞} is a Banach representation of the p-adic Lie group $\operatorname{Gal}\left(K_{\infty} / K\right)$. Let c : $\operatorname{Gal}\left(K_{\infty} / K_{0}\right) \rightarrow \mathbf{Z}_{p}$ be an isomorphism of p-adic Lie groups. If $x \in \widehat{K}_{\infty}$, we say that x is C^{1} with zero derivative for the action of $\operatorname{Gal}\left(K_{\infty} / K\right)$ if $g(x)-x=\mathrm{o}(c(g))$ as $c(g) \rightarrow 0$.

Let $\theta: \mathbf{B}_{2}(\mathbf{C}) \rightarrow \mathbf{C}$ be the usual map from p-adic Hodge theory.
Theorem C. - The completion of K_{∞} in $\mathbf{B}_{2}\left(\widehat{K}_{\infty}\right)$ is isomorphic via θ to the set of vectors of \widehat{K}_{∞} that are C^{1} with zero derivative for the action of $\operatorname{Gal}\left(K_{\infty} / K\right)$.

This is a field, and it is also the set of $y \in \widehat{K}_{\infty}$ that can be written as $y=\sum_{n \geqslant 0} p^{n} y_{n}$ with $y_{n} \in K_{n}$ and $y_{n} \rightarrow 0$.

We also prove that $d\left(\mathcal{O}_{K_{\infty}}\right)$ contains no nontrivial p-divisible element (coro 3.5), and that $d: \mathcal{O}_{K_{\infty}} \rightarrow \Omega_{\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}}$ is not surjective (coro 3.6). These two statements are equivalent to theorem A by the results of [IZ99]; using our computations, we give a short independent proof.

1. Kähler differentials

Let K be a p-adic field. If L / K is a finite extension, let $\mathfrak{d}_{L / K} \subset \mathcal{O}_{L}$ denote its different.
Proposition 1.1. - Let K be a p-adic field, and let L / K be an algebraic extension.

1. If L / K is a finite extension, then $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}=\mathcal{O}_{L} / \mathfrak{d}_{L / K}$ as \mathcal{O}_{L}-modules.
2. If $M / L / K$ are finite extensions, then the map $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}} \rightarrow \Omega_{\mathcal{O}_{M} / \mathcal{O}_{K}}$ is injective.
3. If L / K is an algebraic extension, and $\omega_{1}, \omega_{2} \in \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$, then there exists $x \in \mathcal{O}_{L}$ such that $\omega_{2}=x \omega_{1}$ if and only if $\operatorname{Ann}\left(\omega_{1}\right) \subset \operatorname{Ann}\left(\omega_{2}\right)$.

Proof. - See for instance $\S 2$ of [Fon82].
Recall (see $\S 2$ of [CG96]) that an algebraic extension L / K is deeply ramified if the set $\left\{\operatorname{val}_{p}\left(\mathfrak{d}_{F / K}\right)\right\}_{F}$ is unbounded, as F runs through the set of finite extensions of K contained in L. Alternatively (remark 3.3 of [Sch12]), L / K is deeply ramified if and only if \widehat{L} is a perfectoid field. An extension K_{∞} / K as in the introduction is deeply ramified.

Corollary 1.2. - If L / K is deeply ramified, then $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}=L / \mathcal{O}_{L}$ as \mathcal{O}_{L}-modules.
Proposition 1.3. - If L / K is deeply ramified, then $d: \mathcal{O}_{L} \rightarrow \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$ is surjective if and only if $d\left(\mathcal{O}_{L}\right)$ is p-divisible.

Proof. - Since L / K is deeply ramified, $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$ is isomorphic to L / \mathcal{O}_{L} by coro 1.2. The claim now follows from the fact that a nonzero \mathcal{O}_{L}-submodule of L / \mathcal{O}_{L} is equal to L / \mathcal{O}_{L} if and only if it is p-divisible.

Proposition 1.4. - Let L / K be a deeply ramified extension, and let $K^{\prime} \subset L$ be a finite extension of K.

1. $d: \mathcal{O}_{L} \rightarrow \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$ is surjective if and only if $d^{\prime}: \mathcal{O}_{L} \rightarrow \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K^{\prime}}}$ is surjective.
2. $\mathcal{O}_{L}^{d=0}$ and $\mathcal{O}_{L}^{d^{\prime}=0}$ are commensurable.

