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Abstract. — Let K be a p-adic field, and let K, /K be a Galois extension that is almost
totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove
that K is not dense in (BJ,/Fil*> BJ;)®2(K/K=<)_ Moreover, the restriction of 6 to the
closure of K, is injective, and the image of the closure via 6 is the set of vectors of the
p-adic completion of K, that are C! with zero derivative for the action of Gal(K./K).
The main ingredient for proving these results is the construction of an explicit lattice of
Ok, that is commensurable with O?(:og, where d : Ok, — Qoy_ /o, Is the canonical

differential.
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Introduction

Let K be a p-adic field, namely a finite extension of W (k)[1/p] where k is a perfect
field of characteristic p. Let C be the p-adic completion of an algebraic closure K of K.
Let K /K be a Galois extension that is almost totally ramified, and whose Galois group

is a p-adic Lie group of dimension 1. Let K denote the p-adic completion of K, let
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BdR([A(OO) = BdR(C)Gal(?/KCX’) be Fontaine’s field of periods attached to K../K, and for
n>1, let By(Ky) = Bl (Ko )/ Fil" Bl (Koo ).

This note is motivated by Ponsinet’s paper [Pon20], in which he relates the study
of universal norms for the extension K,,/K to the question of whether K, is dense in
B, (K.) for n > 1. The density result holds for n = 1 since CGE/K=) — [{_ by the
Ax-Sen-Tate theorem.

Our main result is the following.

o~

Theorem A. — The field K is not dense in Bo(K).

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), By(C) =
B (C)/Fil> BJ;(C) is the completion of K for a topology defined using the Kihler
differentials Q@? /0 - Some partial results towards theorem A have been proved by Iovita-
Zaharescu in [IZ99], by studying these Kéhler differentials. Let Qo,._ 0, be the Kahler
differentials of Ok, /Ok and let d : Ok, — Qo,_,o, be the differential. Our main
technical result is the construction of a lattice of Ok__ that is commensurable with O%°.
Since the inertia subgroup of Gal( K,/ K) is a p-adic Lie group of dimension 1, there exists
a finite subextension Ky/K of K such that K. /K is a totally ramified Z,-extension.
Let K, be the n-th layer of this Z,-extension.

Theorem B. — The lattices 3,5 p" Ok, and O are commensurable.

In order to prove this, we use Tate’s results on ramification in Z,-extensions. As
a corollary of theorem B, we can say more about the completion of K., in Bg(f{\oo).
The field Ko is a Banach representation of the p-adic Lie group Gal(K./K). Let ¢ :
Gal(K/Ky) — Z, be an isomorphism of p-adic Lie groups. If z € K., we say that z is
C' with zero derivative for the action of Gal(K../K) if g(z) — z = o(c(g)) as ¢(g) — 0.

Let 6 : B5(C) — C be the usual map from p-adic Hodge theory.

o~

Theorem C. — The completion of Ky in Bo(Ko) is isomorphic via 0 to the set of
vectors of Ku that are C with zero derivative for the action of Gal(K«/K).

This is a field, and it is also the set of y € Ko+ that can be written as Y= n>0P"Yn
with y, € K,, and y, — 0.

We also prove that d(Ok,_ ) contains no nontrivial p-divisible element (coro 3.5), and
that d : Ok, — Qo,_ /o, is not surjective (coro 3.6). These two statements are equiv-
alent to theorem A by the results of [IZ99]; using our computations, we give a short

independent proof.
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1. Kahler differentials

Let K be a p-adic field. If L/K is a finite extension, let 9;,x C O, denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/K be an algebraic extension.
1. If L/K s a finite extension, then Qo, o0, = Or/0r/k as Op-modules.
2. If M/L/K are finite extensions, then the map Qo, j0, — Qo,, /0, 5 injective.
3. If L/K is an algebraic extension, and wi,ws € Qo, 0., then there exists x € Oy,

such that wy = xwy if and only if Ann(w;) C Ann(ws).
Proof. — See for instance §2 of [Fon82]. O

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set
{val,(dp/K)}r is unbounded, as F' runs through the set of finite extensions of K contained
in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if Lisa
perfectoid field. An extension K, /K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then Qo, j0,, = L/Or, as Or-modules.

