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Abstract. — Colmez has given a recipe to associate a smooth modular representation
Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using
Fontaine’s theory of (ϕ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if
W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of
GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.

Résumé. — Colmez a donné une recette permettant d’associer une représentation modu-
laire Ω(W ) du sous-groupe de Borel de GL2(Qp) à une Fp-représentation W de Gal(Qp/Qp)
en utilisant la théorie des (ϕ,Γ)-modules de Fontaine. Nous déterminons Ω(W ) explicite-
ment et nous montrons que siW est irréductible et dim(W ) = 2, alors Ω(W ) est la restriction
au sous-groupe de Borel de GL2(Qp) de la représentation supersingulière associée à W par
la correspondance de Breuil.
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Introduction

This article is a contribution to the p-adic Langlands correspondence, and more specif-

ically the “mod p” correspondence first introduced by Breuil in [Bre03a] which is a

bijection between the supersingular representations of GL2(Qp) and the irreducible 2-

dimensional Fp-linear representations of GQp = Gal(Qp/Qp). In [Col07] and [Col08],

Colmez has given a construction of representations of GL2(Qp) associated to certain p-

adic Galois representations and by specializing and extending his functor to the case of

Fp-representations, we get a recipe for constructing a smooth representation Ω(W ) of the

Borel subgroup B = B2(Qp) of GL2(Qp) starting from the data of an Fp-representation

W of GQp . In [Ber05], I proved that Colmez’ construction was compatible with Breuil’s

mod p correspondence and as a consequence that Colmez’ lim←−ψ D](·) functor in charac-

teristic p does give Breuil’s correspondence (up to semisimplification if W is reducible).

The proof of [Ber05] is direct when W is reducible (in which case Ω(W ) is a parabolic

induction) but quite indirect when W is absolutely irreducible (in which case Ω(W ) is

supersingular) and one purpose of this article is to give a direct proof in the latter case.

A byproduct of the computations of [Ber05] is the fact that the restriction to the Borel

subgroup of a supersingular representation is still irreducible. This intriguing fact has

since been reproved and generalized by Paškūnas in [Paš07] (see also [Eme08]; another

generalization has been worked out by Vignéras in [Vig08]).

In this article, we start by defining some smooth representations of B and we prove

that they are irreducible. After that, we define the representations Ω(W ) using Colmez’

functor applied to W and finally, we prove that if dim(W ) > 2 and W is irreducible,

then the Ω(W ) thus constructed coincide with the representations studied in the first

chapter and that if dim(W ) = 2, then they are the restriction to B of the supersingular

representations studied by Barthel and Livné in [BL94, BL95] as well as Breuil in

[Bre03a].

Let us now give a more precise description of our results. Let E be a finite extension

of Fp which is the field of coefficients of all our representations, and let

K =

(
Z×p Zp

0 Z×p

)
= B ∩GL2(Zp)

and let Z ' Q×p be the center of B. If σ1 and σ2 are two smooth characters of Q×p

then σ = σ1 ⊗ σ2 : ( a b0 d ) → σ1(a)σ2(d) is a smooth character of KZ and we consider the

compactly induced representation indB
KZ σ. Note that the Iwasawa decomposition implies

that B/KZ = GL2(Qp)/GL2(Zp)Z so that indB
KZ σ can be seen as a space of “twisted

functions” on the tree of GL2(Qp).
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Theorem A. — If Π is a smooth irreducible representation of B admitting a central

character, then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB
KZ σ.

This result (theorem 1.2.3) is a direct consequence of the fact that a pro-p-group acting

on a smooth E-representation necessarily admits some nontrivial fixed points. Assume

now that σ1(p) = σ2(p) and let λ = σ1(p) = σ2(p) and let 1σ be the element of indB
KZ σ

supported on KZ and given there by 1σ(kz) = σ(kz). If n > 2 and if 1 6 h 6 pn−1 − 1,

let Sn(h, σ) be the subspace of indB
KZ σ generated by the B-translates of

(−λ−1)n
(

1 0
0 pn

)
1σ +

pn−1∑
j=0

(
j

h(p− 1)

)(
1 −jp−n
0 1

)
1σ

and let Πn(h, σ) = indB
KZ σ/Sn(h, σ). We say that h is primitive if there is no d < n

dividing n such that h is a multiple of (pn − 1)/(pd − 1) (this condition is equivalent

to requiring that if we write h = en−1 . . . e1e0 in base p, then the map i 7→ ei from

Z/nZ to {0, . . . , p − 1} has no period strictly smaller than n). The main result of §1.3

is that the Πn(h, σ) are irreducible if h is primitive. In chapter 2, we turn to Galois

representations, Fontaine’s (ϕ,Γ)-modules and Colmez’ Ω(·) functor. In particular, we

give a careful construction of Ω(W ) and in theorem 2.2.4, we prove that there exists a

character σ such that Ω(W ) is a smooth irreducible quotient of indB
KZ σ by a subspace

which contains Sn(h, σ) where n = dim(W ) and h depends on W . Let ωn be Serre’s

fundamental character of level n. For a primitive 1 6 h 6 pn − 2, let ind(ωhn) be

the unique representation of GQp whose determinant is ωh (where ω = ω1 is the mod p

cyclotomic character) and whose restriction to the inertia subgroup IQp of GQp is given by

ωhn⊕ωphn ⊕· · ·⊕ωp
n−1h
n . Every n-dimensional absolutely irreducible E-linear representation

W of GQp is isomorphic to ind(ωhn) ⊗ χ for some primitive 1 6 h 6 pn−1 − 1 and some

character χ and our main result is then the following (theorem 3.1.1).

Theorem B. — If n > 2 and if 1 6 h 6 pn−1 − 1 is primitive, then

Ω(ind(ωhn)⊗ χ) ' Πn(h, χωh−1 ⊗ χ).

After that, we give the connection with Breuil’s correspondence. Our main result con-

necting Colmez’ functor with Breuil’s correspondence is the following (it is a combination

of theorem 3.1.1 for n = 2 and theorem 3.2.6).

Theorem C. — If 1 6 h 6 p− 1, then we have

Ω(ind(ωh2 )⊗ χ) ' Π2(h, ωh−1χ⊗ χ) '
ind

GL2(Qp)

GL2(Zp)Z Symh−1E2

T
⊗ (χ ◦ det),

where the last representation is viewed as a representation of B.
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It would have been possible to treat the Galois representations of dimension 1 in the

same way, and therefore to get a proof that Colmez’ functor gives Breuil’s correspondence

for reducible representations of dimension 2 using the methods of this article so that one

recovers the corresponding result of [Ber05] without using the stereographic projection of

[BL95, BL94]. I have chosen not to include this as it does not add anything conceptually,

but it is an instructive exercise for the reader.

Finally, if h = 1 and n > 2, we can give a more explicit version of theorem B. We

define two B-equivariant operators T+ and T− on indB
KZ σ by

T+(1σ) =

p−1∑
j=0

(
p j
0 1

)
1σ and T−(1σ) =

(
1 0
0 p

)
1σ

so that the Hecke operator is T = T+ + T− and theorem B can be restated as follows.

Theorem D. — We have

Ω(ind(ωn)⊗ χ) ' indB
KZ(1⊗ 1)

T− + (−1)nT n−1
+

⊗ (χ ◦ det).

There may be a correspondence between irreducible E-linear representations of dimen-

sion n of GQp and certain objects coming from GLn(Qp). I hope that theorem C gives a

good place to start looking for this correspondence, along with the ideas of [SV08].

1. Smooth modular representations of B2(Qp)

In this chapter, we construct a number of representations of B and show that they are

irreducible by reasoning directly on the tree of PGL2(Qp).

1.1. Linear algebra over Fp

The binomial coefficients are defined by the formula (1 + X)n =
∑

i∈Z
(
n
i

)
X i and we

think of them as living in Fp. The following result is due to Lucas.

Lemma 1.1.1. — If a and b are integers and a = as . . . a0 and b = bs . . . b0 are their

expansions in base p, then (
a

b

)
=

(
as
bs

)
· · ·
(
a0

b0

)
.

Proof. — If we write (1 +X)a = (1 +X)a0(1 +Xp)a1 · · · (1 +Xps
)as , then the coefficient

of Xb on the left is the coefficient of Xb0Xpb1 · · ·Xpsbs on the right.

Lemma 1.1.2. — If k, ` > 0 and if

ak,` =

pn−1∑
j=0

(
j

k

)(
j

`

)
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then ak,` = 0 if k + ` 6 pn − 2 and ak,` = (−1)k if k + ` = pn − 1.

Proof. — The number ak,` is the coefficient of XkY ` in the expansion of

pn−1∑
j=0

(1 +X)j(1 + Y )j =
(1 +X + Y +XY )p

n − 1

(1 +X + Y +XY )− 1
= (X + Y +XY )p

n−1.