Proof. - We have an exact sequence of \mathcal{O}_{L}-modules, compatible with d and d^{\prime}

$$
\mathcal{O}_{L} \otimes \Omega_{\mathcal{O}_{K^{\prime}} / \mathcal{O}_{K}} \xrightarrow{f} \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}} \xrightarrow{g} \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K^{\prime}}} \rightarrow 0 .
$$

Let us prove (1). If $d: \mathcal{O}_{L} \rightarrow \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$ is surjective, then clearly $d^{\prime}: \mathcal{O}_{L} \rightarrow \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K^{\prime}}}$ is surjective. Conversely, there exists $r \geqslant 0$ such that $p^{r} \cdot \Omega_{\mathcal{O}_{K^{\prime}} / \mathcal{O}_{K}}=\{0\}$. If $\omega \in \Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$, write it as $\omega=p^{r} \omega_{r}$. By hypothesis, there exists $\alpha_{r} \in \mathcal{O}_{L}$ such that $\omega_{r}=d^{\prime} \alpha_{r}$ in $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K^{\prime}}}$. Hence $p^{r}\left(\omega_{r}-d \alpha_{r}\right)=0$ in $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}$ so that $\omega=d\left(p^{r} \alpha_{r}\right)$. We now prove (2). The exact sequence above implies that $\mathcal{O}_{L}^{d=0} \subset \mathcal{O}_{L}^{d^{\prime}=0}$. Conversely, if $x \in \mathcal{O}_{L}^{d^{\prime}=0}$, then $d x \in \operatorname{ker} g=\operatorname{im} f$, so that $p^{r} \cdot d x=0$. Hence $p^{r} \cdot \mathcal{O}_{L}^{d^{\prime}=0} \subset \mathcal{O}_{L}^{d=0}$.

Corollary 1.5. - In order to prove theorem B, we can replace K by any finite subextension K^{\prime} of K. In particular, we can assume that K_{∞} / K is a totally ramified \mathbf{Z}_{p}-extension.

2. Ramification in Z_{p}-extensions

Let K_{∞} / K be a totally ramified \mathbf{Z}_{p}-extension. We recall some of the results of $\S 3.1$ of [Tat67] concerning the ramification of K_{∞} / K and the action of $\operatorname{Gal}\left(K_{\infty} / K\right)$ on K_{∞}. Let K_{n} denote the n-th layer of K_{∞} / K, so that $\left[K_{n}: K\right]=p^{n}$.

Proposition 2.1. - There are constants a, b such that for all $n \geqslant 0$, we have $\left|\operatorname{val}_{p}\left(\mathfrak{d}_{K_{n} / K}\right)-n-b\right| \leqslant p^{-n} a$.

Proof. - See $\S 3.1$ of [Tat67].
The notation $\sum_{n \geqslant 0} p^{n} \mathcal{O}_{K_{n}}$ denotes the set of elements of K_{∞} that are finite sums of elements of $p^{n} \mathcal{O}_{K_{n}}$.

Corollary 2.2. - There exists $n_{0} \geqslant 0$ such that $\sum_{n \geqslant 0} p^{n+n_{0}} \mathcal{O}_{K_{n}} \subset \mathcal{O}_{K_{\infty}}^{d=0}$.
Proposition 2.3. - There exists $c\left(K_{\infty} / K\right)>0$ such that for all $n, k \geqslant 0$ and $x \in$ $\mathcal{O}_{K_{n+k}}$, we have $\operatorname{val}_{p}\left(\mathrm{~N}_{K_{n+k} / K_{n}}(x) / x^{\left[K_{n+k}: K_{n}\right]}-1\right) \geqslant c\left(K_{\infty} / K\right)$.

Proof. - The result follows from the fact (see 1.2.2 of [Win83]) that the extension K_{∞} / K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

If $n \geqslant 0$ and $x \in K_{\infty}$, then $R_{n}(x)=p^{-k} \cdot \operatorname{Tr}_{K_{n+k} / K_{n}}(x)$ is independent of $k \gg 0$ such that $x \in K_{n+k}$, and is the normalized trace of x.

Proposition 2.4. - There exists $c_{2} \in \mathbf{Z}_{\geqslant 0}$ such that $\operatorname{val}_{p}\left(R_{n}(x)\right) \geqslant \operatorname{val}_{p}(x)-c_{2}$ for all $n \geqslant 0$ and $x \in K_{\infty}$.

