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Abstract. — Trianguline representations are a certain class of p-adic representations of
Gal(Qp/Qp), like the crystalline, semistable and de Rham representations of Fontaine.
Their definition involves the theory of (ϕ,Γ)-modules. In this survey, we explain the theory
of (ϕ,Γ)-modules and the definition and properties of trianguline representations. After
that, we give some examples of their occurrence in arithmetic geometry.
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1. Introduction

1.1. Representations of Gal(Q/Q). — The starting point for this survey is that one

can attach representations of the group Gal(Q/Q) to some objects that occur in arith-

metic geometry, for example elliptic curves and modular forms. Suppose, for instance,

that A is an elliptic curve defined over Q and choose a prime number p. The group

Gal(Q/Q) acts on the pnth torsion points A[pn](Q) of A and this gives rise to the Tate

module lim←−nA[pn](Q) of A. Tensoring the Tate module with Qp, we get a 2-dimensional

Qp-vector space VpA which is the p-adic representation of Gal(Q/Q) attached to A.

Let ` be a prime number and choose an embedding ι` : Q → Q`. This gives rise to a

map Gal(Q`/Q`) → Gal(Q/Q) that is injective and whose image is the decomposition

group D` of a place above ` (a different choice of ι` gives rise to another subgroup of

Gal(Q/Q) that is conjugate to D`). The group D` contains the inertia subgroup I` and

the quotient D`/I` is isomorphic to Gal(F`/F`). The group Gal(F`/F`) is isomorphic to

Ẑ and is topologically generated by the Frobenius map Frob` = [z 7→ z`]. We then have

the following theorem which says that the representation VpA is also “attached to A” in

a deeper way.

Theorem 1.1.1. — If ` - p · Disc(A), then the restriction of VpA to I` is trivial and

det(X − Frob` | VpA) = X2 − a`X + `, where a` = `+ 1− Card(A(F`)).

As ` runs through a set of primes of density 1, the groups D` and their conjugates

form a dense subset of Gal(Q/Q) by Chebotarev’s theorem and therefore theorem 1.1.1

determines the semisimplification of VpA. If ` 6= p but ` | Disc(A), then we also have a

description of VpA |D`
which now depends on the geometry of A mod `. A much deeper

problem is the description of the restriction of VpA to Dp and this is one of the goals of

Fontaine’s theory, which we discuss in this survey.

Let us recall that one can also attach p-adic representations of Gal(Q/Q) to modular

forms. Let f be a modular eigenform of weight k, level N and character ε, and for n prime

to N , let an be the eigenvalue of the Hecke operator Tn. Let E be the field generated over

Qp by the images of the an and the values of ε under some embedding ιp : Q→ Qp. The

field E is a finite extension of Qp and we have the following theorem, which combines

results of Deligne, Eichler-Shimura and Igusa (see theorem 6.1 of Deligne-Serre [DS74]).

Theorem 1.1.2. — There exists a semisimple 2-dimensional E-linear representation

Vpf of Gal(Q/Q), such that for every prime number ` - pN , the restriction of Vpf to I`

is trivial, and det(X − Frob` | Vpf) = X2 − a`X + ε(`)`k−1.
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If f is of weight 2, then it corresponds to an elliptic curve A and the representation

Vpf is the same as the representation VpA defined above.

1.2. Trianguline representations and (ϕ,Γ)-modules. — Let E be a finite ex-

tension of Qp which is the field of coefficients of the representations we consider. The

goal of Fontaine’s theory is to study the E-linear representations of Gal(Qp/Qp). These

may arise as the restriction to Dp of representations of Gal(Q/Q) as above, but they

are also interesting considered on their own. A p-adic representation of Gal(Qp/Qp) is

then a finite-dimensional E-vector space V , along with a continuous E-linear action of

Gal(Qp/Qp).

Fontaine’s approach has been to construct some “rings of periods”, for example Bcris,

Bst and BdR, and to use these rings to define and study crystalline, semistable and de

Rham representations (see §3.1 for reminders about this). These constructions allow one

to give a complete description of the restriction to Dp of the representations VpA and Vpf

of §1.1. Another construction of Fontaine’s which is crucial in this survey is the theory

of (ϕ,Γ)-modules. There are three variants of this theory, and we now describe (and will

describe again in more detail in §§2.1–2.4) the theory of (ϕ,Γ)-modules over the Robba

ring.