Each term of this polynomial is of the form XaY b(XY )c with a+ b+ c = pn − 1 so that

there is no term of total degree 6 pn − 2 and the terms of total degree pn − 1 are those

for which c = 0 and therefore they are the (−1)kXkY pn−1−k.

Let Vn be the vector space of sequences (x0, . . . , xpn−1) with xi ∈ E. The bilinear map

〈·, ·〉 : Vn × Vn → E given by 〈x, y〉 =
∑pn−1

j=0 xjyj is a perfect pairing on Vn.

Let vk,n ∈ Vn be defined by

vk,n =

((
0

k

)
,

(
1

k

)
, . . . ,

(
pn − 1

k

))
,

and let Vk,n be the subspace of Vn generated by v0,n, . . . , vk−1,n.

Lemma 1.1.3. — For 0 6 k 6 pn, the space Vk,n is of dimension k and V ⊥k,n = Vpn−k,n.

Proof. — Since the first j components of vj,n are 0 and the (j+1)-th is 1, the vectors vj,n

are linearly independent and Vk,n is of dimension k. Lemma 1.1.2 says that 〈vj,n, v`,n〉 = 0

if j + ` 6 pn − 2 and this gives us V ⊥k,n = Vpn−k,n by a dimension count.

In particular, V1,n is the space of constant sequences and Vpn−1,n is the space of zero

sum sequences. Note that by lemma 1.1.1, we have
(
j+pn

k

)
=
(
j
k

)
if 0 6 k 6 pn− 1 so that

we can safely think of the indices of the x ∈ Vn as belonging to Z/pnZ. Let ∆ : Vn → Vn

be the map defined by (∆x)j = xj−1 − xj.

Lemma 1.1.4. — If 0 6 k + ` 6 pn, then ∆k gives rise to an exact sequence

0→ Vk,n → V`+k,n
∆k

−→ V`,n → 0,

and ∆k(x) ∈ V`,n if and only if x ∈ V`+k,n.

Proof. — There is nothing to prove if k = 0 and we now assume that k = 1. It is clear

that ker(∆) = V1,n the space of constant sequences, and the formula(
j

m

)
−
(
j − 1

m

)
=

(
j − 1

m− 1

)
implies that ∆(V`+1,n) ⊂ V`,n so that by counting dimensions we see that there is indeed

an exact sequence 0 → V1,n → V`+1,n
∆−→ V`,n → 0. If ∆(x) ∈ V`,n then this implies that

there exists y ∈ V`+1,n such that ∆(x) = ∆(y) so that x ∈ V`+1,n + ker(∆) = V`+1,n. This

proves the lemma for k = 1 and for k > 2, it follows from a straightforward induction.
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Note that ∆ is nilpotent of rank pn and therefore the only subspaces of Vn stable under

∆ are the ker(∆k) = Vk,n. Since the cyclic shift (xj) 7→ (xj−1) is equal to Id +∆, this also

implies that the only subspaces of Vn stable under the cyclic shift are the Vk,n.

If a ∈ Zp then let µa : Vn → Vn be the map defined by µa(x)j = xaj.

Lemma 1.1.5. — We have µa(vk,n) − akvk,n ∈ Vk,n so that if x ∈ Vk+1,n then µa(x) ∈
Vk+1,n.

Proof. — We prove both claims by induction, assuming that it is true for ` 6 k − 1 (it

is immediate if ` = 0 or even ` = 1). Vandermonde’s identity gives us(
aj

k

)
=

(
aj − a
k

)(
a

0

)
+

(
aj − a
k − 1

)(
a

1

)
+ · · ·+

(
aj − a

0

)(
a

k

)
,

which shows that ∆◦µa(vk,n)−akvk−1,n ∈ Vk−1,n by the induction hypothesis and therefore

that µa(vk,n)− akvk,n ∈ Vk,n by lemma 1.1.4 which finishes the induction.

Lemma 1.1.6. — If x ∈ Vk,n and if 0 6 i 6 p− 1, then the sequence y ∈ Vn−1 given by

yj = xpj+i belongs to Vb(k−1)/pc+1,n−1.

Proof. — If ` 6 k − 1 and if we write ` = pb`/pc + `0 so that 0 6 `0 6 p − 1, then by

lemma 1.1.1, we have (
pj + i

`

)
=

(
j

b`/pc

)(
i

`0

)
,

which implies the lemma.

1.2. The twisted tree

We now turn to B/KZ and the smooth representations of B. If β ∈ Qp and δ ∈ Z, let

gβ,δ =

(
1 β
0 pδ

)
.

Let A = {αnp−n+· · ·+α1p
−1 where 0 6 αj 6 p−1} so that A is a system of representatives

of Qp/Zp.

Lemma 1.2.1. — We have B =
∐

β∈A,δ∈Z gβ,δ ·KZ.

Proof. — If ( a b0 d ) ∈ B, then with obvious notations we have(
a b
0 d

)
=

(
a0p

α b
0 d0p

δ

)
=

(
1 bp−αd−1

0 − c
0 pδ−α

)(
a0 cd0

0 d0

)(
pα 0
0 pα

)
which tells us that B = ∪β∈A,δ∈Zgβ,δ · KZ since we can always choose c ∈ Zp such that

bp−αd−1
0 − c ∈ A. The fact that the union is disjoint is immediate.

The vertices of the tree of GL2(Qp) can then be labelled by the δ ∈ Z and the β ∈ A.
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Part of the tree

If σ1 and σ2 are two smooth characters σi : Q×p → E×, then let σ = σ1⊗σ2 : KZ→ E×

be the character σ : ( a b0 d ) 7→ σ1(a)σ2(d) and let indB
KZ σ be the set of functions f : B→ E

satisfying f(kg) = σ(k)f(g) if k ∈ KZ and such that f has compact support modulo Z.

If g ∈ B, denote by [g] the function [g] : B → E defined by [g](h) = σ(hg) if h ∈ KZg−1

and [g](h) = 0 otherwise. Every element of indB
KZ σ is a finite linear combination of some

functions [g]. We make indB
KZ σ into a representation of B in the usual way: if g ∈ B,

then (gf)(h) = f(hg). In particular, we have g[h] = [gh] in addition to the formula

[gk] = σ(k)[g] for k ∈ KZ.

Lemma 1.2.2. — If χ is a smooth character of Q×p then the map [g] 7→ (χ◦det)(g)−1[g]

extends to a B-equivariant isomorphism from (indB
KZ σ)⊗ (χ ◦ det) to indB

KZ(σ1χ⊗ σ2χ).

Proof. — Let us write [·]σ and [·]σχ for the two functions [·] in the two induced represen-

tations. We then have h[g]σ = (χ ◦ det)(h)[hg]σ and

(χ ◦ det)(g)−1h[g]σχ = (χ ◦ det)(h)(χ ◦ det)(hg)−1[hg]σχ

so that the above map is indeed B-equivariant.

Each f ∈ indB
KZ σ can be written in a unique way as f =

∑
β,δ α(β, δ)[gβ,δ]. The formula(

1 β + λ
0 pδ

)
=

(
1 β
0 pδ

)(
1 λ
0 1

)
and the fact that σ is trivial on

(
1 Zp

0 1

)
imply that we can extend the definition of α(β, δ)

to all β ∈ Qp. We then have the formula α(β, δ) (( 1 λ
0 1 ) f) = α(β − λpδ, δ)(f) if λ ∈ Qp.

The support of f is the set of gβ,δ such that α(β, δ) 6= 0. Let us say that the height of

an element gβ,δ is δ. We say that f ∈ indB
KZ σ has support in levels n1, . . . , nk if all the

elements of its support are of height ni for some i. If f ∈ indB
KZ σ, then we can either

raise or lower the support of f using the formula
(

1 0
0 p±1

)
gβ,δ = gβ,δ±1.
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If n > 0 let us say that an n-block is the set of gβ−jp−n,δ for j = 0, . . . , pn − 1 and that

the initial n-block is the one for which β = 0. We use the same name for the vector of

coefficients α(β − jp−n, δ) for j = 0, . . . , pn − 1 so that an n-block is then an element of

Vn from §1.1.
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In the following paragraph, we study some irreducible quotients of indB
KZ σ of arithmetic

interest but before we do that, it is worthwhile to point out that all smooth irreducible

representations of B admitting a central character are a quotient of some indB
KZ σ.

Theorem 1.2.3. — If Π is a smooth irreducible representation of B admitting a central

character, then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB
KZ σ.

Proof. — The group I1 defined by

I1 =

(
1 + pZp Zp

0 1 + pZp

)
is a pro-p-group and hence ΠI1 6= 0. Furthermore, I1 is a normal subgroup of K so that

ΠI1 is a representation of K/I1 = F×p × F×p . Since this group is a finite group of order

prime to p, we have ΠI1 = ⊕ηΠK=η where η runs over the characters of F×p × F×p and

since Z acts through a character by hypothesis, there exists a character σ = σ1 ⊗ σ2 of
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KZ and v ∈ Π such that k · v = σ(k)v for k ∈ KZ. By Frobenius reciprocity, we get a

nontrivial map indB
KZ σ → Π and this map is surjective since Π is irreducible.

