L'APPROXIMATION PAR DES POLYNÔMES À COEFFICIENTS ENTIERS

par

Laurent Berger

Table des matières

Introduction	1
1. Compacts de ${\bf R}$ et polynômes de Chebychev	2
2. Rayon de capacité des compacts	2
3. Polynômes entiers de petite norme	4
4. Noyau de Fekete	4
5. Détermination du noyau de Fekete	5
6. Exemple : le cas de $[-a; a]$	6
Références	7

Introduction

Soit K un compact de \mathbf{R} ; le théorème de Weierstrass nous dit que toute fonction $f: K \to \mathbf{R}$ continue est limite uniforme d'éléments de $\mathbf{R}[T]$.

L'objet de cet exposé est de déterminer, étant donné un compact de \mathbf{R} , quelles sont les fonctions qui sont limite uniforme d'éléments de $\mathbf{Z}[T]$. Par exemple, si $0 \in K$ et si une telle fonction existe, elle doit être entière en 0.

Dans la suite, K désignera un compact de \mathbf{R} de cardinal infini. Si $f: K \to \mathbf{R}$ est une fonction continue, $|f|_K$ désignera le maximum de f sur K. Un polynôme est dit unitaire si son coefficient dominant vaut 1.

1. Compacts de R et polynômes de Chebychev

Commençons par définir les polynômes de Chebychev d'un compact $K \subset \mathbf{R}$.

Théorème 1.1. — Soit K un compact de \mathbb{R} et $n \geq 1$; alors il existe un polynôme unitaire de degré n, noté $T_n(K)$, qui réalise le minimum de $|P_n|_K$ où P_n parcourt l'ensemble des polynômes unitaires de degré n.

Ce polynôme s'appelle le $n^{\text{ème}}$ polynôme de Chebychev pour K. Si K = [-1; 1], on retombe sur les polynômes de Chebychev classiques (ceci sera démontré plus loin).

Démonstration. — L'existence vient du fait que dans $\mathbf{R}_n[T]$, la boule de centre T^n et de rayon $|T^n|_K$ coupe $\mathbf{R}_{n-1}[T]$ selon un compact non vide, et la fonction $P \mapsto |T^n - P(T)|_K$ y est continue et admet donc un minimum.

Le polynôme $T_n(K)$ est unique; pour une démonstration de ce fait, voir [3, p.140].

Proposition 1.2. — Si K = [-1; 1], alors $T_n(K) = 2^{1-n}T_n$, les polynômes de Chebychev classiques. Par suite,

$$T_n([a;b]) = 2\left(\frac{b-a}{4}\right)^n T_n\left(\frac{2T-a-b}{b-a}\right)$$

Démonstration. — On se ramène à la première assertion par translation et homothétie. Rappelons que T_n est défini par $T_n(\cos(\theta)) = \cos(n\theta)$, et que $|T_n|_K$ est réalisé par n+1 réels de [-1;1]. Soit Q de degré < n tel que $|T^n-Q(T)|_K < 2^{1-n}$; alors $2^{1-n}T_n(T)-(T^n-Q(T))$ est un polynôme de degré < n qui s'annule entre deux extremas consécutifs de T_n sur K, c'est à dire en au moins n points. Il est donc nul.

2. Rayon de capacité des compacts

Nous allons définir le rayon de capacité (ou diamètre transfini, ou capacité logarithmique, ou exterior mapping radius) d'un compact.

Proposition 2.1. — La suite $|T_n(K)|_K^{1/n}$ est convergente; on note $d_1(K)$ sa limite.

Démonstration. — Soit $\alpha_n = \log(|T_n(K)|_K^{1/n})$. Si $\alpha_n \to -\infty$ alors $d_1(K) = 0$; sinon soit $\alpha = \limsup(\alpha_n)$. Comme $T_n(K)T_m(K)$ est un polynôme unitaire de degré m + n, on a

$$\alpha_{m+n} \le \alpha_n \frac{n}{n+m} + \alpha_m \frac{m}{n+m}$$

fixons $\varepsilon > 0$ et n assez grand. On voit que $\alpha_{qn+r} \leq \alpha_n + \varepsilon$ quand q est assez grand (r est entre 0 et n), et donc $\alpha_n \geq \alpha - \varepsilon$ ce qui montre que la suite α_n converge vers sa limite supérieure.

Proposition 2.2. — Soit

$$\delta_n(K) = \sup_{x_i \in K} \prod_{1 \le i \ne j \le n} |x_i - x_j|^{1/n(n-1)}$$

alors la suite $\delta_n(K)$ est décroissante et converge vers un réel noté $d_2(K)$.