Let R be the Robba ring, that is the ring of power series f(X) =
∑

n∈Z anX
n where

an ∈ E and for which there exists ρ(f) such that f(X) converges on the p-adic annulus

ρ(f) 6 |X|p < 1. This ring is endowed with a Frobenius ϕ given by (ϕf)(X) = f((1 +

X)p − 1) and with an action of Z×p (now called Γ) given by ([a]f)(X) = f((1 +X)a − 1)

if a ∈ Z×p .

A (ϕ,Γ)-module is a free R-module of finite rank d, endowed with a semilinear Frobe-

nius ϕ such that Mat(ϕ) (the matrix of ϕ in some basis) belongs to GLd(R), and

with a commuting semilinear continuous action of Γ. The main result relating (ϕ,Γ)-

modules and p-adic Galois representations is the following (it combines theorems of

Fontaine, Fontaine-Wintenberger, Cherbonnier-Colmez and Kedlaya). Let O†E be the

set of f(X) ∈ R with |an|p 6 1 for all n ∈ Z. We say that a (ϕ,Γ)-module is étale if

there exists a basis in which Mat(ϕ) ∈ GLd(O†E). The ring B̃†rig below is one of Fontaine’s

rings of periods.

Theorem 1.2.1. — If D is an étale (ϕ,Γ)-module, then V (D) = (B̃†rig ⊗R D)ϕ=1 is a

p-adic representation of Gal(Qp/Qp), and the resulting functor D 7→ V (D) gives rise to

an equivalence of categories: {étale (ϕ,Γ)-modules} → {p-adic representations}.

We denote by V 7→ D(V ) the inverse functor. The category of étale (ϕ,Γ)-modules

is a full subcategory of the larger category of all (ϕ,Γ)-modules. In particular, if V is
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an irreducible p-adic representation, then D(V ) is irreducible in the category of étale

(ϕ,Γ)-modules but it can be reducible in the larger category of all (ϕ,Γ)-modules.

Definition 1.2.2. — If V is a p-adic representation of Gal(Qp/Qp), then we say that V

is trianguline if D(V ) is a successive extension of (ϕ,Γ)-modules of rank 1 (after possibly

enlarging E).

This definition was first given by Colmez in his construction of the “unitary principal

series of GL2(Qp)”, which is an important building block of the p-adic local Langlands

correspondence for GL2(Qp) (see §4.1). Some important examples of trianguline repre-

sentations are (1) the semistable representations of Gal(Qp/Qp) and (2) the restriction to

Gal(Qp/Qp) of the representations of Gal(Q/Q) attached to finite slope overconvergent

modular forms.

This survey has three chapters. In the first one, we give a more detailed description

of the definition and properties of (ϕ,Γ)-modules, including Kedlaya’s theory of Frobe-

nius slopes. In the second one, we give some examples of trianguline representations by

relating the theory of (ϕ,Γ)-modules to p-adic Hodge theory, and then we give Colmez’

construction of a parameter space for all 2-dimensional trianguline representations. In

the last chapter, we explain how trianguline representations occur in the p-adic local

Langlands correspondence, in the theory of overconvergent modular forms and in the

study of Selmer groups.

1.3. Notation and conventions. — The field E is a finite extension of Qp with ring of

integers OE whose maximal ideal is mE and whose residue field is kE. All the characters,

representations and group actions in this survey are assumed to be continuous (note that

a character δ : Q×p → E× is necessarily continuous by exercise 6 of §4.2 of [Ser94]). When

we say that an E-linear object is irreducible, we mean that it is absolutely irreducible,

meaning that it remains irreducible when we extend scalars from E to a finite extension.

The cyclotomic character χcycl gives an isomorphism χcycl : Gal(Qp(µp∞)/Qp) → Z×p .