Note that σ is not uniquely determined by Π: there are nontrivial intertwinings between

some quotients of indB
KZ σ for different σ.

We finish this paragraph with a useful general lemma. Let τk =
(

1 −1/pk

0 1

)
and let Π be

any representation of B.

Lemma 1.2.4. — If v 6= 0 ∈ Π

“
1 Zp

0 1

”
and if k > 0 then one of the pk elements

v` =

pk−1∑
j=0

(
j

`

)
τ jk(v), 0 6 ` 6 pk − 1

is nonzero and fixed by τk.

Proof. — If all pk elements above were zero then lemma 1.1.3 would imply that for any

sequence x = (xj) ∈ Vk we would have
∑pk−1

j=0 xjτ
j
k(v) = 0 and with x = (1, 0, . . . , 0), we

get v = 0. Let ` be the smallest integer such that v` 6= 0. If ` = 0 then τk(v0) − v0 = 0

since τ p
k

k = τ0 ∈
(

1 Zp

0 1

)
and otherwise τk(v`)− v` = −v`−1 = 0.

1.3. Some irreducible representations of B2(Qp)

If n > 1 and 0 6 ` 6 pn − 1, let w`,n ∈ indB
KZ σ be the element

w`,n =

pn−1∑
j=0

(
j

`

)[(
1 −jp−n
0 1

)]
,

so that the initial n-block of w`,n is v`,n.

Definition 1.3.1. — If n > 2 and if 1 6 h 6 pn−1− 1 and if σ = σ1⊗ σ2 is a character

of KZ such that σ1(p) = σ2(p), let λ = σ1(p) = σ2(p) and let Sn(h, σ) be the subspace of

indB
KZ σ generated by the translates under the action of B of (−λ−1)n

[(
1 0
0 pn

)]
+wh(p−1),n.
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The representations we are interested in are the quotients Πn(h, σ) = indB
KZ σ/Sn(h, σ)

and the main result of this chapter is that they are irreducible if h is primitive. Before

we can prove this, we need a number of technical results.

If f ∈ indB
KZ σ and if 0 6 i 6 n− 1, let

fi =
∑
β∈A

δ≡i mod n

α(β, δ)[gβ,δ]

so that f = f0 + f1 + · · ·+ fn−1.

Lemma 1.3.2. — If f ∈ indB
KZ σ then f ∈ Sn(h, σ) if and only if fi ∈ Sn(h, σ) for all

0 6 i 6 n− 1.

Proof. — We need only to check that if f ∈ Sn(h, σ) then fi ∈ Sn(h, σ) and this follows

from the fact that Sn(h, σ) is generated by elements which have their supports in levels

equal modulo n.

Let in−1 . . . i1i0 be the expansion of h(p− 1) in base p. Note that h 6 pn−1− 1 implies

that in−1 6 p − 2. Let hk = in−k + pin−k+1 + · · · + pk−1in−1 so that hk = phk−1 + in−k

and h0 = 0 and hn = h(p − 1). Recall that the vectors vk,n were defined in §1.1 and let

B+ =
∐

β∈A,δ>0 gβ,δKZ.

Lemma 1.3.3. — If the support of g ∈ Sn(h, σ) is in levels > 0, then

(1) g is a linear combination of B+-translates of (−λ−1)n
[(

1 0
0 pn

)]
+ wh(p−1),n

(2) if 1 6 k 6 n, then the k-blocks of level 0 of g are in Vhk+1,k.

Proof. — Note first that if ( a c0 d ) ∈ KZ, then(
a c
0 d

)
w`,n =

pn−1∑
j=0

(
j

`

)(
a c
0 d

)[(
1 −jp−n
0 1

)]

=

pn−1∑
j=0

(
j

`

)[(
1 −jp−nad−1

0 1

)(
a c
0 d

)]

= σ1(a)σ2(d)

pn−1∑
j=0

(
jda−1

`

)[(
1 −jp−n
0 1

)]
,

and note also that the initial n-block of
(

1 jp−n

0 1

)
w`,n − w`,n is in V`,n.

Let us now prove (1). Set B0 = {( a b0 d ) ∈ B such that valp(a) = valp(d)}. It is enough

to prove that any B0-linear combination of ϕ = (−λ−1)n
[(

1 0
0 pn

)]
+wh(p−1),n which is zero

in level 0 is actually identically zero. If
∑

i∈I λi
(
ai bi
0 di

)
·ϕ is such a combination where we

assume for example (using the action of the center) that di = 1, then the terms indexed



ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL2(Qp) 11

by i1 and i2 contribute to the same n-block in level 0 if and only if bi1 − bi2 ∈ p−nZp and

we can therefore assume that(
ai bi
0 di

)
∈ S =

(
Z×p p−nZp

0 Z×p

)
so that we’re looking at the initial n-block. The formulas above and lemma 1.1.5 applied

to da−1 ∈ Z×p show that if g = ( a c0 d ) ∈ S, then the initial n-block of g · ϕ− σ1(a)σ2(d)ϕ

belongs to Vh(p−1),n so that in a linear combination of S-translates of ϕ, the coefficient of[(
1 0
0 pn

)]
is a nonzero multiple of the coefficient of wh(p−1),n; if the latter is zero, then so

is the former and our linear combination is identically zero.

Let us now prove (2). The conclusion of (2) is stable under linear combinations of B+-

translates so by (1) we only need to check that if b ∈ B+ then the k-blocks of bwhn,n are in

Vhk+1,k. If b = Id then the n-block of whn,n is vhn,n which belongs to Vhn+1,n by definition.

If we know that the k-blocks are in Vhk+1,k then the fact that bhk/pc = hk−1 and lemma

1.1.6 imply that the (k − 1)-blocks are in Vhk−1+1,k−1 so we are done by induction. Next,

the above formula for ( a c0 d )w`,n and lemma 1.1.5 applied to da−1 ∈ Z×p show that the

n-blocks of the ( a c0 d )whn,n are contained in Vhn+1,n and we are reduced to the claim above.

Finally, gβ,δ ·f is f moved up by δ and shifted by β and the conclusion of (2) is unchanged

under those two operations since the Vk,n are stable under the cyclic shift.

Recall that τk =
(

1 −1/pk

0 1

)
and that α(β, δ)(τk(f)) = α(β+pδ−k, δ)(f) so that the effect

of τk − Id on a k-block y in level 0 is to replace it with ∆(y).

Lemma 1.3.4. — If the support of f ∈ Sn(h, σ) is contained in a single k-block with

0 6 k 6 n, then this k-block is in Vhk,k and all such elements do occur : w`,k ∈ Sn(h, σ)

for 0 6 ` 6 hk − 1.

Proof. — If k = n then the n-block of τn(whn,n)−whn,n is vhn−1,n and the set of possible n-

blocks is stable under the cyclic shift so we get all of Vhn,n but not Vhn+1,n since Πn(h, σ) 6=
0. If some v`,k occurs as the k-block of some f , wlog in level 0, then for all 0 6 m 6 p− 1

the (k + 1)-block of
∑p−1

i=0

(
i
m

)
τ ik+1(f) is [

(
0
m

)
v`,k, . . . ,

(
p−1
m

)
v`,k] and this is vp`+m,k+1 since(

j
`

)(
i
m

)
=
(
pj+i
p`+m

)
by lemma 1.1.1. In particular if vhk,k occurred then so would vhk+1,k+1

and we get a contradiction. Conversely, assuming inductively that the second assertion of

the lemma holds for k + 1, this tells us that all [
(

0
m

)
v`,k, . . . ,

(
p−1
m

)
v`,k] occur as a (k + 1)-

block for p`+m 6 hk+1 − 1 and by taking m = p− 1 and ` 6 hk − 1 we obtain v`,k and

we are done by a descending induction on k.

Let us write as above a (n+ 1)-block as [b0, . . . , bp−1] where each bi is a n-block.
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Lemma 1.3.5. — If the support of g ∈ Sn(h, σ) is in levels 0, 1, . . . , n − 1 then the

(n+ 1)-blocks of level 0 of g are of the form

[µ0vhn,n + x0, . . . , µp−1vhn,n + xp−1],

where xi ∈ Vhn,n and (µ0, . . . , µp−1) ∈ Vh1+1,1.