Démonstration. — On a

$$\delta_{n+1}^{(n-1)n(n+1)} = \prod |x_i - x_j|^{n-1} = \prod_{k} \prod_{1 \le \hat{k}, i \ne j \le n} |x_i - x_j| \le \delta_n^{(n-1)n(n+1)}$$

ce qui établit la décroissance et donc la convergence.

Théorème 2.3. — Les deux constantes $d_1(K)$ et $d_2(K)$ ainsi définies sont égales et on notera cap(K) leur valeur commune (rayon de capacité).

Démonstration. — Tout d'abord, soient n points x_i qui réalisent le sup qui définit δ_n , et $P(T) = \prod (T - x_i)$. On a

$$\delta_n = \prod |x_i - x_j|^{1/n(n-1)} = |\prod P'(x_i)|^{1/n(n-1)} \ge d_1 - \varepsilon$$

pour n assez grand ce qui montre que $d_2 \ge d_1$.

Ensuite, on a pour tout P unitaire de degré n.

$$\delta_{n+1}^{n(n+1)/2} = \begin{vmatrix} 1 & \cdots & x_1^{n-1} & P(x_1) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & x_{n+1}^{n-1} & P(x_{n+1}) \end{vmatrix} \le (n+1)\delta_n^{n(n-1)/2} |P|_K$$

comme on le voit en développant le déterminant par rapport à la dernière colonne. Soit $c_n = ((n+1)|T_n(K)|_K)^{2/n}$; on trouve $\delta_{n+1}^{n+1} \leq c_n \delta_n^{n-1}$, et en multipliant ces inégalités pour $n=1,\dots,k$, on a $\delta_{k+1}^{(k+1)/k}(\delta_k \cdots \delta_2)^{1/k} \leq (c_2 \cdots c_k)^{1/k}$. On conclut que $d_2 \leq d_1$ en utilisant le théorème de Cesàro.

Par exemple, cap([a;b]) = (b-a)/4.

Proposition 2.4. — Soit K compact; alors $cap(K) \ge 1$ si et seulement si pour tout polynôme unitaire P on a $|P|_K \ge 1$. Dans ce cas, $\mathbf{Z}[T]$ est discret dans $\mathcal{C}^0(K, \mathbf{R})$.

Démonstration. — S'il existe P unitaire tel que $|P|_K = \alpha < 1$ alors $|P^k|_K^{1/k} \le \alpha$ et donc $\operatorname{cap}(K)$ aussi.

Soit $f \in \mathcal{C}^0(K, \mathbf{R})$ et P_n une suite de polynômes à coefficients entiers qui converge vers f. Pour $n > n_0$ assez grand on aura $|f - P_n| < 1/2$, et alors $P_m - P_n$ sera un polynôme entier de norme < 1 si $m, n > n_0$, et $P_m - P_n$ divisé par son coefficient dominant sera unitaire de norme < 1; c'est impossible et donc $P_m = P_n = f$ pour m, n assez grand. Si de plus P et Q sont distincts à coefficients entiers, le même argument montre que $|P - Q|_K \ge 1$.

3. Polynômes entiers de petite norme

On vient de voir que si $cap(K) \ge 1$, on n'a pas de résultat intéressant d'approximation. À partir de maintenant, on va s'intéresser aux compacts K tels que cap(K) < 1; la situation est radicalement différente.

Par la proposition précédente, on dispose d'un polynôme Q unitaire de norme < 1.

Proposition 3.1. — Il existe un polynôme P à coefficients entiers qui vérifie $|P|_K < 1$.

Cette proposition est vraiment importante, on passe d'une information analytique (cap(K) < 1) à une information algébrique.

Démonstration. — Soit $\delta > 0$, $\alpha = |Q|_K < 1$, d le degré de Q, $C = 1 + |T| + \cdots + |T^{d-1}|$, ℓ_0 tel que $\alpha^{\ell_0}C/(1-\alpha) < \delta$, $m = \ell_0 d$ et $\varepsilon = \delta/C^{m+1}$.

Soit k assez grand et

$$R_k(T) = Q(T)^k - \sum_{\ell \ge \ell_0, i = 0 \cdots d - 1} b_{i,\ell} T^i Q(T)^{\ell}$$

où les $b_{i,\ell}$ sont des réels compris entre 0 et 1 choisis tels que l'on puisse écrire $R_k(T) = Z_k(T) + P_k(T)$, avec Z_k à coefficients entiers et P_k de degré < m avec des coefficients entre 0 et 1 (un instant de réflexion montre que c'est toujours possible).