The maximal abelian extension of Qp is Qab
p = Qnr

p · Qp(µp∞), and every element of

Gal(Qab
p /Qp) can be written as Frobnp ·g where Frobp is the lift of [z 7→ zp] and n ∈ Ẑ

and g ∈ Gal(Qab
p /Q

nr
p ). If δ : Q×p → O×E is a unitary character, then by local class field

theory δ gives rise to a character (still denoted by δ) of Gal(Qp/Qp) which is determined

by the formula δ(Frobnp ·g) = δ(p)−n · δ(χ(g)) if n ∈ Z. In other words, we normalize class

field theory so that p corresponds to the geometric Frobenius Frob−1
p .
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2. Galois representations and (ϕ,Γ)-modules

In this chapter, we explain the theory of (ϕ,Γ)-modules and its relation to p-adic

representations. This allows us to define trianguline representations.

2.1. The Robba ring and (ϕ,Γ)-modules. — The Robba ring R is the ring of power

series f(X) =
∑

n∈Z anX
n where an ∈ E such that f(X) converges on an annulus of the

form ρ(f) 6 |X|p < 1. For example, the power series t = log(1 + X) belongs to the

Robba ring (and here one can take ρ(t) = 0).

The Robba ring is endowed with a Frobenius map ϕ given by (ϕf)(X) = f((1+X)p−1).

Let Γ be another notation for Z×p with the isomorphism Z×p → Γ denoted by a 7→ [a].

The Robba ring is endowed with an action of Γ given by ([a]f)(X) = f((1 + X)a − 1)

and this action commutes with ϕ. For example, we have ϕ(t) = pt and [a](t) = at.

Definition 2.1.1. — A (ϕ,Γ)-module over R is a free R-module of finite rank d, en-

dowed with a semilinear Frobenius ϕ such that Mat(ϕ) (the matrix of ϕ in some basis)

belongs to GLd(R) and a continuous semilinear action of Γ that commutes with ϕ.

There is then an obvious notion of morphism of (ϕ,Γ)-modules, and this gives rise to

the category of (ϕ,Γ)-modules. This category is not abelian, since the quotient of two

(ϕ,Γ)-modules is not necessarily free (consider, for instance, the inclusion map: tR → R).

If δ : Q×p → E× is a character, then we define R(δ) as the (ϕ,Γ)-module of rank 1

having eδ as a basis where ϕ(eδ) = δ(p)eδ and [a](eδ) = δ(a)eδ. The following theorem is

proposition 3.1 of [Col08].

Theorem 2.1.2. — Every (ϕ,Γ)-module of rank 1 over R is isomorphic to R(δ) for a

well-defined character δ : Q×p → E×.

2.2. Etale (ϕ,Γ)-modules and Galois representations. — The ring E† is the sub-

ring of R consisting of those power series f(X) =
∑

n∈Z anX
n for which the sequence

{an}n∈Z is bounded. The subring of E† consisting of those f(X) =
∑

n∈Z anX
n for which

|an|p 6 1 is denoted by O†E . This is a henselian local ring with residue field kE((X)).

Definition 2.2.1. — We say that a (ϕ,Γ)-module over R is étale if it has a basis in

which Mat(ϕ) ∈ GLd(O†E).

In §2.3 of [Ber02], a ring B̃†rig is constructed which has the following properties: it is

endowed with a Frobenius ϕ and a commuting action of Gal(Qp/Qp), and it contains the

Robba ring R. This inclusion is compatible with ϕ and with the action of Γ on R, in

the sense that if y ∈ R and g ∈ Gal(Qp/Qp), then g(y) = [χcycl(g)](y). One can think of

B̃†rig as some sort of “algebraic closure” of R.
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If D is a (ϕ,Γ)-module over R, then V (D) = (B̃†rig ⊗R D)ϕ=1 is an E-vector space,

endowed with the action of Gal(Qp/Qp) given by g(x ⊗ e) = g(x) ⊗ [χcycl(g)](e). This

E-vector space can be finite- or infinite-dimensional in general, but we have the following

theorem which combines results of Fontaine (theorem 3.4.3 of [Fon90]), Cherbonnier-

Colmez (corollary III.5.2 of [CC98]) and Kedlaya (theorem 6.3.3 of [Ked05]).