Proof. — By lemma 1.3.2, we may assume that the support of g is in level 0 and lemma

1.3.3 tells us that the n-blocks of g are in Vhn+1,n so that each of them can be written

as µivhn,n + xi where xi ∈ Vhn,n. By subtracting from g appropriate combinations of

translates of the w`,n with 0 6 ` 6 hn − 1 we get a g′ such that xi = 0 for all i and

by subtracting appropriate combinations of translates of (−λ−1)n
[(

1 0
0 pn

)]
+ whn,n from

g′ we get an element g′′ of Sn(h, σ) with support in level n and whose 1-blocks are the

−(−λ−1)n(µ0, . . . , µp−1). Lemma 1.3.3 applied to
(

1 0
0 1/pn

)
g′′ gives us (µ0, . . . , µp−1) ∈

Vh1+1,1.

Corollary 1.3.6. — If the support of f ∈ indB
KZ σ is in levels 0, 1, . . . , n − 1 and if

τn+1(f)− f ∈ Sn(h, σ), then the n-blocks of level 0 of f are in Vhn+1,n.

Proof. — Lemma 1.3.5 applied to τn+1(f)−f tells us that the (n+1)-blocks of τn+1(f)−
f in level 0 are of the form [µ0vhn,n + x0, . . . , µp−1vhn,n + xp−1] with xi ∈ Vhn,n and

(µ0, . . . , µp−1) ∈ Vh1+1,1. If we write f =
∑

β,δ α(β, δ)[gβ,δ], then the coefficient of [gβ,0] in

τn+1(f)− f is α(β + p−n−1, 0)− α(β, 0) so that the n-blocks of τn+1(f)− f are given by

(for readability, we omit both β and δ = 0 from the notation)

α
(

1
pn+1

)
− α(0) α

(
1

pn+1 + 1
pn

)
− α

(
1

pn

)
. . . α

(
1

pn+1 + pn−1
pn

)
− α

(
pn−1

pn

)
α
(

2
pn+1

)
− α

(
1

pn+1

)
α
(

2
pn+1 + 1

pn

)
− α

(
1

pn+1 + 1
pn

)
. . . α

(
2

pn+1 + pn−1
pn

)
− α

(
1

pn+1 + pn−1
pn

)
...

...
...

α
(

p
pn+1

)
− α

(
p−1
pn+1

)
α
(

p
pn+1 + 1

pn

)
− α

(
p−1
pn+1 + 1

pn

)
. . . α

(
p

pn+1 + pn−1
pn

)
− α

(
p−1
pn+1 + pn−1

pn

)
.

Let y0, . . . , yp−1 be the n-blocks of the (n + 1)-block of f we are considering. By

summing the rows of the above array, we get (recall that α(β) = α(1 + β))

α
(
β + 1

pn

)
− α(β) α

(
β + 2

pn

)
− α

(
β + 1

pn

)
. . . α(β)− α

(
β + pn−1

pn

)
which is ∆(y0) so that

∆(y0) =

p−1∑
i=0

(µivhn,n + xi) =

p−1∑
i=0

xi ∈ Vhn,n

since
∑p−1

i=0 µi = 0 because (µ0, . . . , µp−1) ∈ Vh1+1,1 with h1 + 1 = in−1 + 1 6 p− 1 and if

∆(y0) ∈ Vhn,n then y0 ∈ Vhn+1,n by lemma 1.1.4. The same result holds for yj by applying

the previous reasoning to τ jn+1(f).



ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL2(Qp) 13

Corollary 1.3.7. — If the support of f ∈ indB
KZ σ is in levels 0, 1, . . . , n − 1 and the

support in level 0 is included in a single n-block and τn(f)−f ∈ Sn(h, σ), then the n-block

of f in level 0 is in Vhn+1,n.

Proof. — Lemma 1.3.5 applied to g = τn(f)− f tells us that the n-block of τn(f)− f is

of the form µ0vhn,n + x0 with x0 ∈ Vhn,n and (µ0, 0, . . . , 0) ∈ Vh1+1,1 so that µ0 = 0 since

h1 + 1 6 p − 1. If y denotes the n-block of f then the n-block of τn(f) − f is ∆(y) so

that ∆(y) ∈ Vhn,n and therefore y ∈ Vhn+1,n by lemma 1.1.4.

If n > 1 and if 1 6 h 6 pn−2, we say that h is primitive if there is no d < n dividing n

such that h is a multiple of (pn−1)/(pd−1). This condition is equivalent to requiring that

if we write h = en−1 . . . e1e0 in base p, then the map i 7→ ei from Z/nZ to {0, . . . , p− 1}
has no period strictly smaller than n.

Theorem 1.3.8. — If n > 2 and if 1 6 h 6 pn−1 − 1 is primitive, then Πn(h, σ) is

irreducible.

Proof. — It is enough to show that if f ∈ indB
KZ σ is such that f 6= 0 in Πn(h, σ) then

some linear combination of translates of f is equal to [Id] mod Sn(h, σ).

Suppose that the support of f is in levels > a. Since (−λ−1)n
[(

1 0
0 pn

)]
+ whn,n is an

element whose support is one element of height n and a n-block of height 0, by subtracting

suitable linear combinations of translates of this from f we may assume that the support

of f is in levels a, a + 1, . . . , a + n − 1; multiplying f by some power of
(

1 0
0 p

)
we may

then assume that the support of f is in levels 0, 1, . . . , n − 1. In particular, we have

f ∈ (indB
KZ σ)

“
1 Zp

0 1

”
. Let s0, s1, . . . , sn−1 � 0 be such that the support of f is included in

the initial s0-block in level 0, the initial s1-block in level 1, . . . , the initial sn−1-block in

level n− 1.

Lemma 1.2.4 applied with k = n + 1 shows that we may replace f by one of the∑pn+1−1
j=0

(
j
`

)
τ jn+1(f) so that τn+1(f)− f ∈ Sn(h, σ). The support of this new f is included

in the initial max(sj, n + 1 − j)-block in level j for 0 6 j 6 n − 1. Corollary 1.3.6 then

shows that there exists g ∈ Sn(h, σ) which is a linear combination of
(

1 Qp

0 1

)
-translates of

(−λ−1)n
[(

1 0
0 pn

)]
+whn,n and of the w`,n for 0 6 ` 6 hn− 1 such that the n-blocks of f in

level 0 are the same as the n-blocks of g in level 0. We can then replace f by
(

1 0
0 1/p

)
(f−g)

and the support of this new f is included in the initial max(sj+1, n− j)-block in level j

for 0 6 j 6 n− 2 and in the initial max(s0 − n, 1)-block in level n− 1 if j = n− 1. By

iterating the procedure of this paragraph, we can reduce the width of the support of f

until sj = n− j for 0 6 j 6 n− 1.

The modified f coming from the previous paragraph satisfies τn(f)− f ∈ Sn(h, σ) and

its support is included in the initial (n− j)-block in level j for 0 6 j 6 n− 1. Corollary
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1.3.7 then shows that there exists g ∈ Sn(h, σ) which is a linear combination of
(

1 Qp

0 1

)
-

translates of (−λ−1)n
[(

1 0
0 pn

)]
+ whn,n and of the w`,n for 0 6 ` 6 hn − 1 such that the

n-block of g in level 0 is the same as the n-block of f in level 0. We can then replace f by(
1 0
0 1/p

)
(f − g) and the support of this new f is included in the initial (n− j − 1)-block

in level j for 0 6 j 6 n− 1.

The modified f coming from the previous paragraph satisfies τn−1(f) − f ∈ Sn(h, σ)

and its support is included in the initial (n − j − 1)-block in level j for 0 6 j 6 n − 1

and the k-block xk of f in level n − k − 1 is in Vhk+1,k by applying lemmas 1.3.2, 1.3.4

and 1.1.4. By lemma 1.3.4, we can subtract elements of Vhk,k from xk without changing

the class of f in Πn(h, σ) so we can assume that each xk is a (possibly 0) multiple of

vhk,k. If 0 6 m 6 p − 1, let Um be the operator defined by Um(f) =
∑p−1

i=0

(
i
m

)
τ in(f) as

in the proof of lemma 1.3.4. At level n − 1 − k it has the effect of turning vhk,k into

vhk+1+m−in−k−1,k+1 since hk+1 = phk + in−k−1 and
(
j
`

)(
i
m

)
=
(
pj+i
p`+m

)
. If we choose m such

that m − in−k−1 6 0 and m − in−k−1 = 0 for at least one value of k, then Um(f) is

made up of (k + 1)-blocks in level n − k − 1 and we can get rid of all those for which

m − in−k−1 6 −1. This allows us to lower the number of nonzero blocks of f unless

m = in−k−1 for all the corresponding nonzero blocks. In this case we lower f by one level

and if there is a block in level 0 we send it to level n before lowering f by subtracting an

appropriate multiple of (−λ−1)n
[(

1 0
0 pn

)]
+ whn,n. By iterating this procedure (replacing

f by Um(f) and lowering a possibly modified f), we can reduce the number of nonzero

blocks of f until our procedure starts cycling.

