
A p-ADIC FAMILY OF DIHEDRAL (ϕ,Γ)-MODULES

by

Laurent Berger

Abstract. — The goal of this article is to construct explicitly a p-adic family of represen-
tations (which are dihedral representations), to construct their attached (ϕ,Γ)-modules by
writing down explicit matrices for ϕ and for the action of Γ, and finally to determine which
of these are trianguline.

Résumé (Une famille p-adique de (ϕ,Γ)-modules diédraux). — L’objet de cet
article est de construire explicitement une famille p-adique de représentations (qui sont
des représentations diédrales), de construire les (ϕ,Γ)-modules qui leurs sont associés en
écrivant des matrices explicites pour ϕ et pour l’action de Γ, et finalement de déterminer
lesquelles sont triangulines.
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Introduction

A fundamental tool in the theory of p-adic representations is Fontaine’s construction in

[Fon90] of the (ϕ,Γ)-modules attached to p-adic representations. These are modules over

a ring of power series, and are very explicit objects which contain all of the information

about the representations they are attached to. It is however not always easy to ex-

tract that information. The work of Cherbonnier-Colmez [CC98] and Kedlaya [Ked05]

has done much to clarify the situation, and in particular has allowed us to understand
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the structure of the (ϕ,Γ)-modules attached to semistable representations as in [Ber02]

and [Ber08]. Inspired by these constructions and the p-adic Langlands correspondence,

Colmez has defined in [Col08b] the notion of trianguline representation, and reinter-

preted the first main result of [Kis03] as saying that the p-adic representations coming

from overconvergent modular eigenforms of finite slope are trianguline.

The goal of this short article is to construct explicitly a p-adic family of representations,

which are dihedral representations, to construct their (ϕ,Γ)-modules by writing down

explicit matrices for ϕ and for the action of Γ, and finally to determine which of these

are trianguline. This can be seen as a very first step towards constructing a universal

family of (ϕ,Γ)-modules corresponding to the universal deformation space (in the sense of

[Maz89]) of a mod p representation of Gal(Qp/Qp). Our results extend without trouble

to potentially abelian representations, but the general case will require new ideas.

We now give a more precise description of our results. Let χ2 : Gal(Qp/Qp2) → Z×p2

be the character attached to the Lubin-Tate module over Zp2 for the uniformizer p of

Qp2 . Every element x ∈ Z×p2 can be written in a unique way as x = ω(x)〈x〉 where

ω(x)p
2−1 = 1 and 〈x〉 ∈ 1 + pZp2 . If g ∈ Gal(Qp/Qp2), then we define ω2(g) = ω(χ2(g))

and 〈g〉2 = 〈χ2(g)〉. Since 〈g〉2 ∈ 1 + pZp2 , the expression 〈g〉s2 makes sense if s ∈ Zp

and the representations Ind
Qp

Qp2
(ω2(·)r〈·〉s2) with r ∈ Z/(p2 − 1)Z and s ∈ Zp interpolate

p-adically the Ind
Qp

Qp2
(χh2) with h ∈ Z. Our first result is an explicit construction of the

(ϕ,Γ)-modules attached to these representations, and we briefly recall what these objects

are.

The Robba ring is the ring R consisting of power series f(X) =
∑

k∈Z akX
k with

ak ∈ Qp and such that f(X) converges on an annulus rf 6 |X|p < 1 where rf depends

on f . This ring is endowed with a Frobenius ϕ given by ϕ(f)(X) = f((1 +X)p− 1), and

with an action of Γ = Gal(Qp(µp∞)/Qp) given by γ(f)(X) = f((1 + X)χ(γ) − 1) where