Theorem 2.2.2. — If D is an étale (ϕ,Γ)-module of rank d over R, then V (D) is an

E-linear representation of dimension d of Gal(Qp/Qp), and the resulting functor, from

the category of étale (ϕ,Γ)-modules over R to the category of E-linear representations of

Gal(Qp/Qp), is an equivalence of categories.

We denote by V 7→ D(V ) the inverse functor, which to a p-adic representation attaches

the corresponding étale (ϕ,Γ)-module over R.

For example, the (ϕ,Γ)-module R(δ) is étale if and only if valp(δ(p)) = 0. In this case,

the representation V (R(δ)) is the character of Gal(Qp/Qp) corresponding to δ by local

class field theory, as recalled in §1.3.

2.3. Trianguline representations. — We can now give the definition of trianguline

representations (see §0.4 of [Col08]).

Definition 2.3.1. — If V is a p-adic representation of Gal(Qp/Qp), then

1. we say that V is split trianguline if the (ϕ,Γ)-module D(V ) is a successive extension

of (ϕ,Γ)-modules of rank 1;

2. we say that V is trianguline if there exists a finite extension F of E such that F⊗EV
is split trianguline.

In other words, a p-adic representation V is split trianguline if and only if D(V ) has a

basis in which the matrices of ϕ and of the elements of Γ are all upper-triangular.

On the level of (ϕ,Γ)-modules, the possible extension of scalars from E to F consists

in extending scalars from the Robba ring with coefficients in E to the Robba ring with

coefficients in F . For example, we shall see later on that semistable representations are

always trianguline, and they are split trianguline if and only if E contains the eigenvalues

of ϕ on Dst(V ).

It is important to understand that a representation V may well be trianguline without

V itself being an extension of representations of dimension 1. Indeed, the definition is

that D(V ) is a successive extension of (ϕ,Γ)-modules of rank 1, but these (ϕ,Γ)-modules

are generally not étale and therefore do not correspond to subquotients of V .

Note also that a (ϕ,Γ)-module may be written as a successive extension of (ϕ,Γ)-

modules of rank 1 in several different ways.
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In the rest of this survey, we shall see several examples of trianguline representations,

but we give here the two main classes:

1. the representations of Gal(Qp/Qp) that become semistable when restricted to

Gal(Qp/Qp(ζpn)) for some n > 0;

2. the representations of Gal(Qp/Qp) that arise from overconvergent modular eigen-

forms of finite slope.

In [Ber11], some explicit families of 2-dimensional representations are constructed and

the trianguline ones are determined.

2.4. Slopes of (ϕ,Γ)-modules. — We now recall Kedlaya’s theory of slopes for ϕ-

modules over the ring R (i.e. free R-modules of finite rank d with a semilinear ϕ such

that Mat(ϕ) ∈ GLd(R)). If s = a/h ∈ Q is written in lowest terms, then we say that

a ϕ-module over R is pure of slope s if it is of rank > 1 and has a basis in which

Mat(p−aϕh) ∈ GLd(O†E) (being étale is therefore equivalent to being pure of slope zero).

A ϕ-module over R which is pure of a certain slope is said to be isoclinic. For example,

the (ϕ,Γ)-module R(δ) is pure of slope valp(δ(p)). The main result of the theory of slopes

is theorem 6.10 of [Ked04].

Theorem 2.4.1. — If D is a ϕ-module over R, then there exists a unique filtration

{0} = D0 ⊂ D1 ⊂ · · · ⊂ D` = D of D by sub-ϕ-modules such that:

1. for all i > 1, Di/Di−1 is an isoclinic ϕ-module;

2. if si is the slope of Di/Di−1, then s1 < s2 < · · · < s`.

If D is a (ϕ,Γ)-module, then each of the Di is stable under the action of Γ since the

filtration is unique, and hence each Di is itself a (ϕ,Γ)-module.

A delicate but crucial point of the theory of slopes is that a ϕ-module over R which

is pure of slope s has no subobject of slope < s by theorem 2.4.1, but it may well have

subobjects of slope > s. This helps to explain the definition of trianguline representations:

an étale (ϕ,Γ)-module over R may be irreducible in the category of étale (ϕ,Γ)-modules

but it can still admit some nontrivial subobjects in the larger category of all (ϕ,Γ)-

modules.