If this is the case then there exists some d dividing n such that at some point f has

nonzero blocks exactly in levels n− 1− `d for 0 6 ` 6 (n/d)− 1 and the map r 7→ ir is

then also periodic of period d. If d = n, then we are done. If d < n, then I claim that

hd is not divisible by p− 1. Indeed, we have h(p− 1) = hd(p
n − 1)/(pd − 1) since r 7→ ir

is periodic of period d, and if p− 1 divides hd then h is not primitive. If a ∈ Z×p is such

that a is a generator of F×p , then µa(v`,k) − a`v`,k ∈ V`,k by lemma 1.1.5. This implies

that σ2(a−1) ( 1 0
0 a ) f − f has at least one fewer block (the top one) and is nonzero (the

block of level n− 1− d is not in Sn(h, σ)), so that we can iterate again our procedure of

the previous paragraph (replacing f by Um(f) and lowering a possibly modified f) until

d = n so that f becomes equivalent to an element supported on only one point.

Remark 1.3.9. — We have Πn(h, σ)⊗ (χ ◦ det) ' Πn(h, σ1χ⊗ σ2χ) by lemma 1.2.2.
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2. Galois representations and (ϕ,Γ)-modules

In this chapter, we construct the (ϕ,Γ)-modules associated to the absolutely irreducible

E-linear representations of GQp and then apply Colmez’ functor to them in order to get

a smooth irreducible representation of B.

2.1. Construction of (ϕ,Γ)-modules

Let Cp be the completion of Qp and let Ẽ+ = lim←−x 7→xp
OCp be the ring defined by

Fontaine (see for example §1.2 of [Fon94]). Recall that if x, y ∈ Ẽ+, then

(xy)(i) = x(i)y(i) and (x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))p
j

and that Ẽ+ is endowed with the valuation valE defined by valE(y) = valp(y
(0)). If

we choose once and for all a compatible system {ζpn}n>0 of pn-th roots of 1 then ε =

(1, ζp, ζp2 , . . .) ∈ Ẽ+ and we set X = ε− 1 and Ẽ = Ẽ+[1/X] so that by §4.3 of [Win83],

Ẽ is an algebraically closed field of characteristic p, which contains Fp((X))sep as a dense

subfield. Given the construction of Ẽ from Cp, we see that it is endowed with a continuous

action of GQp . We have for instance g(X) = (1 +X)χcycl(g) − 1 if g ∈ GQp so that HQp =

kerχcycl acts trivially on Fp((X)) and we get a mapHQp → Gal(Fp((X))sep/Fp((X))) which

is an isomorphism (this follows from the theory of the “field of norms” of [FW79], see for

example theorem 3.1.6 of [Fon90]). We also get an action of Γ = GQp/HQp on Fp((X)).

If W is an Fp-linear representation of GQp then the Fp((X))-vector space D(W ) =

(Fp((X))sep⊗Fp W )HQp inherits the frobenius ϕ of Fp((X))sep and the residual action of Γ.

Definition 2.1.1. — A (ϕ,Γ)-module over Fp((X)) is a finite dimensional Fp((X))-

vector space endowed with a semilinear frobenius ϕ such that Mat(ϕ) ∈ GLd(Fp((X)))

and a continuous and semilinear action of Γ commuting with ϕ.

We see that D(W ) is then a (ϕ,Γ)-module over Fp((X)). If E is a finite extension of

Fp, we endow it with the trivial ϕ and the trivial action of Γ so that we may talk about

(ϕ,Γ)-modules over E((X)) = E⊗Fp Fp((X)) and we then have the following result which

is proved in §1.2 of [Fon90] and whose proof we recall for the convenience of the reader.

Theorem 2.1.2. — The functor W 7→ D(W ) gives an equivalence of categories between

the category of E-representations of GQp and the category of (ϕ,Γ)-modules over E((X)).

Sketch of proof. — Given the isomorphism HQp ' Gal(Fp((X))sep/Fp((X))), Hilbert’s

theorem 90 tells us that H1
discrete(HQp ,GLd(Fp((X))sep)) = {1} if d > 1 so that if W

is an Fp-linear representation of HQp then

Fp((X))sep ⊗Fp W ' (Fp((X))sep)dim(W )
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as representations ofHQp so that the Fp((X))-vector space D(W ) = (Fp((X))sep⊗FpW )HQp

is of dimension dim(W ) and W = (Fp((X))sep ⊗Fp((X)) D(W ))ϕ=1.

If D is a (ϕ,Γ)-module over Fp((X)), then let W (D) = (Fp((X))sep⊗Fp((X)) D)ϕ=1. If we

choose a basis of D and if Mat(ϕ) = (pij)16i,j6dim(D) in that basis, then the algebra

A = Fp((X))[X1, . . . , Xdim(D)]/(X
p
j −

∑
i

pijXi)16j6dim(D)

is an étale Fp((X))-algebra of rank pdim(D) and W (D) = HomFp((X))−algebra(A,Fp((X))sep)

so that W (D) is an Fp-vector space of dimension dim(D).

It is then easy to check that the functors W 7→ D(W ) and D 7→ W (D) are inverse

of each other. Finally, if E 6= Fp then one can consider an E-representation as an Fp-

representation with an E-linear structure and likewise for (ϕ,Γ)-modules, so that the

equivalence carries over.

We now compute the (ϕ,Γ)-modules associated to certain Galois representations. If n

is an integer > 1, choose πn ∈ Qp such that πp
n−1
n = −p. The fundamental character of

level n defined in §1.7 of [Ser72], ωn : IQp → F
×
p is given by ωn(g) = g(πn)/πn ∈ F

×
p for

g ∈ IQp . This definition does not depend on the choice of πn and shows that ωn extends

to a character GQpn → F×pn . With this definition, ωn is actually the reduction mod p of

the Lubin-Tate character associated to the uniformizer p of the field Qpn .

In order to describe the (ϕ,Γ)-modules associated to irreducible mod p representations,

we need to give a “characteristic p” construction of ωn. Let ω = ω1 be the mod p

cyclotomic character and let Y ∈ Fp((X))sep be an element such that Y (pn−1)/(p−1) = X.

If g ∈ GQp , then fg(X) = ω(g)X/g(X) depends only on the image of g in Γ. Since

fg(X) ∈ 1 +XFp[[X]], the formula f sg (X) makes sense if s ∈ Zp.

Lemma 2.1.3. — If g ∈ GQpn then g(Y ) = Y ωpn(g)f
− p−1

pn−1
g (X).

Proof. — Recall that X ∈ Ẽ+ = lim←−OCp is equal to ε− 1 where ε = (ζpj )j>0 and where

{ζpj}j>0 is a compatible sequence. If j > 1, pick πn,j ∈ OCp such that

π
pn−1
p−1

n,j = ζpj − 1.

If g ∈ GQpn , then g(ζpj − 1) = [ω(g)](ζpj − 1)f−1
g (ζpj − 1) where we also write fg(X) for

[ω(g)]X/((1 +X)χcycl(g) − 1) ∈ 1 +XZp[[X]] and so there exists ωn,j(g) ∈ F×pn such that

g(πn,j)

πn,j
= [ωn,j(g)]f

− p−1
pn−1

g (ζpj − 1),
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where [·] is the Teichmüller lift from F×pn to Q×pn . The map g 7→ ωn,j(g) is a character of

GQpn which does not depend on the choice of πn,j. In addition, we have{
(ζpj+1 − 1)p = (ζpj − 1) · (1 + O(p1/p)) if j > 1,

(ζp − 1)p−1 = −p · (1 + O(p1/p))

so that ωpn,j+1 = ωn,j if j > 1 and ωn,1 = ωn. This also tells us that we may choose the πn,j

so that πpn,j+1/πn,j ∈ 1 + p1/pOCp . If we write Y = (y(i)) ∈ lim←−OCp , then we have y(i) =

limj→+∞ π
pj

n,i+j since the πn,j are compatible in the sense that πpn,j+1/πn,j ∈ 1 + p1/pOCp

so that if g ∈ GQpn , then

g(y(i))

y(i)
= [ωn,i(g)] · lim

j→+∞
(f
− p−1

pn−1
g (ζpi+j − 1))p

j

,

and therefore we have g(Y ) = Y ωpn(g)f
− p−1

pn−1
g (X) in Ẽ.

If 1 6 h 6 pn − 2 is primitive, the characters ωhn, ω
ph
n , . . . , ω

pn−1h
n of IQp are pairwise

distinct. Let µλ be the unramified character sending the arithmetic frobenius to λ−1 (so

that later when we normalize class field theory to send the geometric frobenius to p then

µλ(p) = λ).

Lemma 2.1.4. — Every absolutely irreducible n-dimensional E-linear representation of

GQp is isomorphic (after possibly enlarging E) to (ind
GQp

GQpn
ωhn) ⊗ µλ for some primitive

1 6 h 6 pn − 2 and some λ ∈ E×.