χ : Γ→ Z×p is the cyclotomic character. A (ϕ,Γ)-module over R is a free module of finite

rank over R endowed with a semilinear Frobenius ϕ such that Mat(ϕ) ∈ GLd(R) and a

semilinear continuous action of Γ commuting with ϕ. By combining the aforementioned

constructions of Fontaine, Cherbonnier-Colmez and Kedlaya, we get a functor V 7→ D(V )

which to every p-adic representation attaches a (ϕ,Γ)-module over R. This functor gives

an equivalence of categories between p-adic representations of Gal(Qp/Qp) and étale

(ϕ,Γ)-modules over R. Finally, let Q = ϕ(X)/X = ((1 +X)p− 1)/X and let Q2 = ϕ(Q)

so that in some suitable sense, Q2/Q
p = 1 mod p and the expression (Q2/Q

p)u makes

sense if u ∈ Zp.
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Theorem A. — If r ∈ Z and u ∈ Zp and s = r + (p + 1)u, then the (ϕ,Γ)-module

attached to Ind
Qp

Qp2
(ω2(·)r〈·〉s2) has a basis in which

Mat(ϕ) =

(
0 1

Qr
2(Q2/Q

p)u 0

)
and

Mat(γ) =

(
χ(γ)r〈χ(γ)〉u(1 + O(X)) 0

0 χ(γ)r〈χ(γ)〉u(1 + O(X))

)
,

where the 1 + O(X) are two power series belonging to 1 +XZp[[X]].

The proof of this result (theorem 4.3) is by p-adic interpolation. If h ∈ Z, then the

representation Ind
Qp

Qp2
(χh2) is crystalline and we can compute its (ϕ,Γ)-module by using

the theory of Wach modules of [Ber04]. One then only needs to change the basis so that

the matrices of ϕ and γ ∈ Γ become continuous functions of h.

One can then work concretely with the representation Ind
Qp

Qp2
(ω2(·)r〈·〉s2) and our next

result (theorem 5.2) tells us exactly when it is trianguline. A p-adic representation is

said to be trianguline if its attached (ϕ,Γ)-module over R is an iterated extension of

(ϕ,Γ)-modules of rank 1, after possibly extending scalars.

Theorem B. — The representation Ind
Qp

Qp2
(ω2(·)r〈·〉s2) is trianguline if and only if s ∈ Z

and r = s mod p+ 1.

In particular, by combining theorem 6.3 of [Kis03] and proposition 4.3 of [Col08b],

we see that if s /∈ Z, then the representation Ind
Qp

Qp2
(ω2(·)r〈·〉s2) does not arise from an

overconvergent modular eigenform of finite slope. The theorem also provides examples of

representations of Gal(Qp/Qp) whose restriction to Gal(Qp/Qp2) is trianguline but which

are not themselves trianguline even though Qp2 is an unramified extension of Qp.

It is not hard to analytify our constructions and hence to get a two-dimensional rep-

resentation over Zp{T}. An analogue of theorem A then gives a corresponding family

of (ϕ,Γ)-modules over Zp{T} and theorem B tells us about the trianguline locus for

that family. Note that one can twist Ind
Qp

Qp2
(ω2(·)r〈·〉s2) by a character of Gal(Qp/Qp)

and this way one obtains a three-dimensional family of representations, sitting inside the

usually five-dimensional (see §9 of [FM95]) universal deformation space of a given mod

p representation. These families are in some sense orthogonal to the ones constructed in

[BLZ04]. Can one combine them to get an explicit family over some four-dimensional

space?
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1. A family of dihedral representations

We start by constructing the representations Ind
Qp

Qp2
(ω2(·)r〈·〉s2) in a way which shows

that they are actually defined over Qp. Let χ2 : Gal(Qp/Qp2) → Z×p2 be the character

attached to the Lubin-Tate module over Zp2 for the uniformizer p of Qp2 and denote

by QLT
p2 the fixed field of ker(χ2). If σ : Zp2 → Zp2 denotes the absolute Frobenius,

then the group Gal(QLT
p2 /Qp) is naturally isomorphic to Z×p2 o Z/2Z, where the map

Z/2Z→ Aut(Z×p2) is given by ε 7→ σε.