Theorem 2.4.1 also helps to understand theorem 2.2.2. If D is a (ϕ,Γ)-module, then

V (D) = (B̃†rig ⊗R D)ϕ=1 is constructed by solving ϕ-equations determined by the matrix

of ϕ on D. If the slopes of D are > 0, then these equations have no nonzero solutions,

while if the slopes of D are < 0, then the space of solutions is infinite-dimensional (see

theorem A of [Ber09] for more precise results). The condition that D is étale is exactly

the right one for V (D) to be a finite-dimensional E-vector space of the correct dimension.
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3. Examples of trianguline representations

In this chapter, we explain how to relate (ϕ,Γ)-modules and p-adic Hodge theory,

which allows us to give important examples of trianguline representations. After that, we

explain how to compute extensions of (ϕ,Γ)-modules and Colmez’s resulting construction

of all 2-dimensional trianguline representations.

3.1. Fontaine’s rings of periods. — The purpose of Fontaine’s theory is to sort

through p-adic representations, and to classify the interesting ones by using objects from

linear algebra. Recall that Fontaine has constructed in [Fon94a] a number of rings, for

example Bcris, Bst and BdR. The construction of these rings is quite complicated but

they have a number of properties, some of which we now recall and which suffice for this

survey. All of them are Qp-algebras endowed with an action of Gal(Qp/Qp) and some

extra structures, which are all compatible with the action of Gal(Qp/Qp). The ring Bst

has a Frobenius ϕ and a monodromy operator N , which satisfy the relation Nϕ = pϕN ,

and the ring Bcris is then BN=0
st . The ring BdR is actually a field, and is endowed with a

filtration. The ring Bcris contains Q̂nr
p and the choice of logp(p) gives rise to an injective

map Qp ⊗Qnr
p
Bst → BdR.

If V is a p-adic representation of Gal(Qp/Qp) and ∗ ∈ {cris, st, dR}, then we set

D∗(V ) = (B∗⊗Qp V )Gal(Qp/Qp). The space D∗(V ) is then an E-vector space of dimension

6 dimE(V ) and we say that V is crystalline or semistable or de Rham if we have the

equality of dimensions with ∗ being cris, st or dR.

The E-vector space DdR(V ) is then endowed with an E-linear filtration, the space

Dst(V ) ⊂ DdR(V ) is a filtered (ϕ,N)-module (that is, a finite-dimensional E-vector space

with an E-linear map ϕ, an E-linear map N satisfying the relation Nϕ = pϕN , and a

filtration by E-vector subspaces, which is not assumed to be stable under either ϕ or N)

and Dcris(V ) = Dst(V )N=0 is a filtered ϕ-module.

If D is a filtered (ϕ,N)-module, then we define the Newton number tN(D) as the

p-adic valuation of ϕ on det(D) and the Hodge number tH(D) as the unique integer h

such that Filh(det(D)) = det(D) and Filh+1(det(D)) = {0}. We say that D is admissible

if tH(D) = tN(D) and if tH(D′) 6 tN(D′) for every (ϕ,N)-stable subspace D′ of D.

The following theorem combines results of Fontaine (§5.4 of [Fon94b]) and the Colmez-

Fontaine theorem (theorem A of [CF00]).

Theorem 3.1.1. — If V is a semistable representation of Gal(Qp/Qp), then Dst(V ) is

an admissible filtered (ϕ,N)-module, and the functor V 7→ Dst(V ) gives an equivalence

of categories: {semistable representations} → {admissible filtered (ϕ,N)-modules}.



TRIANGULINE REPRESENTATIONS 9

All of these constructions also work for representations of Gal(Qp/K) if K is a finite

extension of Qp. In particular, we say that a p-adic representation of Gal(Qp/Qp) is po-

tentially semistable if its restriction to Gal(Qp/K) is semistable for some finite extension

K of Qp. Potentially semistable representations of Gal(Qp/Qp) are always de Rham.