Proof. - See $\S 3.1$ of [Tat67] (including the remark at the bottom of page 172).
In particular, $R_{n}\left(\mathcal{O}_{K_{\infty}}\right) \subset p^{-c_{2}} \mathcal{O}_{K_{n}}$ for all $n \geqslant 0$. Let $K_{0}^{\perp}=K_{0}$ and for $n \geqslant 1$, let K_{n}^{\perp} be the kernel of $R_{n-1}: K_{n} \rightarrow K_{n-1}$, let $R_{n}^{\perp}=R_{n}-R_{n-1}$, and $R_{0}^{\perp}=R_{0}$. Note that $K_{n}^{\perp}=\operatorname{im}\left(R_{n}^{\perp}: K_{\infty} \rightarrow K_{n}\right)$. If $x \in K_{\infty}$ and $i \geqslant 0$, then $R_{n}^{\perp}(x)=0$ for $n \gg 0$, and $x=\left(\sum_{n \geqslant i+1} R_{n}^{\perp}(x)\right)+R_{i}(x)$. Prop 2.4 implies that $R_{n}^{\perp}\left(\mathcal{O}_{K_{\infty}}\right) \subset p^{-c_{2}} \mathcal{O}_{K_{n}}$ for all $n \geqslant 0$. Let $\mathcal{O}_{K_{n}}^{\perp}=\mathcal{O}_{K_{n}} \cap K_{n}^{\perp}$.

Corollary 2.5. - If $i \geqslant 0$, we have $\mathcal{O}_{K_{\infty}} \subset\left(\oplus_{m \geqslant i+1} p^{-c_{2}} \mathcal{O}_{K_{m}}^{\perp}\right) \oplus p^{-c_{2}} \mathcal{O}_{K_{i}}$.
Proof. - If $x \in \mathcal{O}_{K_{\infty}}$, write $x=\sum_{m \geqslant i+1} R_{m}^{\perp}(x)+R_{i}(x)$.
For $n \geqslant 0$, let g_{n} denote a topological generator of $\operatorname{Gal}\left(K_{\infty} / K_{n}\right)$.

Lemma 2.6. - There exists a constant c_{3} such that for all $n \geqslant 1$ and all $x \in K_{n+1}^{\perp}$, we have $\operatorname{val}_{p}(x) \geqslant \operatorname{val}_{p}\left(\left(1-g_{n}\right)(x)\right)-c_{3}$.

Proof. - See $\S 3.1$ of [Tat67] (including the remark at the bottom of page 172).

3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$

We now prove theorem B. Thanks to coro 1.5, we assume that K_{∞} / K is a totally ramified \mathbf{Z}_{p}-extension. Let $\left\{\rho_{n}\right\}_{n \geqslant 0}$ be a norm compatible sequence of uniformizers of the K_{n}. Let $m_{c} \geqslant 0$ be the smallest integer such that $p^{m_{c}} \cdot c\left(K_{\infty} / K\right) \geqslant 1 /(p-1)$ (where $c\left(K_{\infty} / K\right)$ was defined in prop 2.3).

Proposition 3.1. - We have $\operatorname{val}_{p}\left(\rho_{n+1}^{p k}-\rho_{n}^{k}\right) \geqslant \operatorname{val}_{p}(k)-m_{c}$.
Proof. - Note that if $x, y \in \mathbf{C}$ with $\operatorname{val}_{p}(x-y) \geqslant v$, then $\operatorname{val}_{p}\left(x^{p}-y^{p}\right) \geqslant \min (v+1, p v)$. Let $c=c\left(K_{\infty} / K\right)$ and $m=m_{c}$. We have $\operatorname{val}_{p}\left(\rho_{n+1}^{p}-\rho_{n}\right) \geqslant c$ by prop 2.3, so that $\operatorname{val}_{p}\left(\rho_{n+1}^{p^{j+1}}-\rho_{n}^{p^{j}}\right) \geqslant p^{j} c$ if $p^{j-1} c \leqslant 1 /(p-1)$.

In particular, $\operatorname{val}_{p}\left(\rho_{n+1}^{p^{m+1}}-\rho_{n}^{p^{m}}\right) \geqslant p^{m} c \geqslant 1 /(p-1)$, so that we have $\operatorname{val}_{p}\left(\rho_{n+1}^{p^{m+j+1}}-\right.$ $\left.\rho_{n}^{p^{m+j}}\right) \geqslant j+1 /(p-1)$ if $j \geqslant 0$. This implies the result.