Every element x ∈ Z×p2 can be written in a unique way as x = ω(x)〈x〉 where ω(x)p
2−1 =

1 and 〈x〉 ∈ 1 + pZp2 . If g ∈ Gal(Qp/Qp2), then we define ω2(g) = ω(χ2(g)) and

〈g〉2 = 〈χ2(g)〉. If r ∈ Z/(p2 − 1)Z and s ∈ Zp, then we have a character ηr,s : Z×p2 → Z×p2

given by x 7→ ω(x)r〈x〉s where

〈x〉s = (1 + (〈x〉 − 1))s

=
∑
k>0

(
s

k

)
(〈x〉 − 1)k ∈ 1 + pZp2 .

If d ∈ Zp is some element such that Zp2 = Zp[
√
d], then we have a homomorphism

Z×p2 o Z/2Z→ GL2(Zp) given by

(x+ y
√
d, 0) 7→

(
x dy
y x

)
and (x+ y

√
d, 1) 7→

(
x −dy
y −x

)
.

By composing this map and ηr,s we get a representation

ρr,s : Gal(Qp/Qp)→ GL2(Zp),

whose underlying Zp-module we denote by Tr(s). We also let Vr(s) = Qp ⊗Zp Tr(s).

Lemma 1.1. — If s1 = s2 mod pk, then Tr(s1) = Tr(s2) mod pk+1.

Proof. — If s1 = s2 mod pk, then (1 + (〈x〉 − 1))s1 = (1 + (〈x〉 − 1))s2 mod pk+1 for all

x ∈ Z×p2 and therefore the same is true of ρr,s1 and ρr,s2 .

Proposition 1.2. — We have Qp2 ⊗Qp Vr(s) = Ind
Qp

Qp2
(ω2(·)r〈·〉s2).

Proof. — In a suitable basis of Qp2 ⊗Qp Vr(s), the restriction to Gal(Qp/Qp2) of this

representation is isomorphic to ω2(·)r〈·〉s2 ⊕ σ(ω2(·)r〈·〉s2). If s = 0 and r = 0 mod p+ 1,

then the proposition is clear; otherwise, the two characters ω2(·)r〈·〉s2 and σ(ω2(·)r〈·〉s2) are

distinct so that Ind
Qp

Qp2
(ω2(·)r〈·〉s2) is irreducible by a suitable version of Mackey’s criterion

(or an explicit computation) and the proposition follows from Frobenius reciprocity.
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2. Crystalline periods for Lubin-Tate groups

The character χ2 extends to a map χ2 : Gal(Qp/Qp) → Z×p2 which is no longer a

character but satisfies the formula χ2(gh) = g(χ2(h))χ2(g). Let Bcris and BdR be the

rings of periods constructed in [Fon94a] and let t2 ∈ B+
cris be the element tE constructed

in §9.3 of [Col02] for E = Qp2 and πE = p.

Proposition 2.1. — The element t2 has the following properties :

1. if g ∈ Gal(Qp/Qp), then g(t2) = χ2(g)t2;

2. ϕ2(t2) = pt2;

3. t2 ∈ Fil1 \Fil2BdR and ϕ(t2) ∈ Fil0 \Fil1BdR.

Proof. — Properties (2) and (3) are proved in §2.4 of [Col08a]. As for property (1),

we use the notations of §9 of [Col02]. The element tE is defined as LE(ωE) where ωE

is constructed so that g(ωE) = [χ2(g)](ωE) and LE is the logarithm of the Lubin-Tate

group, which implies (1).

In particular, if h ∈ Z, then the space Wh = Qp2 · th2 is a Gal(Qp/Qp)-stable subspace

of Bcris and hence a two-dimensional Qp-linear representation of Gal(Qp/Qp).

Lemma 2.2. — We have Qp2 ⊗Qp Wh = Ind
Qp

Qp2
(χh2).