Proof. — If W is such a representation then by §1.6 of [Ser72], we may extend E so

that W |IQp
splits as a direct sum of n tame characters and since W is irreducible, these

characters are transitively permuted by frobenius so that they are of level n and there

exists a primitive h such that W = ⊕n−1
i=0 Wi where IQp acts on Wi by ωp

ih
n . Since ωn

extends to GQpn each Wi is stable under GQpn which then acts on it by ωp
ih
n χi where χi is

an unramified character of GQpn . The lemma then follows from Frobenius reciprocity.

If λ ∈ F
×
p is such that λn ∈ F×p , let Wλ = {α ∈ Fp such that αp

n
= λ−nα} so that Wλ is

a Fpn-vector space of dimension 1 and hence a Fp-vector space of dimension n. By com-

posing the map Gal(Qnr
p (πn)/Qp)

∼−→ F×pnoẐ with the map F×pnoẐ→ EndFp(Wλ) given by

(x, 0) 7→ mh
x (where mx is the multiplication by x map) and by (1, 1) 7→ (α 7→ αp) we get

an n-dimensional Fp-linear representation of GQp which is isomorphic to (ind
GQp

GQpn
ωhn)⊗µλ

after extending scalars and whose determinant is ωhµn−1
−1 µ

n
λ so that if λn = (−1)n−1 then

the determinant is ωh and we call ind(ωhn) the representation thus constructed; it is then

uniquely determined by the two conditions det ind(ωhn) = ωh and ind(ωhn)|IQp
= ⊕n−1

i=0 ω
pih
n

since (ind
GQp

GQpn
ωhn)⊗ µλ1 = (ind

GQp

GQpn
ωhn)⊗ µλ2 if and only if we have λn1 = λn2 .
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Corollary 2.1.5. — Every absolutely irreducible n-dimensional E-linear representation

of GQp is isomorphic to ind(ωhn)⊗µλ for some primitive 1 6 h 6 pn−2 and some λ ∈ F
×
p

such that λn ∈ E×.

Theorem 2.1.6. — The (ϕ,Γ)-module D(ind(ωhn)) is defined over Fp((X)) and admits

a basis e0, . . . , en−1 in which γ(ej) = fγ(X)hp
j(p−1)/(pn−1)ej if γ ∈ Γ and ϕ(ej) = ej+1 for

0 6 j 6 n− 2 and ϕ(en−1) = (−1)n−1X−h(p−1)e0.

Proof. — Let W be the Fp-representation of GQp associated to the (ϕ,Γ)-module de-

scribed in the theorem. If f = Xhe0 ∧ . . . ∧ en−1, then ϕ(f) = f and γ(f) = ω(γ)hf

so that the determinant of W is indeed ωh and therefore we only need to show that the

restriction of Fpn ⊗Fp W to IQp is ωhn ⊕ ωphn ⊕ · · · ⊕ ωp
n−1h
n . To clarify things, let us write

F\
pn for Fpn when it occurs as a coefficient field, so that ϕ is trivial on F\

pn .

If we write F\
pn ⊗Fp Fp((X))sep as

∏n−1
k=0 Fp((X))sep via the map x⊗ y 7→ (σk(x)y) where

σ is the absolute frobenius on F\
pn , then given (x0, . . . , xn−1) ∈

∏n−1
k=0 Fp((X))sep, we have

ϕ((x0, . . . , xn−1)) = (ϕ(xn−1), ϕ(x0), . . . , ϕ(xn−2))

g((x0, . . . , xn−1)) = (g(x0), . . . , g(xn−1)),

if g ∈ GQpn (but not if g ∈ GQp). Choose some α ∈ Fp((X))sep such that αp
n−1 = (−1)n−1

and define

v0 = (αY h, 0, . . . , 0) · e0 + (0, αpY ph, . . . , 0) · e1 + · · · (0, . . . , 0, αpn−1

Y pn−1h) · en−1

v1 = (0, αY h, . . . , 0) · e0 + (0, 0, αpY ph, . . . , 0) · e1 + · · · (αpn−1

Y pn−1h, 0, . . . , 0) · en−1

...

vn−1 = (0, . . . , 0, αY h) · e0 + (αpY ph, 0, . . . , 0) · e1 + · · · (0, . . . , 0, αpn−1

Y pn−1h, 0) · en−1.

The vectors v0, . . . , vn−1 give a basis of F\
pn⊗Fp (Fp((X))sep⊗Fp((X))D(W )) and the formulas

for the action of ϕ imply that ϕ(vj) = vj so that vj ∈ F\
pn ⊗Fp W . The formulas for the

action of Γ and lemma 2.1.3 imply that g(vj) = ωhp
1−j

n vj if g ∈ IQp which finishes the

proof.

2.2. From Galois to Borel

If α(X) ∈ E((X)) then we can write

α(X) =

p−1∑
j=0

(1 +X)jαj(X
p)

in a unique way, and we define a map ψ : E((X)) → E((X)) by the formula ψ(α)(X) =

α0(X). A direct computation shows that if 0 6 r 6 p− 1 then ψ(Xpm+r) = (−1)rXm. If

D is a (ϕ,Γ)-module over E((X)) and if y ∈ D then likewise we can write y =
∑p−1

j=0(1 +
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X)jϕ(yj) and we set ψ(y) = y0. The operator ψ thus defined commutes with the action

of Γ and satisfies ψ(α(X)ϕ(y)) = ψ(α)(X)y and ψ(α(Xp)y) = α(X)ψ(y).

If W = ind(ωhn) ⊗ χ with χ = ωsµλ where from now on λ ∈ E×, then theorem 2.1.6

above implies that the (ϕ,Γ)-module D(W ) is defined on E((X)) and admits a basis

e0, . . . , en−1 in which γ(ej) = ωs(γ)fγ(X)hp
j(p−1)/(pn−1)ej if γ ∈ Γ and ϕ(ej) = λej+1 for

0 6 j 6 n−2 and ϕ(en−1) = (−1)n−1λX−h(p−1)e0. Since ω
(pn−1)/(p−1)
n = ω, we can always

modify h (and χ accordingly) in order to have 1 6 h 6 (pn − 1)/(p − 1) − 1 so that

h(p− 1) 6 pn− 2. Recall that in−1 . . . i1i0 is the expansion of h(p− 1) in base p and that

hk = in−k + pin−k+1 + · · ·+ pk−1in−1 so that h0 = 0 and hn = h(p− 1).

Lemma 2.2.1. — If fj = Xhjej and α(X) ∈ E((X)), then we have

ψ(α(X)fj) =

{
λ−1ψ(α(X)X in−j )fj−1 if j > 1,

λ−1(−1)n−1ψ(α(X)X i0)fn−1 if j = 0.

Proof. — If j > 1, then we can write α(X)fj = λ−1α(X)Xhjϕ(ej−1) and since hj =

phj−1 + in−j, we have

ψ(α(X)fj) = λ−1Xhj−1ψ(α(X)X in−j )ej−1 = λ−1ψ(α(X)X in−j )fj−1.

If j = 0, then α(X)f0 = α(X)e0 = α(X)(−1)n−1λ−1Xh(p−1)ϕ(en−1) so that

ψ(α(X)f0) = λ−1(−1)n−1Xhn−1ψ(α(X)X i0)en−1 = λ−1(−1)n−1ψ(α(X)X i0)fn−1

which finishes the proof.

Corollary 2.2.2. — The E[[X]]-module D](W ) = ⊕n−1
j=0E[[X]] · fj is stable under ψ and

the map ψ : D](W )→ D](W ) is surjective.

Proof. — Lemma 2.2.1 implies that D](W ) is stable under ψ. Furthermore, the formula

ψ(Xpm+r) = (−1)rXm for 0 6 r 6 p− 1 implies that the map αj(X) 7→ ψ(αj(X)X in−j )

is surjective for j > 1, as well as the map α0(X) 7→ ψ(α0(X)X i0), which implies that

ψ : D](W )→ D](W ) is surjective.

A quick computation shows that if y ∈ D](W ) then ψn(X−1y) ∈ D](W ) so that our

D](W ) coincides with the lattice defined by Colmez in proposition II.4.2 of [Col07] by

item (iv) of that proposition. We now define Colmez’ functor (see §III of [Col07]):

lim←−
ψ

D](W ) = {y = (y0, y1, . . .) with yi ∈ D](W ) such that ψ(yi+1) = yi for all i > 0},
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and we endow this space with an action of B (using the same normalization as in [Ber05]

which differs by a twist from the normalization of [Col07])((
x 0
0 x

)
· y
)
i

= (ωh−1χ2)−1(x)yi;((
1 0
0 pj

)
· y
)
i

= yi−j = ψj(yi);((
1 0
0 a

)
· y
)
i

= γa−1(yi), where γa−1 ∈ Γ is such that χcycl(γa−1) = a−1 ∈ Z×p ;((
1 z
0 1

)
· y
)
i

= ψj((1 +X)p
i+jzyi+j), for i+ j > −val(z).