3.2. p-adic Hodge theory. — If X is a proper scheme over Zp with semistable re-

duction, then the étale cohomology groups Hi
ét(XQp

,Qp) are p-adic representations of

Gal(Qp/Qp). If X has good reduction at p, then we can consider its crystalline cohomol-

ogy groups which have the structure of filtered ϕ-modules, and if X has bad semistable

reduction at p, then one can replace the crystalline cohomology groups with a gener-

alization: the log-crystalline cohomology groups, which have the structure of filtered

(ϕ,N)-modules. We then have the following theorem of Tsuji (theorem 0.2 of [Tsu99]),

which is the former conjecture Cst of Fontaine-Jannsen (see §6.2 of [Fon94b]).

Theorem 3.2.1. — If X is a proper scheme over Zp with semistable reduction, then

Hi
ét(XQp

,Qp) is a semistable representation of Gal(Qp/Qp), and there is a natural iso-

morphism of filtered (ϕ,N)-modules: Dst(H
i
ét(XQp

,Qp)) = Hi
log- cris(X).

If f is a modular eigenform, then one can attach to it a p-adic representation Vpf as

recalled in theorem 1.1.2. The representation Vpf is always potentially semistable and

a result of Saito (the main theorem of [Sai97]) completely describes the restriction of

Vpf to Dp. If p - N , then Saito’s theorem was previously proved by Scholl (see theorem

1.2.4 of [Sch90]). In this case, Vpf is crystalline and Dcris((Vpf)∗) = Dk,ap where k is the

weight of f , ap is the eigenvalue of the Hecke operator Tp, and Dk,ap = Ee1 ⊕ Ee2 with

Mat(ϕ) =

(
0 −1

ε(p)pk−1 ap

)
and FiliDk,ap =


Dk,ap if i 6 0,

Ee1 if 1 6 i 6 k − 1,

{0} if i > k.

The following is known as the Fontaine-Mazur conjecture (conjecture 1 of [FM95]).

Conjecture 3.2.2. — If V is an irreducible p-adic representation of Gal(Q/Q), whose

restriction to I` is trivial for all ` except a finite number, and whose restriction to Dp

is potentially semistable, then V is a subquotient of an étale cohomology group of some

algebraic variety over Q.

If in addition dim(V ) = 2 and V is odd, then we actually expect V to be the repre-

sentation attached to a modular eigenform, and we have the following precise conjecture

(conjecture 3c of [FM95]). The Hodge-Tate weights of a de Rham representation V are

the opposites of the jumps of the filtration on DdR(V ).
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Conjecture 3.2.3. — If V is an irreducible 2-dimensional p-adic representation of

Gal(Q/Q), whose restriction to I` is trivial for all ` except a finite number, and whose

restriction to Dp is potentially semistable with distinct Hodge-Tate weights, then V is a

twist of the Galois representation attached to a cuspidal eigenform with weight k > 2.

Let us write V for the reduction modulo mE of V .

Theorem 3.2.4. — Conjecture 3.2.3 is true, if we suppose that V satisfies some tech-

nical hypotheses.

This theorem has been proved independently by Kisin (it is the main theorem of

[Kis09]) and by Emerton (theorem 1.2.4 of [Eme10]). The “technical hypotheses” of

Kisin are the following (χcycl is now the reduction mod p of the cyclotomic character, and

∗ denotes a cocycle which may be equal to 0).

1. p 6= 2 and V is odd;

2. V |Gal(Q/Q(ζp)) is irreducible;

3. V |Gal(Qp/Qp) is not of the form
( ηχcycl ∗

0 η

)
for any character η.

The “technical hypotheses” of Emerton are (1) and (2) and

3’. V |Gal(Qp/Qp) is not of the form
( η ∗

0 ηχcycl

)
nor of the form

( η ∗
0 η

)
for any character η.

3.3. Crystalline and semistable (ϕ,Γ)-modules. — In §3.1, we recalled the defini-

tion of Dcris(V ) and Dst(V ) for a p-adic representation V . We now explain how to extend

this definition to (ϕ,Γ)-modules. Recall that we denote by t the element log(1+X) ∈ R.

Definition 3.3.1. — If D is a (ϕ,Γ)-module, then let Dcris(D) = (R[1/t]⊗R D)Γ.