Remarquons que $|R_k - Q^k|_K < \delta$, et que si k' > k, $Z_k - Z_{k'}$ est un polynôme unitaire de degré k' et de norme $|Z_k - Z_{k'}|_K < |R_k - R_{k'}|_K + |P_k - P_{k'}|_K$. Reste à utiliser le principe des tiroirs pour trouver deux entiers k et k' tels que les coefficients de P_k et $P_{k'}$ diffèrent d'au plus ε .

En sommant les erreurs, on trouve que $P=Z_k-Z_{k'}$ est unitaire et entier de norme $|P|_K<6\delta$.

4. Noyau de Fekete

Muni du polynôme P construit précédemment, nous sommes en mesure d'approcher des fonctions f vérifiant certaines conditions; dans cette section, nous énonçons ces conditions. Le compact K est toujours supposé être de rayon de capacité < 1. On dira que $f: K \to \mathbf{R}$ est $\mathbf{Z}[T]$ -approximable si elle est limite uniforme sur K de polynômes à coefficients entiers. Si $X \subset K$ est un ensemble, on dit que f est X-interpolable s'il existe un polynôme $R \in \mathbf{Z}[T]$ tel que f = R sur X.

Soit $B(K) = \{P \in \mathbf{Z}[T], |P|_K < 1\}$ (on sait maintenant que B(K) est non vide), et soit

$$J(K) = \{x \in K, P(x) = 0 \ \forall P \in B(K)\}$$

notons que J(K) est fini, car il est contenu dans l'ensemble des zéros d'un polynôme non nul.

Théorème 4.1. — Soit K un compact tel que cap(K) < 1. Alors $f : K \to \mathbf{R}$ continue est $\mathbf{Z}[T]$ -approximable si et seulement si f est J(K)-interpolable.

Démonstration. — Si f est $\mathbf{Z}[T]$ -approximable, alors $P_n \to f$ et on suppose que $|P_n - f|_K < 1/2$. Alors $|P_n - P_m|_K < 1$, et donc $P_n - P_m$ est nul sur J(K). Par suite, $f = P_n$ sur J(K).

Pour l'implication contraire, on peut toujours supposer que f=0 sur J(K). Soit Q_0 à coefficients entiers de norme <1. Soient x_1, \dots, x_r les zéros de Q_0 qui sont dans K mais pas dans J(K): pour chaque i il existe donc $Q_i \in B(K)$ qui ne s'annule pas en x_i . On pose $Q = \sum_{i \geq 0} Q_i^{2n}$ où n est un entier suffisamment grand. Il est clair que les zéros de Q qui sont dans K sont exactement les éléments J(K).

On prend $\delta > 0$ et n assez grand pour que $\max\{|Q(T)|_K, |TQ(T)|_K\} < \delta$. Soit $\varepsilon > 0$ et k tel que $\sum_{j>k} (j+1)\delta^j < \varepsilon$.

Soit K_0 le compact obtenu en identifiant tous les points de J(K) à un seul, x_0 . Les fonctions f, $Q(T)^k$, et $TQ(T)^k$ sont continues sur K_0 . De plus l'algèbre engendrée par $Q(T)^k$ et $TQ(T)^k$ sépare les points de K_0 . Par le théorème de Stone-Weierstrass, il existe donc un polynôme à deux variables, \tilde{S} , tel que $|f - \tilde{S}(Q(T)^k, TQ(T)^k)| < \varepsilon$, et on peut supposer que le terme constant de \tilde{S} est nul (car $f(x_0) = 0$). Soit S le polynôme obtenu en prenant les parties entières des coefficients de \tilde{S} . Alors $|S - \tilde{S}|_K < \sum_{i,j \geq 0, i+j=k} \delta^{i+j} < \varepsilon$ et par suite $S(Q(T)^k, TQ(T)^k)$ approche f à 3ε près.

5. Détermination du noyau de Fekete

Dans cette section, nous indiquons des résultats qui permettent de simplifier le calcul de J(K); dans la section suivante, nous appliquons cela au calcul de J([-a;a]).

Soit $J_0(K)$ l'ensemble des $\alpha \in J(K)$ qui ont la propriété : tous les conjugués de α sont réels et appartiennent à K.

Notre objectif est de démontrer le

Théorème 5.1. — Les ensembles $J_0(K)$ et J(K) sont égaux.

Pour cela, nous allons démontrer que

Proposition 5.2. — Une fonction continue est $\mathbf{Z}[T]$ -approximable si et seulement si elle est $J_0(K)$ -interpolable.

Cela entraîne notamment que f est J(K)-interpolable si et seulement si elle est $J_0(K)$ -interpolable, et donc que $J(K) = J_0(K)$.

La preuve de la proposition repose sur le lemme suivant :

Lemme 5.3. — Soit $\{x_1, \dots, x_r\}$ un ensemble d'entiers algébriques, tel que chacun d'entre eux a un conjugué qui n'est pas dans cet ensemble. Alors $\{Q(x_1), \dots, Q(x_r)\}$, pour Q parcourant $\mathbf{Z}[T]$, est dense dans \mathbf{R}^r .