Theorem 3.2. - There exists $n_{1} \geqslant 0$ such that $\mathcal{O}_{K_{\infty}}^{d=0} \subset \sum_{m \geqslant n_{1}} p^{m-n_{1}} \mathcal{O}_{K_{m}}$.
Proof. - We prove the result with $n_{1}=\left\lceil a-b+m_{c}+2\right\rceil$. Take $x \in \mathcal{O}_{K_{n}}^{d=0}$ and write $x=\sum_{i=0}^{p^{n}-1} x_{i} \rho_{n}^{i}$ with $x_{i} \in \mathcal{O}_{K}$, so that $d x=\sum_{i=0}^{p^{n}-1} i x_{i} \rho_{n}^{i-1} \cdot d \rho_{n}$. Since ρ_{n} is a uniformizer of $\mathcal{O}_{K_{n}}$, the $\mathcal{O}_{K_{n}}$-module $\Omega_{\mathcal{O}_{K_{n}} / \mathcal{O}_{K}}=\mathcal{O}_{K_{n}} / \mathfrak{d}_{K_{n} / K}$ (see prop 1.1) is generated by $d \rho_{n}$. If $d x=0$, then $\sum_{i=0}^{p^{n}-1} i x_{i} \rho_{n}^{i-1}$ belongs to $\mathfrak{d}_{K_{n} / K}$ so that by prop 2.1 (and since $\operatorname{val}_{p}\left(\rho_{n}^{p^{n}}\right) \leqslant 1$), for all i we have

$$
\operatorname{val}_{p}\left(x_{i}\right) \geqslant n-a+b-\operatorname{val}_{p}(i)-1
$$

For $k \geqslant 1$, let

$$
y_{k}=\sum_{p \nmid j} x_{p^{k-1} j} \rho_{n-(k-1)}^{j}+\sum_{\ell} x_{p^{k} \ell}\left(\rho_{n-(k-1)}^{p \ell}-\rho_{n-k}^{\ell}\right) .
$$

Note that $y_{k} \in \mathcal{O}_{K_{n-k+1}}$. Let us bound $\operatorname{val}_{p}\left(y_{k}\right)$. We have

$$
\operatorname{val}_{p}\left(x_{p^{k-1} j} \rho_{n-(k-1)}^{j}\right) \geqslant n-a+b-k
$$

We also have $\operatorname{val}_{p}\left(x_{p^{k} \ell}\right) \geqslant n-a+b-k-\operatorname{val}_{p}(\ell)-1$, and by prop 3.1

$$
\operatorname{val}_{p}\left(\rho_{n-(k-1)}^{p \ell}-\rho_{n-k}^{\ell}\right) \geqslant \operatorname{val}_{p}(\ell)-m_{c} .
$$

Hence $\operatorname{val}_{p}\left(y_{k}\right) \geqslant n-a+b-k-1-m_{c}$ and therefore $y_{k} \in p^{n-k+1-n_{1}} \mathcal{O}_{K_{n-k+1}}$. Finally, we have $x=y_{1}+\cdots+y_{n-n_{1}}+\sum_{\ell} x_{p^{n-n_{1}} \ell} \rho_{n_{1}}^{\ell}$, and $\sum_{\ell} x_{p^{n-n_{1}} \ell} \rho_{n_{1}}^{\ell}$ belongs to $\mathcal{O}_{K_{n_{1}}}$, which implies the result.

Remark 3.3. - Compare with lemma 4.3.2 of [Fou05].
Corollary 3.4. - We have $\mathcal{O}_{K_{\infty}}^{d=0} \subset\left(\oplus_{m \geqslant n_{1}+1} p^{m-n_{1}-c_{2}} \mathcal{O}_{K_{m}}^{\perp}\right) \oplus p^{-c_{2}} \mathcal{O}_{K_{n_{1}}}$.
Proof. - By theorem 3.2, it is enough to prove that

$$
p^{n} \mathcal{O}_{K_{n}} \subset\left(\oplus_{m \geqslant n_{1}+1} p^{m-c_{2}} \mathcal{O}_{K_{m}}^{\perp}\right) \oplus p^{n_{1}-c_{2}} \mathcal{O}_{K_{n_{1}}}
$$

for all $n \geqslant n_{1}$. If $x \in p^{n} \mathcal{O}_{K_{n}}$, write $x=R_{n}^{\perp}(x)+R_{n-1}^{\perp}(x)+\cdots+R_{n_{1}+1}^{\perp}(x)+R_{n_{1}}(x)$. We have $R_{n-k}^{\perp}(x) \in p^{n-c_{2}} \mathcal{O}_{K_{n-k}}^{\perp} \subset p^{(n-k)-c_{2}} \mathcal{O}_{K_{n-k}}^{\perp}$ and likewise $R_{n_{1}}(x) \in p^{n-c_{2}} \mathcal{O}_{K_{n_{1}}} \subset$ $p^{n_{1}-c_{2}} \mathcal{O}_{K_{n_{1}}}$.