Proposition 1.3. — If L/K is deeply ramified, then d : O — Qo, jo, is surjective if
and only if d(Or) is p-divisible.

Proof. — Since L/K is deeply ramified, Qo, /o, is isomorphic to L/Oy, by coro 1.2. The
claim now follows from the fact that a nonzero Op-submodule of L/Oy, is equal to L/Oy,

if and only if it is p-divisible. O

Proposition 1.4. — Let L/K be a deeply ramified extension, and let K' C L be a finite
extension of K.
1. d:Op — Qo, 0, is surjective if and only if d' : Op — Qo, jo,., is surjective.

— |
2. 040 and OF=° are commensurable.

Proof. — We have an exact sequence of Op-modules, compatible with d and d’'
O ® QOK//OK i) QOL/OK EN QOL/OK/ — 0.

Let us prove (1). If d : Op — Qo, o, is surjective, then clearly d' : Op — Qo, 0, is
surjective. Conversely, there exists 7 > 0 such that p" - Qo /0, = {0}. If w € Qo, /0,
write it as w = p"w,. By hypothesis, there exists a, € O such that w, = d'«, in
Qo, /0, Hence p"(w, —da,) = 0 in Qp, jo,; so that w = d(p"a,). We now prove (2).
The exact sequence above implies that Q%= ¢ O¢=C. Conversely, if 2 € O¢ =, then
dx € ker g = im f, so that p" - dz = 0. Hence p" - O¢=0 c 0=0. O
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Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subexten-

sion K" of K. In particular, we can assume that K+ /K is a totally ramified Z,-extension.

2. Ramification in Z,-extensions

Let Ko /K be a totally ramified Z,-extension. We recall some of the results of §3.1
of [Tat67] concerning the ramification of K.,/K and the action of Gal(K/K) on K.
Let K, denote the n-th layer of K, /K, so that [K, : K] = p".

Proposition 2.1. — There are constants a,b such that for all n > 0, we have
|val,(0k, /k) —n — b < p"a.
Proof. — See §3.1 of [Tat67]. O

The notation },-0p"Ok, denotes the set of elements of K., that are finite sums of

elements of p" Ok, .
Corollary 2.2. — There exists ng = 0 such that Y_,-qp" " Ok, C O?{:OS.

Proposition 2.3. — There exists ¢(Ko/K) > 0 such that for all n,k > 0 and x €
Ok, r» we have val,(Ng,  x, () /atEneiBnl — 1) > o( Ko/ K).

+h
Proof. — The result follows from the fact (see 1.2.2 of [Win83|) that the extension
K. /K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83]. ]

If n>0and 2 € Ky, then R,(z) = p* - Trg, ,/x,(2) is independent of k& > 0 such

that © € K., and is the normalized trace of x.

Proposition 2.4. — There exists co € Zx( such that val,(R,(z)) = val,(z) — co for all
n>0andxr e Ky.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172). O

In particular, R,(Ok,_) C p~2Ok, for all n > 0. Let K5 = Kj and for n > 1, let
K,f be the kernel of R, : K,, — K,,_1, let R# =R, — R, 1, and Ré = Ry. Note that
Kl =im(R} : K, - K,). If r € K and i > 0, then R-(x) = 0 for n > 0, and
= (Ypsip1 R (2)) + Ri(z). Prop 2.4 implies that R;-(Ok. ) C p~2O, for all n > 0.
Let OIL{n = OKn N K#

Corollary 2.5. — If i > 0, we have Ok C (Bpsip1p 0%, ) ®p 20k,.
Proof. — If v € Ok, write © = 3,551 R (z) + Ri(z). O

For n > 0, let g, denote a topological generator of Gal(K,/K,).
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Lemma 2.6. — There exists a constant cs such that for alln > 1 and all x € K np1s WE
have val,(z) > val,((1 — g,)(x)) — cs.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172). O

3. The lattice O

We now prove theorem B. Thanks to coro 1.5, we assume that K /K is a totally
ramified Z,-extension. Let {p, },>0 be a norm compatible sequence of uniformizers of the
K,. Let m. > 0 be the smallest integer such that p" - ¢(K/K) > 1/(p — 1) (where
¢(K«/K) was defined in prop 2.3).