Démonstration. — On montre tout d'abord le cas où les x_i sont racines d'un même polynôme irréductible P. Alors soit $x_{r+1} = 1$ et $V = V(x_i)$ la matrice de Vandermonde construite sur les x_i . Soit $E = \mathbf{R}^{r+1}$. La matrice V définit une transformation linéaire inversible de E dans lui-même, et l'image de \mathbf{Z}^{r+1} par V est un réseau de E, disons Λ .

Soit P(R) l'ensemble des vecteurs de E dont les r premières coordonnées sont de valeur absolue < 1 et la dernière < R. Le théorème de Minkowski nous fournit, pour R assez grand, un élément non-nul $q \in \Lambda \cap P(R)$. Il est facile de voir que $V^{-1}((q_i)_i)$ correspond à un polynôme Q de $\mathbf{Z}[T]$ tel que $|Q(x_i)| < 1$ pour $i = 1 \cdots r$; enfin $Q(x_i) \neq 0$ pour tout i sinon Q serait nul (il est de degré < à celui de P).

Soient y_i des réels, k > 1, et \tilde{P} le polynôme de Lagrange qui interpole les $y_i/Q(x_i)^k$. Soit P le polynôme dont les coefficients sont les parties entières de ceux de \tilde{P} .

Alors $|Q^k P(x_i) - y_i| \le |Q^k(x_i)|(|P(x_i) - y_i/Q(x_i)^k| + |P(x_i) - \tilde{P}(x_i)|) \le |Q(x_i)|^k C$ où C ne dépend pas de k. Cela établit le résultat (on prend k assez grand).

Si les x_i proviennent de différents polynômes, alors on pose $x_{i,j}$ provenant de P_j irréductible. On se donne $y_{i,j}$ des réels et $\varepsilon > 0$. Soit $Q'_j = \prod_{i \neq j} P_i$. Il existe Q''_j qui vérifie $|Q''_j(x_{i,j}) - y_{i,j}/Q'_j(x_{i,j})| < \varepsilon/|Q'_j(x_{i,j})|$. Soit alors $Q = \sum Q'_j Q''_j$. On a $Q(x_{i,j}) = Q'_j Q''_j(x_{i,j})$ qui vaut $y_{i,j}$ à ε près.

Démonstration de la proposition 5.2. — Soit maintenant $J(K) = J_0(K) \cup \{x_1, \dots, x_r\}$, $\varepsilon > 0$, et P le produit des polynômes minimaux des éléments de $J_0(K)$. Soit f une fonction nulle sur $J_0(K)$.

Par le lemme, il existe Q tel que $|Q(x_i) - f(x_i)/P(x_i)| < \varepsilon/|P|_K$. Alors f - QP est à ε d'une fonction g, nulle sur J(K). Comme g est interpolable, il existe R qui l'approche à ε près et QP + R approche f à 2ε près.

6. Exemple : le cas de [-a;a]

Soit $I_a = [-a; a]$. Alors cap $(I_a) = a/2$. Si $a \ge 2$, il ne se passe rien d'intéressant. Soit donc a < 2.

Soit $x \in J_0(I_a)$ et $z \in \mathbb{C}$ tel que $x = z + z^{-1}$. Le complexe z est un entier algébrique dont tous les conjugués sont de norme 1. Par le théorème de Kronecker, c'est une racine de

l'unité. Il existe donc des entiers j et k, premiers entre eux, tels que $x = x_j = 2\cos(2\pi j/k)$. Les conjugués de x sont les x_j pour $j \in (\mathbf{Z}/k\mathbf{Z})^*$, et doivent être dans I_a eux aussi, c'est à dire que l'on doit avoir $x_1 < a$ ce qui nous donne $k \le 2\pi/\arccos(a/2)$.

On a donc:

$$J_0([-a;a]) \subset \bigcup_{1 \le k \le \frac{2\pi}{\arccos(a/2)}} \{2\cos(\frac{2\pi j}{k}), (j,k) = 1\}$$

Le lecteur est invité à traiter le cas des intervalles [a;b] puis à s'essayer à des unions disjointes d'intervalles.

Références

- [1] Borwein P., Erdélyi T.: Polynomials and polynomial inequalities. Springer-Verlag, GTM 161.
- [2] Ferguson Le Baron O.: Approximation by polynomials with integral coefficients. Math Surveys 17, AMS.
- [3] Gonnord S., Tosel N.: Topologie et analyse fonctionelle. Ellipses.

Avril~2000

Laurent Berger