Proof. — The lemma is immediate if h = 0, so let us assume that h 6= 0. The restriction

of Wh to Gal(Qp/Qp2) contains the characters χh2 and σ(χ2)
h and since χh2 6= σ(χ2)

h, the

induced representation Ind
Qp

Qp2
(χh2) is irreducible and the lemma follows from Frobenius

reciprocity.

Note that in the definition Wh = Qp2 ·th2 , the action of Gal(Qp/Qp) on Qp2 is semilinear,

while in lemma 2.2 above we extend scalars to get Qp2 ⊗Qp Wh but there the action

of Gal(Qp/Qp) on Qp2 is linear. The following result is well-known, see for instance

proposition 5.16 of [Fon04] and the remark which follows.

Proposition 2.3. — If h ∈ Z, then Wh is a crystalline representation of Gal(Qp/Qp)

and if h 6 −1, then Dcris(Wh) = Qp · e⊕Qp · f where

Mat(ϕ) =

(
0 1
p−h 0

)
and Fili Dcris(Wh) =


Dcris(Wh) if i 6 0,

Qp · e if 1 6 i 6 −h,
{0} if 1− h 6 i.

Proof. — The dual of Ind
Qp

Qp2
(χh2) is naturally isomorphic to Ind

Qp

Qp2
(χ−h2 ) and hence

W ∗
h = W−h so that Dcris(Wh) = Hom(W−h,Bcris)

Gal(Qp/Qp). The “inclusion map” e :

W−h → Bcris is one such element and the map f = phϕ ◦ e, which is given by f :

α · t−h2 7→ phσ(α) · ϕ(t−h2 ) is another one which is linearly independent. The fact that
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ϕ2(t2) = pt2 gives us the matrix of ϕ in the basis e, f . The fact that t2, ϕ(t2) ∈ Fil0BdR

implies that Fil0 Dcris(Wh) = Dcris(Wh), and the fact that t2 ∈ Fil1 \Fil2BdR implies that

Fil−h Dcris(Wh) = Qp · e and Fil1−h Dcris(Wh) = {0}.

Note that there is a similar result if h > 1, but in that case the non-trivial line of the

filtration is generated by f .

3. Interlude : some p-adic analysis

Before moving on to the construction of (ϕ,Γ)-modules, we prove a few simple results

concerning functions belonging to the Robba ring RE where E is a finite extension of Qp.

Recall that if r < 1, then R†,rE is defined to be the set of functions f(X) =
∑

k∈Z akX
k

with ak ∈ E which converge on the annulus r 6 |X|p < 1 and that RE = ∪r<1R†,rE . This

ring is endowed with a Frobenius ϕ given by ϕ(f)(X) = f((1 + X)p − 1), and with an

action of Γ = Gal(Qp(µp∞)/Qp) given by γ(f)(X) = f((1 +X)χ(γ) − 1).

The subset E†E of RE consisting of those functions f(X) for which the sequence {ak(f)}
is bounded is a subfield of RE, and we write O†EE for the subring of E†E consisting of those

functions for which |ak(f)|p 6 1 for all k. If E = Qp then we drop the subscript E

from the notation. These rings were studied by Lazard in [Laz62] and more recently by

Kedlaya in [Ked05].

Let Q = ϕ(X)/X and for n > 1, let Qn = ϕn−1(Q) so that Qn is the minimal

polynomial of ζpn − 1 over Qp. If r < 1, we define n(r) to be the smallest integer n such

that |ζpn − 1|p > r. We also let t = log(1 + X) so that ϕ(t) = pt and γ(t) = χ(γ)t,

and recall that we have the Weierstrass product formula t = X ·
∏∞

n=1Qn/p. Recall also

that by an argument analogous to that of lemma I.3.2 of [Ber04], we have the following

result.

Lemma 3.1. — Every principal ideal of R†,rE which is stable under Γ is generated by an

element of the form
∏

n>n(r)(Qn/p)
an for some an in Z>0.

We now prove a few results which are used in the remainder of the paper.