Proposition 3.1. — We have val,(p?"., — pF) > val,(k) — m,.

Proof. — Note that if z,y € C with val,(x —y) > v, then val,(2? —y?) > min(v+ 1, pv).
Let ¢ = ¢(Kw/K) and m = m.. We have val,(p?,, — p,) = ¢ by prop 2.3, so that
V() — ) > e it ple < 1/(p— 1),

In particular, val (pgﬁl —pP") = pmc = 1/(p — 1), so that we have val (pnrrlrJ+1 —
P > j4+1/(p—1)if j > 0. This implies the result. O

Theorem 3.2. — There exists ny = 0 such that Ofif C Y sn, POk

m*

Proof. — We prove the result with ny = [a — b + me + 2]. Take 2 € OF" and write
T = Zp 0 xzpn with z; € Ok, so that do = Zp 0 mzpn ~1.dp,. Since p, is a uniformizer
of Ok, , the Ok, module Qoy, 10k = Ok, [Vk,/k (see prop 1.1) is generated by dp,. If
dx = 0, then 37" " iz;pi ! belongs to dg, /5 so that by prop 2.1 (and since val,(p2") < 1),
for all + we have
val,(x;) > n—a-+b—val,(i) — 1.
For k > 1, let
Ye = Z $p’“*1jpaj@—(k—1) + g xpké(PZZ—(k—n — Phk)-

Note that y, € Ok Let us bound val,(y;). We have

n—k+1"° )
Valp(xpkfljpfl_(k_l)) >n—a+b—k.
We also have val,(xyr,) > n—a+b—k—val,(f) — 1, and by prop 3.1

Valp(pff—(k—n —Php) = val,(€) — me.

Hence val,(yx) = n —a+b—k — 1 —m, and therefore y, € p" FH1-"1 Oy Finally,

n—k+1"°

we have 2 = y1 + -+ + Ynon, + 2 Lpn-mgph,, and Yoy xpn-niept, belongs to Ok, , which
implies the result. O
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Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].
Corollary 3.4. — We have O C (Bmzp, 1™ ™ 2 0% ) ®p 20k, -
Proof. — By theorem 3.2, it is enough to prove that
P"Ok, C (Bmzn11p™ “Ox,) @ p" 20k,
for all n > ny. If © € p"Ok,, write © = Ry () + Ry () + - + Ry 1 (z) + Ry, (2).

We have Ry, (z) € p" 20 C p"™M20f  and likewise Ry, (z) € p" =0k, C
prrTe? OKnl . ]

Corollary 3.5. — There are no nontrivial p-divisible elements in d(O_,).

Proof. — By props 1.3 and 1.4, we can assume that K. /K is a totally ramified Z,-
extension. Let {a;};>1 be a sequence of Ok_ such that da; = p - dayyq for all i > 1.
Using coro 2.5, write a; = 3 @, with o, = R (o) € p’CQOIL(m form > n; +1
and ;,, = Ry (o) € p~?Ok, . Since prag; — a; € OFL, coro 3.4 implies that
pkakﬂ,m — Qi € P20k, for all m > ny. Taking £ > 0 now implies that «;,, €

pmm 2O for allm > ny. Coro 2.2 gives p"ot™mteq, € (9%:03. Taking i = ng+n;+co+1

gives day = 0. O]
Corollary 3.6. — The differential d : O, — Qoy__j0, is not surjective.
Proof. — This follows from coro 3.5 and prop 1.3. ]

4. The completion of K, in By(C)

We now prove theorems A and C. Since we are concerned with the completion of K,
we can once again replace K with a finite subextension of K, and assume that K., /K
is a totally ramified Z,-extension. Let K2 denote the completion of K. in By(C) =
B/ (C)/ Fil> B (C), so that R = 6(K2) is a subring of K. Let I' = Gal(K/K),
and let ¢ : I' = Z, be an isomorphism of p-adic Lie groups. Let ws be the valuation
on K defined by we(x) = min{n € Z such that p"z € Of="}. The restriction of the
natural valuation of Bo(C) to Ko is wy (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of
[Col12]; the natural valuation on By(C) comes from its definition as the quotient of a
certain Banach space, see ibid.).