Corollary 3.5. - There are no nontrivial p-divisible elements in $d\left(\mathcal{O}_{K_{\infty}}\right)$.
Proof. - By props 1.3 and 1.4, we can assume that K_{∞} / K is a totally ramified $\mathbf{Z}_{p^{-}}$ extension. Let $\left\{\alpha_{i}\right\}_{i \geqslant 1}$ be a sequence of $\mathcal{O}_{K_{\infty}}$ such that $d \alpha_{i}=p \cdot d \alpha_{i+1}$ for all $i \geqslant 1$.

Using coro 2.5, write $\alpha_{i}=\sum \alpha_{i, m}$ with $\alpha_{i, m}=R_{m}^{\perp}\left(\alpha_{i}\right) \in p^{-c_{2}} \mathcal{O}_{K_{m}}^{\perp}$ for $m \geqslant n_{1}+1$ and $\alpha_{i, n_{1}}=R_{n_{1}}\left(\alpha_{i}\right) \in p^{-c_{2}} \mathcal{O}_{K_{n_{1}}}$. Since $p^{k} \alpha_{k+i}-\alpha_{i} \in \mathcal{O}_{K_{\infty}}^{d=0}$, coro 3.4 implies that $p^{k} \alpha_{k+i, m}-\alpha_{i, m} \in p^{m-n_{1}-c_{2}} \mathcal{O}_{K_{m}}$ for all $m \geqslant n_{1}$. Taking $k \gg 0$ now implies that $\alpha_{i, m} \in$ $p^{m-n_{1}-c_{2}} \mathcal{O}_{K_{m}}$ for all $m \geqslant n_{1}$. Coro 2.2 gives $p^{n_{0}+n_{1}+c_{2}} \alpha_{i} \in \mathcal{O}_{K_{\infty}}^{d=0}$. Taking $i=n_{0}+n_{1}+c_{2}+1$ gives $d \alpha_{1}=0$.

Corollary 3.6. - The differential $d: \mathcal{O}_{K_{\infty}} \rightarrow \Omega_{\mathcal{O}_{K_{\infty}} / \mathcal{O}_{K}}$ is not surjective.
Proof. - This follows from coro 3.5 and prop 1.3.

4. The completion of K_{∞} in $\mathbf{B}_{2}(\mathbf{C})$

We now prove theorems A and C. Since we are concerned with the completion of K_{∞}, we can once again replace K with a finite subextension of K_{∞} and assume that K_{∞} / K is a totally ramified \mathbf{Z}_{p}-extension. Let \widehat{K}_{∞}^{2} denote the completion of K_{∞} in $\mathbf{B}_{2}(\mathbf{C})=$ $\mathbf{B}_{\mathrm{dR}}^{+}(\mathbf{C}) / \operatorname{Fil}^{2} \mathbf{B}_{\mathrm{dR}}^{+}(\mathbf{C})$, so that $R=\theta\left(\widehat{K}_{\infty}^{2}\right)$ is a subring of \widehat{K}_{∞}. Let $\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)$, and let $c: \Gamma \rightarrow \mathbf{Z}_{p}$ be an isomorphism of p-adic Lie groups. Let w_{2} be the valuation on K_{∞} defined by $w_{2}(x)=\min \left\{n \in \mathbf{Z}\right.$ such that $\left.p^{n} x \in \mathcal{O}_{K_{\infty}}^{d=0}\right\}$. The restriction of the natural valuation of $\mathbf{B}_{2}(\mathbf{C})$ to K_{∞} is w_{2} (see $\S 1.4$ and $\S 1.5$ of [Fon94], or theorem 3.1 of [Col12]; the natural valuation on $\mathbf{B}_{2}(\mathbf{C})$ comes from its definition as the quotient of a certain Banach space, see ibid.).