Lemma 3.2. — The map f(X) 7→ ϕ2(f(X))/f(X) from 1 + XZp[[X]] to itself is bijec-

tive.

Proof. — The map is injective because if f(X) = 1 + akX
k + O(Xk+1) with ak 6= 0,

then ϕ2(f(X)) = 1 + p2kakX
k + O(Xk+1) so that ϕ2(f(X)) = f(X) if and only if

f(X) = 1. Let us now prove surjectivity. If f(X) ∈ 1 + XZp[[X]], then ϕn(f(X)) → 1

as n→∞ and the product
∏∞

n=0 ϕ
2n(f(X)) converges to g(X) ∈ 1 +XZp[[X]] such that

ϕ2(g(X))/g(X) = f(X).
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Corollary 3.3. — If γ ∈ Γ, then there exist two uniquely determined power series

fγ(X) ∈ 1 +XZp[[X]] and gγ(X) ∈ 1 + pXZp[[X]] such that

ϕ2(fγ(X))

fγ(X)
=
γ(Q2)

Q2

and
ϕ2(gγ(X))

gγ(X)
=
γ(Q2/Q

p)

Q2/Qp
.

Proof. — We have γ(Q2)/Q2 ∈ 1 +XZp[[X]] and Q2/Q
p ∈ 1 + pO†E so that

γ(Q2/Q
p)

Q2/Qp
∈ 1 +XZp[[X]] ∩ 1 + pO†E = 1 + pXZp[[X]].

The corollary then follows from lemma 3.2, and the fact that gγ(X) ∈ 1 + pXZp[[X]]

follows from the explicit construction for the inverse of ϕ2(·)/(·).

Note that since both fγ(X) and gγ(X) are uniquely determined, we have fγη(X) =

fγ(X)γ(fη(X)) and gγη(X) = gγ(X)γ(gη(X)) if γ, η ∈ Γ.

Lemma 3.4. — We have (t−1RE)ϕ
2=p−2

= E · t−1.

Proof. — If t−1f(X) ∈ (t−1RE)ϕ
2=p−2

then f(X) ∈ Rϕ2=1
E = E.

Let ∂ : RE → RE be the operator defined by ∂f(X) = (1 + X)df(X)/dX. If f ∈
FracR†,rE and if n > n(r) and if f has at most a simple pole at ζpn − 1, we define resn(f)

to be the value at ζpn − 1 of f · Qn/∂Qn so that resn(f) is the residue of f at ζpn − 1

multiplied by a suitable constant chosen so that resn(∂Qn/Qn) = 1.

Lemma 3.5. — If f ∈ R†,rE and n > n(r), then resn(∂f/f) ∈ Z.

Proof. — If g(X) ∈ R†,rE is nonzero at ζpn − 1 then ∂g/g has no pole at ζpn − 1 and

hence resn(∂g/g) = 0. If f(X) ∈ R†,rE then we can write f(X) = Qn(X)ag(X) where

g(X) ∈ R†,rE is nonzero at ζpn − 1 and a is the order of vanishing of f(X) at ζpn − 1 so

that resn(∂f/f) = a resn(∂Qn/Qn) + resn(∂g/g) = a ∈ Z.

4. A family of dihedral (ϕ,Γ)-modules

We now construct the (ϕ,Γ)-modules over R attached to the representations Vr(s).

Since both Q2/Q
p and gγ(X) belong to 1 + pO†E , we have (Q2/Q

p)u ∈ 1 + pO†E and

gγ(X)u ∈ 1 + pO†E if u ∈ Zp.

Definition 4.1. — Given j ∈ Z, we define a (ϕ,Γ)-module D0
j(u) over O†E by D0

j =

O†E · e⊕O
†
E · f where

Mat(ϕ) =

(
0 1

Qj
2(Q2/Q

p)u 0

)
and

Mat(γ) =

(
χ(γ)j〈χ(γ)〉uϕ(fγ(X)jgγ(X)u) 0

0 χ(γ)j〈χ(γ)〉ufγ(X)jgγ(X)u

)
.
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We then extend scalars to R to get an étale (ϕ,Γ)-module Dj(u) = R⊗O†E D0
j(u).