We then define Ω(W ) = (lim←−ψ D](W ))∗ so that Ω(W ) is a smooth representation (see

§2.3 for a proof of this) of B whose central character is ωh−1χ2. Denote by θ0 the linear

form on D](W ) given by

θ0 : α0(X)f0 + · · ·+ αn−1(X)fn−1 7→ α0(0).

If y = (y0, y1, . . .), then we define θ ∈ Ω(W ) to be the linear form θ : y 7→ θ0(y0).

Lemma 2.2.3. — If ( a b0 d ) ∈ KZ, then ( a b0 d ) · θ = ωh−1(a)χ(ad)θ.

Proof. — We have((
a b
0 d

)
· θ
)

(y) = θ

((
a−1 −ba−1d−1

0 d−1

)
· y
)

= θ

((
a−1 0
0 a−1

)(
1 −bd−1

0 ad−1

)
· y
)

= (ωh−1χ2)(a)ωs(a−1d)θ(y)

= ωh−1(a)χ(ad)θ(y),

since µλ(a) = µλ(d) because ( a b0 d ) ∈ KZ so that χ(a) = χ(d)ωs(ad−1).

For 0 6 k 6 n, recall that hk = in−k + pin−k+1 + · · ·+ pk−1in−1 so that hn = h(p− 1).

Theorem 2.2.4. — The linear form θ is killed by

(−1)n−1λn · Id−
pn−1∑
j=0

(
j

h(p− 1)

)(
pn −j
0 1

)
.
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Proof. — Using the definition of the action of B on lim←−ψ D](W ), we get(
(−1)n−1λn · θ −

pn−1∑
j=0

(
j

h(p− 1)

)(
pn −j
0 1

)
θ

)
(y)

= (−1)n−1λn · θ0(y0)− λ2n · θ0 ◦ ψn
(
pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)jy0

)
,

and this is equal to 0 for obvious reasons if y0 = αi(X)fi with i 6= 0 so that we now

assume that y0 = α0(X)f0. Lemma 1.1.2 implies that

pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)j ∈ Xpn−hn−1 +Xpn−hnE[[X]],

and the fact that p`−h` + in−` = p(p`−1−h`−1) for 1 6 ` 6 n together with the formulas

of lemma 2.2.1 and the fact that ψ(Xpm+r) = (−1)rXm then imply that

ψn

(
pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)jα0(X)f0

)
≡ (−1)n−1λ−nα0(X)f0 mod XD](W ),

which proves our claim.

2.3. Profinite representations and smooth representations

In this paragraph, we prove that Ω(W ) is a smooth irreducible representation of B if

dim(W ) > 2. In order to do so, we recall a few results concerning profinite represen-

tations and their dual. Let G be a topological group and let X be a profinite E-linear

representation of G where E is as before a finite extension of Fp. Let X∗ be the dual of

X, that is the set of continuous linear forms on X.

Lemma 2.3.1. — The representation X∗ is a smooth representation of G.

Proof. — If f ∈ X∗, then the map (g, x) 7→ f(gx− x) is a continuous map G×X → E

and its kernel is therefore open in G×X so that there exists an open subgroup K of G

and an open subspace Y of X such that f(ky−y) = 0 whenever k ∈ K and y ∈ Y . Since

X is compact, Y is of finite codimension in X and we can write X = Y ⊕⊕si=1Exi. For

each i there is an open subgroup Ki of G such that f(kxi − xi) = 0 if k ∈ Ki and this

implies that if H = K ∩ ∩si=1Ki then f(hx − x) = 0 for any x ∈ X so that f ∈ (X∗)H

with H an open subgroup of G.

Lemma 2.3.2. — If X is topologically irreducible, then X∗ is irreducible.

Proof. — If X = lim←−i∈I Xi where each Xi is a finite dimensional E-vector space, then

a linear form on X is continuous if and only if it factors through some Xi and hence
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X∗ = lim−→i∈I X
∗
i so that (X∗)∗ = (lim−→i∈I X

∗
i )∗ = lim←−i∈I Xi = X. If Λ is a G-invariant

subspace of X∗ then ker(Λ) = ∩f∈Λ ker(f) is a G-invariant closed subspace of X which

is therefore either equal to X or to {0}. If it is equal to X then obviously Λ = {0} and if

it is equal to {0}, then the fact that (X∗)∗ = X implies that no nonzero linear form on

X∗ is zero on Λ so that Λ = X∗.

The representation lim←−ψ D](W ) is a profinite representation of B since D](W ) '
E[[X]]dim(W ) and we have the following result (see also proposition 1.2.3 of [Ber05]).

Proposition 2.3.3. — The representation Ω(W ) = (lim←−ψ D](W ))∗ is a smooth irre-

ducible representation of B if dim(W ) > 2.

Proof. — Lemma 2.3.2 shows that it is enough to prove that lim←−ψ D](W ) is a topologically

irreducible representation of B, and lemma III.3.6 of [Col07] asserts that any closed B-

invariant subspace of lim←−ψ D](W ) is of the form lim←−ψM where M is a sub-E[[X]]-module

of D](W ) stable under ψ and Γ and such that ψ : M → M is surjective. Since D(W )

is irreducible, M is a lattice by proposition II.3.5 of [Col07] applied to E((X))⊗E[[X]] M

and item (iv) of proposition II.4.2 of [Col07] implies that such an M contains X ·D](W )

and the formulas of lemma 2.2.1 imply that ψ(Xfj) ∈ E× · fj−1 if in−j 6= p − 1. Since

h(p− 1) 6= pn− 1, at least one of the in−j is 6= p− 1 so that M contains one fj and hence

all of them by repeatedly applying ψ.

3. Breuil’s correspondence for mod p representations

In this chapter, we show that the representations constructed in chapter 1 are the same

as the ones arising from Colmez’ functor applied to n-dimensional absolutely irreducible

representations of GQp . We also show that if n = 2, then these representations are the

restriction to B of the supersingular representations of GL2(Qp) predicted by Breuil.

3.1. The isomorphism in dimension n

By corollary 2.1.5, every absolutely irreducible n-dimensional E-linear representation

W of GQp is isomorphic (after possibly enlarging E) to ind(ωhn)⊗ χ with 1 6 h 6 pn − 2

primitive and χ : GQp → E× a character. Furthermore, ω
(pn−1)/(p−1)
n = ω so we can

change h and χ in order to have 1 6 h 6 (pn− 1)/(p− 1)− 1 which implies that at least

one of the n digits of h in base p is zero. The intertwining ind(ωhn) ' ind(ωphn ) implies

that we can make a cyclic permutation of the digits of h without changing ind(ωhn) and

if we arrange for the leading digit to be 0, then 1 6 h 6 pn−1 − 1.
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Theorem 3.1.1. — If W = ind(ωhn) ⊗ χ with n > 2 and 1 6 h 6 pn−1 − 1 primitive,

then Ω(W ) ' Πn(h, σ) with σ = χωh−1 ⊗ χ.

Proof. — By lemma 2.2.3 and Frobenius reciprocity, Ω(W ) is a quotient of indB
KZ σ with

σ = χωh−1 ⊗ χ, the map being given by
∑

β,δ α(β, δ)[gβ,δ] 7→
∑

β,δ α(β, δ)gβ,δ · θ. This

map is surjective (since it is nonzero and Ω(W ) is irreducible by proposition 2.3.3) and

bearing in mind that
(
pn 0
0 pn

)
acts by λ2n, theorem 2.2.4 implies that its kernel con-

tains (−λ−1)n
[(

1 0
0 pn

)]
+ wh(p−1),n and hence Sn(h, σ), so that we get a nontrivial map

Πn(h, σ)→ Ω(W ). Since Πn(h, σ) is irreducible by theorem 1.3.8, this map is an isomor-

phism.

Note that we can define two B-equivariant operators T+ and T− on indB
KZ σ by

T+([g]) =

p−1∑
j=0

[
g
(
p j
0 1

)]
and T−([g]) =

[
g
(

1 0
0 p

)]
,

so that the “usual” Hecke operator is T = T+ + T−. It is easy to see that theorem 3.1.1

applied with h = 1 simply says that

Ω(ind(ωn)⊗ χ) ' indB
KZ(1⊗ 1)

T− + (−1)nT n−1
+

⊗ (χ ◦ det).

ht δ

ht δ + 1 t
�
�
�
�
��

L
L
L
L
LL

�
�
�
�
��

L
L
L
L
LL

t t t

x

x x x

7→

T+

ht δ

ht δ + 1 t
�
�
�
�
��

L
L
L
L
LL

�
�
�
�
��

L
L
L
L
LL

t t t
7→

x+ y + z

x y z
T−

3.2. Supersingular representations restricted to B2(Qp)

We now explain how to relate the representations Π2(h, σ) to the supersingular repre-

sentations of [BL95, BL94, Bre03a]. Recall that if r > 0, then Symr E2 is the space

of polynomials in x and y which are homogeneous of degree r with coefficients in E,
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endowed with the action of GL2(Zp) factoring through GL2(Fp) given by ( a bc d )P (x, y) =

P (ax+ cy, bx+ dy) and that we extend the action of GL2(Zp) to an action of GL2(Zp)Z

by
(
p 0
0 p

)
P (x, y) = P (x, y). We now assume that 0 6 r 6 p− 1.