In order to define Dst(D), we add a variable to R as follows. The power series

log(ϕ(X)/Xp) and log(γ(X)/X) (for γ ∈ Γ) both converge in R. Let log(X) be a vari-

able that we adjoin to R, with the Frobenius and the action of Γ extended to R[log(X)]

by ϕ(log(X)) = p log(X) + log(ϕ(X)/Xp) and γ(log(X)) = log(X) + log(γ(X)/X). We

also define a monodromy map N on R[log(X)] by N = −p/(p− 1) · d/d log(X).

Definition 3.3.2. — If D is a (ϕ,Γ)-module, then let Dst(D) = (R[log(X), 1/t]⊗RD)Γ.

Definitions 3.3.1 and 3.3.2 make sense for any (ϕ,Γ)-module. We say that D is crys-

talline or semistable if Dcris(D) or Dst(D) is an E-vector space of dimension rk(D). The

space Dst(D) is then a (ϕ,N)-module and Dcris(D) = Dst(D)N=0. One can also define a

filtration on these two spaces by using the filtration of R given by “the order of vanishing

at ζpn − 1 for n� 0” so that Dst(D) becomes a filtered (ϕ,N)-module (which in general

is not admissible). The following result is theorem 0.2 of [Ber02].
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Theorem 3.3.3. — If V is a p-adic representation of Gal(Qp/Qp), and if D(V ) is the

attached (ϕ,Γ)-module, then Dcris(V ) = Dcris(D(V )) and Dst(V ) = Dst(D(V )).

The proof of this requires a number of delicate computations in several of Fontaine’s

rings of periods. Recall that B̃†rig is the ring used in §2.2 in order to attach p-adic

representations to (ϕ,Γ)-modules. One can show that the ring Bcris of Fontaine admits

a subring B̃+
rig such that

1. for any p-adic representation V , the inclusion (B̃+
rig[1/t]⊗Qp V )Gal(Qp/Qp) ⊂ Dcris(V )

is an isomorphism;

2. there is a natural inclusion B̃+
rig ⊂ B̃†rig.

These facts allow one to go from the usual p-adic periods to the theory of (ϕ,Γ)-modules,

and then to prove theorem 3.3.3. The spaces Dst(V ) and Dst(D(V )) are then equal as

subspaces of B̃†rig[1/t] ⊗Qp V . It is also possible to define DdR(D) as well as de Rham

(ϕ,Γ)-modules in the same way, and to prove an analogue of theorem 3.3.3, but this is

slightly more complicated and we do not give the recipe here.

If V is a semistable representation, and if M is a (ϕ,N)-stable subspace of Dst(V ),

then it is easy to see that (R[log(X), 1/t] ⊗E M)N=0 ∩ D(V ) is a sub-(ϕ,Γ)-module of

D(V ) of rank dim(M). Using this observation and theorem 3.3.3, we get the following

result.

Theorem 3.3.4. — Semistable representations of Gal(Qp/Qp) are trianguline.

We see that the (ϕ,Γ)-module of a semistable representation may then admit several

different triangulations, corresponding to flags of Dst(V ) stable under ϕ and N . Another

consequence of theorem 3.3.3, which is proved in the same way, is the following useful

result (proposition 4.3 of [Col08]).

Theorem 3.3.5. — If V is a p-adic representation of dimension 2, then V is trianguline

if and only if there exists a character η of Gal(Qp/Qp) such that Dcris(V (η)) 6= 0.

3.4. Weights of trianguline representations. — Recall that p-adic representations

of Gal(Qp/Qp) have weights: Sen’s theory (§2.2 of [Sen80]) allows us to attach to V a

polynomial P (X) ∈ E[X] of degree dim(V ), whose roots are the generalized Hodge-Tate

weights of V (warning: in [BC09] as in other places, the opposite sign is chosen for the

weights. For us, the cyclotomic character has weight +1). For example if V is de Rham,

then these weights are the opposites of the jumps of the filtration on DdR(V ), and are

then the classical Hodge-Tate weights of V .