Lemma 4.2. — If u1 = u2 mod pk, then D0
j(u1) = D0

j(u2) mod pk+1.

Proof. — This follows from the definition above and the fact that both Q2/Q
p and gγ(X)

belong to 1 + pO†E so that if u1 = u2 mod pk, then (Q2/Q
p)u1 = (Q2/Q

p)u2 mod pk+1 and

gγ(X)u1 = gγ(X)u2 mod pk+1.

Theorem 4.3. — We have Dj(u) = D(Vj(j + (p+ 1)u)) if u ∈ Zp.

Proof. — By lemmas 1.1 and 4.2, it is enough to check the isomorphism for u belonging

to a p-adically dense subset of Zp, and we do so for those u ∈ (p − 1)Z such that

h = j + (p + 1)u 6 −1, so that Vj(j + (p + 1)u) = Vh(h) = Wh. Using the fact that

ϕ2(X) = Q2QX, we find that in the basis (e′, f ′) = (ϕ(X)−u−je,X−u−jf), we have

Mat(ϕ) =

(
0 1

Q−h 0

)
,

and using the fact that γ(X)/X = χ(γ)(1 + O(X)) and γ(Qn)/Qn = 1 + O(X), we find

Mat(γ) =

(
1 + O(X) 0

0 1 + O(X)

)
.

In particular, Zp[[X]] · e′ ⊕ Zp[[X]] · f ′ is a Wach module as defined in [Ber04, §III.4]. By

proposition III.4.2 and theorem III.4.4 of [Ber04], the (ϕ,Γ)-module Dj(u) attached to

this Wach module corresponds to a crystalline representation V such that in the basis

(e′, f
′
) of Dcris(V ) we have

Mat(ϕ) =

(
0 1
p−h 0

)
and Fili Dcris(V ) =


Dcris(V ) if i 6 0,

Qp · e′ if 1 6 i 6 −h,

{0} if 1− h 6 i.

By proposition 2.3 and the fact that V 7→ Dcris(V ) is fully faithful by theorem 5.3.5 of

[Fon94b], we have V = Wh and so Dj(u) = D(Vj(j + (p+ 1)u)).

5. Determination of the trianguline points

Colmez has defined (see definitions 4.1 and 3.4 of [Col08b]) a p-adic representation

to be trianguline if its attached (ϕ,Γ)-module over R is an iterated extension of (ϕ,Γ)-

modules of rank 1, after possibly extending scalars. This important definition was made in

the context of the p-adic local Langlands correspondence. For a survey about trianguline

representations, see [Ber11].

In this last chapter, we determine which of the representations Vr(s) are trianguline.

The key point is the result below.

Proposition 5.1. — If Dj(u) is trianguline, then (p+ 1)u ∈ Z.
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Proof. — By definition 3.4 and proposition 3.1 of [Col08b], Dj(u) is trianguline if and

only if there exist some finite extension E/Qp, a continuous character δ : Q×p → E× and

α, β ∈ RE such that (here e and f are those of definition 4.1)

γ(αe+ βf) = δ(γ)(αe+ βf) if γ ∈ Γ and ϕ(αe+ βf) = δ(p)(αe+ βf).

Given the formulas of definition 4.1, the first condition implies that the ideals of RE

generated by α and β are each stable under the action of Γ, and the second condition

implies that β satisfies the equation

ϕ2(β)Qj
2

(
Q2

Qp

)u
= δ(p)2β.

Let µ(X) ∈ RE be the power series µ(X) =
∏∞

n=1Q2n/p so that we have

ϕ2(µ)Q2 = pµ and ϕ2(µp+1Xp)
Q2

Qp
= pp+1µp+1Xp.