Lemma 3.2.1. — The “restriction to B” map

resB : ind
GL2(Qp)

GL2(Zp)Z Symr E2 → indB
KZ Symr E2

is an isomorphism.

Proof. — This follows from the Iwasawa decomposition GL2(Qp) = B ·GL2(Zp).

Let T be the Hecke operator defined in [BL95, BL94]. Let [g, v] ∈ ind
GL2(Qp)

GL2(Zp)Z Symr E2

be the element defined by [g, v](h) = Symr(hg)(v) if hg ∈ GL2(Zp)Z and [g, v](h) = 0

otherwise, so that h[g, v] = [hg, v] and [gk, v] = [g, Symr(k)v] if k ∈ GL2(Zp)Z.

Lemma 3.2.2. — We have

T ([1, xr−iyi]) =

{∑p−1
j=0

(
p j
0 1

)
[1, (−j)ixr] if i 6 r − 1;(

1 0
0 p

)
[1, yr] +

∑p−1
j=0

(
p j
0 1

)
[1, (−j)rxr] if i = r.

Proof. — See §2.2 of [Bre03b].

The group KZ acts on xr ∈ Symr E2 by ωr ⊗ 1 so that we get a nontrivial injective

map indB
KZ ω

r ⊗ 1→ indB
KZ Symr E2.

Proposition 3.2.3. — The map

indB
KZ(ωr ⊗ 1)

T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1)
→ indB

KZ Symr E2

T (indB
KZ Symr E2)

is an isomorphism.

Proof. — The map above is injective by construction, and the representation to the

right is generated by the B-translates of [1, yr] since the
(

1 Zp

0 1

)
-translates of yr generate

Symr E2. Lemma 3.2.2 applied with i = r shows that [1, yr] ∈ T (indB
KZ Symr E2) +

indB
KZ(ωr ⊗ 1) so that the map is surjective.

Lemma 3.2.4. — If r > 1, then T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1) is generated by the

B-translates of {
T ([1, xr−iyi]) for 0 6 i 6 r − 1,

T (
∑p−1

i=0 λi[
(
p i
0 1

)
, yr]) where (λ0, . . . , λp−1) ∈ V ⊥r,1.

Proof. — Lemma 3.2.2 above implies that T ([1, xr−iyi]) ∈ indB
KZ(ωr ⊗ 1) if i 6 r− 1 and

hence likewise for the B-translates of those vectors. We therefore only need to determine
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when a vector of the form T (
∑

α[bα, λαy
r]) belongs to indB

KZ(ωr ⊗ 1). If v is a vector

v =
∑

β,δ

∑p−1
i=0 λβ,δ,i[gp−1β+p−1i,δ, y

r] (note that A =
∐p−1

i=0 p
−1A+ p−1i), then we have

T (v) =
∑
β,δ

gβ,δ+1 · T
(
λβ,δ,0[

(
1 0·p−1

0 p−1

)
, yr] + · · ·+ λβ,δ,p−1[

(
1 (p−1)·p−1

0 p−1

)
, yr]

)
,

so that by lemma 3.2.2, the set of vectors v such that T (v) ∈ indB
KZ(ωr ⊗ 1) is generated

by the B-translates of the vλ =
∑p−1

i=0 λi[
(

1 p−1i
0 p−1

)
, yr] such that T (vλ) ∈ indB

KZ(ωr ⊗ 1).

Lemma 3.2.2 shows that this is the case if and only if
∑p−1

i=0 λi[(
1 i
0 1 ) , yr] ∈ indB

KZ(ωr ⊗ 1)

and so if and only if
∑p−1

i=0 λi(ix+ y)r ∈ E · xr which is equivalent to (λ0, . . . , λp−1) ∈ V ⊥r,1
since the vector space generated by the sequences (0`, 1`, . . . , (p− 1)`) for 0 6 ` 6 r − 1

is Vr,1 (here 00 = 1). Finally, we multiply the resulting vλ by
(
p 0
0 p

)
.

Lemma 3.2.5. — If r = 0, then T (indB
KZ(1⊗ 1)) is generated by the B-translates of(

1 0
0 p

)
[1, 1] +

p−1∑
j=0

(
p j
0 1

)
[1, 1]

and if r > 1, then T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1) is generated by the B-translates of

p−1∑
j=0

λj

(
p j
0 1

)
[1, xr],

for (λ0, . . . , λp−1) ∈ Vr,1 and of

p−1∑
i=0

µii
r[1, xr] +

p−1∑
i=0

µi

(
p i
0 1

) p−1∑
j=0

(−j)r
(
p j
0 1

)
[1, xr],

where (µ0, . . . , µp−1) ∈ V ⊥r,1.

Proof. — Since indB
KZ(1 ⊗ 1) is generated by the B-translates of [1, 1], the space

T (indB
KZ(1⊗1)) is generated by the B-translates of T ([1, 1]) =

(
1 0
0 p

)
[1, 1]+

∑p−1
j=0

(
p j
0 1

)
[1, 1]

which proves the first part.

If r > 1, then lemma 3.2.2 tells us that T ([1, xr−iyi]) =
∑p−1

j=0

(
p j
0 1

)
[1, (−j)ixr] for

i 6 r − 1 and that

T

(
p−1∑
i=0

µi[
(
p i
0 1

)
, yr]

)
=

p−1∑
i=0

µi[( 1 i
0 1 ) , yr] +

p−1∑
i=0

µi
(
p i
0 1

) p−1∑
j=0

(−j)r
(
p j
0 1

)
[1, xr].

The condition (µ0, . . . , µp−1) ∈ V ⊥r,1 implies that
∑p−1

i=0 µi[(
1 i
0 1 ) , yr] =

∑p−1
i=0 µii

r[1, xr] and

we are done by lemma 3.2.4.
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Theorem 3.2.6. — If 1 6 h 6 p− 1, then we have an isomorphism of representations

of B

Π2(h, σ) '
ind

GL2(Qp)

GL2(Zp)Z Symh−1E2

T (ind
GL2(Qp)

GL2(Zp)Z Symh−1E2)
⊗ (χ ◦ det).

Proof. — First of all, we have

(ind
GL2(Qp)

GL2(Zp)Z Symh−1E2)/T ' (indB
KZ Symh−1E2)/T

by lemma 3.2.1, so we work with the latter space. We can twist both sides by the inverse

of χ ◦ det so that σ = ωh−1 ⊗ 1 by remark 1.3.9. Given proposition 3.2.3, all we need to

check is that if

T (h, σ) = T (indB
KZ Symh−1E2) ∩ indB

KZ σ,

then T (h, σ) contains S2(h, σ). The space generated by the vectors (λ0, . . . , λp−1) ∈ Vh−1,1

and by (0h−1, 1h−1, . . . , (p− 1)h−1) is Vh,1 so that by lemma 3.2.5, T (h, σ) contains all of

the elements
p−1∑
i=0

µii
h−1[Id] +

p−1∑
i=0

p−1∑
j=0

µiνj

[(
p2 pj + i
0 1

)]
,

with µ ∈ Vp−h+1,1 and ν ∈ (−1)h−1(h − 1)!vh−1,1 + Vh−1,1. If we take µi =
( −i
p−h

)
and

νj = (h− 1)!
(−j−1
h−1

)
, then the fact that(
−i
p− h

)(
−j − 1

h− 1

)
=

(
−pj − i

p(h− 1) + p− h

)
=

(
−pj − i
h(p− 1)

)
shows that T (h, σ) contains S2(h, σ).

List of notations

Here is a list of the main notations of the article, in the order in which they appear.

Introduction: GQp ; B; E; K; Z; primitive h; IQp ; T±; T ;

§1.1: Vn; vk,n; Vk,n; ∆; µa;

§1.2: gβ,δ; σ; indB
KZ σ; [g]; α(β, δ); support; level; n-block; initial n-block; I1; τk;

§1.3: w`,n; λ; Sn(h, σ); Πn(h, σ); ik; hk; B+;

§2.1: Ẽ+; Ẽ; ε; X; HQp ; Γ; D(W ); ωn; ω; µλ; ind(ωhn);

§2.2: ψ; Ω(W ); θ;

§3.1: T±; T ;

§3.2: Symr(E2).
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