The map $\theta: \mathbf{B}_{2}(\mathbf{C}) \rightarrow \mathbf{C}$ has the following property (see $\S 1.4$ of [Fon94]).
Lemma 4.1. - If $\left\{x_{k}\right\}_{k \geqslant 1}$ is a sequence of K_{∞} that converges to $x \in \mathbf{B}_{2}(\mathbf{C})$ for w_{2}, then $\left\{x_{k}\right\}_{k \geqslant 1}$ is Cauchy for val_{p}, and $\theta(x)=\lim _{k \rightarrow+\infty} x_{k}$ for the p-adic topology.

Let $M=\oplus_{n \geqslant 0} p^{n} \mathcal{O}_{K_{n}}^{\perp}$. Coro 2.2 and theo 3.2 imply that M and $\mathcal{O}_{K_{\infty}}^{d=0}$ are commensurable. Hence \widehat{K}_{∞}^{2} is the M-adic completion of K_{∞}. Let w_{2}^{\prime} be the M-adic valuation on K_{∞}, so that w_{2}^{\prime} and w_{2} are equivalent.

Lemma 4.2. - If $x \in K_{\infty}$, then $\operatorname{val}_{p}\left(R_{n}^{\perp}(x)\right) \geqslant w_{2}^{\prime}(x)+n$.
Proof. - Write $x=\sum_{n \geqslant 0} R_{n}^{\perp}(x)$. If $x \in p^{w} M$, then $R_{n}^{\perp}(x) \in p^{n+w} \mathcal{O}_{K_{n}}$.
Proposition 4.3. - Every element $x \in \widehat{K}_{\infty}^{2}$ can be written in one and only one way as $\sum_{n \geqslant 0} x_{n}^{\perp}$ where $x_{n}^{\perp} \in K_{n}^{\perp}$ and $p^{-n} x_{n}^{\perp} \rightarrow 0$ for val $_{p}$.

Proof. - Note that such a series converges for w_{2}. The map $R_{n}^{\perp}: K_{\infty} \rightarrow K_{n}^{\perp}$ sends $p^{w} M \subset K_{\infty}$ to $p^{w+n} \mathcal{O}_{K_{n}}^{\perp}$. It is uniformly continuous for the w_{2}-adic topology, so that it extends to a continuous map $R_{n}^{\perp}: \widehat{K}_{\infty}^{2} \rightarrow K_{n}^{\perp}$.

Let $x \in \widehat{K}_{\infty}^{2}$ be the w_{2}-adic limit of $\left\{x_{k}\right\}_{k \geqslant 1}$ with $x_{k} \in K_{\infty}$. For a given k, the sequence $\left\{p^{-n} R_{n}^{\perp}\left(x_{k}\right)\right\}_{n \geqslant 0} \in \Pi_{n \geqslant 0} K_{n}^{\perp}$ has finite support. As $k \rightarrow+\infty$, these sequences converge uniformly in $\prod_{n \geqslant 0} K_{n}^{\perp}$ to $\left\{p^{-n} R_{n}^{\perp}(x)\right\}_{n \geqslant 0}$, so that $p^{-n} R_{n}^{\perp}(x) \rightarrow 0$ as $n \rightarrow+\infty$. Hence $\sum_{n \geqslant 0} R_{n}^{\perp}(x)$ converges for w_{2}. Since $x_{k}=\sum_{n \geqslant 0} R_{n}^{\perp}\left(x_{k}\right)$ for all k, we have $x=\sum_{n \geqslant 0} R_{n}^{\perp}(x)$. Finally, if $x=\sum_{n \geqslant 0} x_{n}^{\perp}$ with $x_{n}^{\perp} \in K_{n}^{\perp}$ and $p^{-n} x_{n}^{\perp} \rightarrow 0$ for val_{p}, then $x_{n}^{\perp}=R_{n}^{\perp}(x)$ which proves unicity.

Corollary 4.4. - The map $\theta: \widehat{K}_{\infty}^{2} \rightarrow \widehat{K}_{\infty}$ is injective.
Proof. - If $x_{n}^{\perp} \in K_{n}^{\perp}$ and $x_{n}^{\perp} \rightarrow 0$ and $\sum_{n \geqslant 0} x_{n}^{\perp}=0$ in \widehat{K}_{∞}, then $x_{n}^{\perp}=0$ for all n.
Corollary 4.5. - The ring R is the set of $y \in \widehat{K}_{\infty}$ that can be written as $y=\sum_{n \geqslant 0} p^{n} y_{n}$ with $y_{n} \in K_{n}$ and $y_{n} \rightarrow 0$.