If we apply the map ∂(·)/(·) to the above three equations, bearing in mind that ∂ ◦ϕ2 =

p2ϕ2 ◦ ∂, we get

(1− p2ϕ2)
∂β

β
= j

∂Q2

Q2

+ u
∂(Q2/Q

p)

Q2/Qp
,

(1− p2ϕ2)
∂µ

µ
=
∂Q2

Q2

,

(1− p2ϕ2)
∂(µp+1Xp)

µp+1Xp
=
∂(Q2/Q

p)

Q2/Qp
,

so that

(1− p2ϕ2)

(
∂β

β
− j ∂µ

µ
− u∂(µp+1Xp)

µp+1Xp

)
= 0.

Since the ideal of RE generated by β is stable under the action of Γ, lemma 3.1 implies

that the only possible zeroes of β are the ζpn−1 and the same is true for µ, so that ∂β/β

and ∂µ/µ and ∂(µp+1Xp)/µp+1Xp all belong to t−1RE since logarithmic derivatives have

only simple poles. The above equation and lemma 3.4 imply that there exists c ∈ E such

that
∂β

β
− j ∂µ

µ
− u∂(µp+1Xp)

µp+1Xp
=
c

t
.

We now fix a radius r such that β ∈ R†,rE and apply the residue maps resn of §3 for

n > n(r). If n is odd, then µ(X) has no zero nor pole at ζpn−1 and hence resn(∂µ/µ) = 0,

which implies that resn(c/t) = resn(∂β/β) ∈ Z by lemma 3.5 and therefore c ∈ Z since

resn(1/t) = resn(∂t/t) = 1. If n is even, then by applying once more resn to the above

equation we get resn(∂β/β) − j − (p + 1)u = c and since both c and resn(∂β/β) belong

to Z, we also have (p+ 1)u ∈ Z.
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Theorem 5.2. — The representation Vr(s) is trianguline if and only if s ∈ Z and r =

s mod p+ 1.

Proof. — If s ∈ Z and r − s = (p+ 1)k, then

Qp2 ⊗Qp Vr(s) = Ind
Qp

Qp2
(ωr−s2 χs2) = Ind

Qp

Qp2
(χs2)⊗ ωk1

where ω1 = ωp+1
2 = ω(χ(·)). By proposition 2.3, Ind

Qp

Qp2
(χs2) is crystalline and hence

trianguline by theorem 0.8 of [Col08b] so that Vr(s) is trianguline if s ∈ Z and r =

s mod p+ 1.

Assume now that Vr(s) is trianguline. By combining theorem 4.3 and proposition

5.1, we see that s ∈ Z so that we have Vr(s) = Ind
Qp

Qp2
(ωr−s2 χs2) and Vr(s) is potentially

crystalline. By theorem 0.8 of [Col08b], a trianguline p-adic representation is potentially

crystalline if and only if its restriction to Gal(Qp/Qp(ζpn)) is crystalline for some n� 0.

By restricting Vr(s) to Gal(Qp/Qp2), we see that the fixed field of ωr−s2 must lie in Qp2(ζpn)

for some n� 0 and hence that r − s is divisible by p+ 1.
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Astérisque (2008), no. 319, p. 117–186.

[Col08b] , “Représentations triangulines de dimension 2”, Astérisque (2008), no. 319,
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184, Périodes p-adiques (Bures-sur-Yvette, 1988).

[Fon04] , “Arithmétique des représentations galoisiennes p-adiques”, Astérisque (2004),
no. 295, p. xi, 1–115, Cohomologies p-adiques et applications arithmétiques. III.

[Ked05] K. S. Kedlaya – “Slope filtrations revisited”, Doc. Math. 10 (2005), p. 447–525
(electronic).

[Kis03] M. Kisin – “Overconvergent modular forms and the Fontaine-Mazur conjecture”,
Invent. Math. 153 (2003), no. 2, p. 373–454.
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