The map 6 : B5(C) — C has the following property (see §1.4 of [Fon94]).

Lemma 4.1. — If {x}r>1 is a sequence of K that converges to x € Bo(C) for wo,

then {xy}x>1 is Cauchy for val,, and 0(x) = limy_, oz for the p-adic topology.
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Let M = @®,50p"Of, . Coro 2.2 and theo 3.2 imply that M and OF are commensu-
rable. Hence K. 2 is the M-adic completion of K.,. Let w) be the M-adic valuation on

K, so that wj and ws are equivalent.
Lemma 4.2. — If x € K, then val,(R;-(z)) > w)(z) + n.
Proof. — Write © = 3,50 By (). If x € p” M, then Ri(z) € p"** Ok, O

Proposition 4.3. — FEvery element x € f(\go can be written in one and only one way as

S0 Ty where zi € K and p~"x; — 0 for val,.

Proof. — Note that such a series converges for wy. The map R : K., — K; sends
p“M C K to p’“’*”OIL{n. It is uniformly continuous for the wsy-adic topology, so that it
extends to a continuous map Rt : K2 — K.

Let z € K2 be the wy-adic limit of {z; }x1 with 2 € K. For a given k, the sequence
{p™" Rt (1) }nz0 € [Ins0 K- has finite support. As k — 400, these sequences converge
uniformly in 1,50 K- to {p™" Ry () }nz0, so that p™"R-(z) — 0 as n — +oo. Hence
> ns0 R (@) converges for wy. Since xy = 3,50 Rir (x) for all k, we have x = 3o Rir ().
Finally, if z = Y50 2, with ;- € K- and p ", — 0 for val,, then z;; = R;-(x) which

proves unicity. O
Corollary 4.4. — The map 0 : K2, — Ko, is injective.
Proof. — If 2t € K} and 22 — 0 and ¥, 25 = 0 in Ky, then - =0 for alln. O

Corollary 4.5. — The ring R is the set of y € K. that can be written as Y= n>0P"Yn
with y, € K, and y, — 0.

Proposition 4.6. — The ring R is a field, and R = {x € Ko such that g(z) — x =
o(e(g)) as g — 1 inT'}.

Proof. — The fact that R is a field results from the second statement, since g(1/x)—1/z =
(x — g(2))/(xg(z)). Take y = ¥,50 0"y with y, € K, and y,, — 0. If m > 1, then
for all & > 0, we have y,, € p"™Of,. We can write y = x4 + >, P"yn and then
(g —1)(y) € pP""™Ok,. if g € Gal(K./K}). This proves one implication.

Conversely, take © € Ky such that g(z) — 2 = o(c(g)). Write z = > k0 Tk With
19 = Ro(z) € Ko and 2, = Rif(z) € Ki- for all k > 1. For n > 0, let g, denote
a topological generator of Gal(K,/K,). Take m > 0, and n > 0 such that we have
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val,((gn — 1)(z)) = m +n. We have (1 — ¢,)(2) = Ypons1(l — gn)xk, so that by lemma
2.6 and prop 2.4:

val, (@ 11) > valy((1 = ga)(@nin) — s
2 valy((1 = gn)(2)) —c2 — ¢3
Zn+m—cy — cs.
This implies the result. [

Remark 4.7 — Prop 4.6 says that R is the set of vectors of K., that are C! with zero

derivative (flat to order 1) for the action of I

Theorem A follows from coro 4.4 since 6 : Bg(f(\oo) — K. is not injective. Finally,

coro 4.4, coro 4.5, and prop 4.6 imply theorem C.
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