Proposition 4.6. - The ring R is a field, and $R=\left\{x \in \widehat{K}_{\infty}\right.$ such that $g(x)-x=$ $\mathrm{o}(c(g))$ as $g \rightarrow 1$ in $\Gamma\}$.

Proof. - The fact that R is a field results from the second statement, since $g(1 / x)-1 / x=$ $(x-g(x)) /(x g(x))$. Take $y=\sum_{n \geqslant 0} p^{n} y_{n}$ with $y_{n} \in K_{n}$ and $y_{n} \rightarrow 0$. If $m \geqslant 1$, then for all $k \gg 0$, we have $y_{n} \in p^{m+n} \mathcal{O}_{K_{n}}$. We can write $y=x_{k}+\sum_{n \geqslant k} p^{n} y_{n}$ and then $(g-1)(y) \in p^{k+m} \mathcal{O}_{K_{\infty}}$ if $g \in \operatorname{Gal}\left(K_{\infty} / K_{k}\right)$. This proves one implication.
Conversely, take $x \in \widehat{K}_{\infty}$ such that $g(x)-x=\mathrm{o}(c(g))$. Write $x=\sum_{k \geqslant 0} x_{k}$ with $x_{0}=R_{0}(x) \in K_{0}$ and $x_{k}=R_{k}^{\perp}(x) \in K_{k}^{\perp}$ for all $k \geqslant 1$. For $n \geqslant 0$, let g_{n} denote a topological generator of $\operatorname{Gal}\left(K_{\infty} / K_{n}\right)$. Take $m \geqslant 0$, and $n \gg 0$ such that we have
$\operatorname{val}_{p}\left(\left(g_{n}-1\right)(x)\right) \geqslant m+n$. We have $\left(1-g_{n}\right)(x)=\sum_{k \geqslant n+1}\left(1-g_{n}\right) x_{k}$, so that by lemma 2.6 and prop 2.4:

$$
\begin{aligned}
\operatorname{val}_{p}\left(x_{n+1}\right) & \geqslant \operatorname{val}_{p}\left(\left(1-g_{n}\right)\left(x_{n+1}\right)\right)-c_{3} \\
& \geqslant \operatorname{val}_{p}\left(\left(1-g_{n}\right)(x)\right)-c_{2}-c_{3} \\
& \geqslant n+m-c_{2}-c_{3} .
\end{aligned}
$$

This implies the result.
Remark 4.7. - Prop 4.6 says that R is the set of vectors of \widehat{K}_{∞} that are C^{1} with zero derivative (flat to order 1) for the action of Γ.

Theorem A follows from coro 4.4 since $\theta: \mathbf{B}_{2}\left(\widehat{K}_{\infty}\right) \rightarrow \widehat{K}_{\infty}$ is not injective. Finally, coro 4.4 , coro 4.5 , and prop 4.6 imply theorem C.

References

[CG96] J. Coates \& R. Greenberg - "Kummer theory for abelian varieties over local fields", Invent. Math. 124 (1996), no. 1-3, p. 129-174.
[Col12] P. Colmez - "Une construction de $\mathbf{B}_{\mathrm{dR}}^{+} "$, Rend. Semin. Mat. Univ. Padova 128 (2012), p. 109-130 (2013).
[Fon94] J.-M. Fontaine - "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59-111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
[Fon82] ___ "Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux", Invent. Math. 65 (1981/82), no. 3, p. 379-409.
[Fou05] L. Fourquaux - "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", Ph.D. Thesis, Université Paris 6, 2005.
[IZ99] A. Iovita \& A. Zaharescu - "Galois theory of B_{dR}^{+}", Compositio Math. 117 (1999), no. 1, p. 1-31.
[Pon20] G. Ponsinet - "Universal norms and the Fargues-Fontaine curve", preprint, 2020.
[Sch12] P. Scholze - "Perfectoid spaces", Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245-313.
[Tat67] J. T. Tate - "p-divisible groups", in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158-183.
[Win83] J.-P. Wintenberger - "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59-89.

October 31, 2023
Laurent Berger, UMPA de l'ENS de Lyon, UMR 5669 du CNRS
E-mail: laurent.berger@ens-lyon.fr • Url: perso.ens-lyon.fr/laurent.berger/