If V is a trianguline representation and if {0} = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D(V ) is a

triangulation of V , then each Di/Di−1 is of rank 1 and hence of the formR(δi) by theorem
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2.1.2. If δ : Q×p → E× is a character, then w(δ) = logp δ(u)/ logp u does not depend on

the choice of u ∈ 1 + pZp \ {1} and is called the weight of δ.

Theorem 3.4.1. — If V is a trianguline representation and δ1, . . . , δd are as above,

then w(δ1), . . . , w(δd) are the generalized Hodge-Tate weights of V .

The following theorem (proposition 2.3.4 of [BC09]) can be seen as a generalization

of Perrin-Riou’s theorem 1.5 of [PR94] that “ordinary representations are semistable”.

Theorem 3.4.2. — Let V be a trianguline representation. If V admits a triangulation

with characters δ1, . . . , δd such that w(δ1), . . . , w(δd) are integers and w(δ1) > · · · >
w(δd), then V is potentially semistable.

3.5. Cohomology of (ϕ,Γ)-modules. — Since trianguline representations are suc-

cessive extensions of (ϕ,Γ)-modules of rank 1, an important part of the study of these

representations is the determination of the extension groups of (ϕ,Γ)-modules.

Let D be a (ϕ,Γ)-module and let γ be a topological generator of Γ (the group Z×p is

topologically cyclic if p 6= 2; if p = 2, then the definitions have to be slightly modified).

Let C(ϕ, γ) be the complex (first considered by Herr in [Her98])

0→ D
z 7→((γ−1)z,(ϕ−1)z)−−−−−−−−−−−→ D⊕D

(x,y)7→(ϕ−1)x−(γ−1)y−−−−−−−−−−−−−→ D→ 0.

The E-vector spaces Hi(C(ϕ, γ)) do not depend on the choice of γ and we define the

cohomology groups of D to be Hi(D) = Hi(C(ϕ, γ)). Note that by construction Hi(D) = 0

if i > 3.

The following theorem (theorems 1.1 and 1.2 and §3.1 of [Liu08]) summarizes several

properties of the groups Hi(D); we write hi(D) for dimE Hi(D).

Theorem 3.5.1. — If D is a (ϕ,Γ)-module, then:

1. the Hi(D) are finite-dimensional E-vector spaces and h0(D) − h1(D) + h2(D) =

− rk(D);

2. H0(D) = DΓ=1,ϕ=1 and H1(D) = Ext1(R,D);

3. if V is a p-adic representation, then Hi(D(V )) ' Hi(Gal(Qp/Qp), V );

Combining (3) and (1), we recover Tate’s Euler characteristic formula.

In the special case when D is of rank 1, Colmez has computed explicitly H1(D). We

have the following result (theorem 0.2 of [Col08]) which we use in §3.6. Let x : Q×p → E×

be the map z 7→ z and let | · |p : Q×p → E× be the map z 7→ p− valp(z).

Theorem 3.5.2. — If δ1 and δ2 : Q×p → E× are two characters, then Ext1(R(δ2),R(δ1))

is a 1-dimensional E-vector space, unless δ1δ
−1
2 is either of the form x−i with i > 0 or

|x|pxi with i > 1, in which case Ext1(R(δ2),R(δ1)) is of dimension 2.



TRIANGULINE REPRESENTATIONS 13

In the first case, there is therefore one nonsplit extension 0→ R(δ1)→ D→ R(δ2)→ 0

while in the second case, the set of such extensions is parametrized by P1(E). The param-

eter for such an extension is called the L-invariant and turns out to be a generalization of

the usual L-invariants (see [Col10a] for a discussion of L-invariants of modular forms).

3.6. Trianguline representations of dimension 2. — We now explain how we can

use the results of the preceding paragraph in order to construct a parameter space for all

irreducible trianguline representations of dimension 2.

If δ : Q×p → E× is a character, then we set u(δ) = valp(δ(p)), so that u(δ) is the slope

of R(δ) as in §2.4. Recall that w(δ) is the weight of δ, defined in §3.4.

If V is a trianguline representation of dimension 2, then D(V ) is an extension of two

(ϕ,Γ)-modules of rank 1, so that we have an exact sequence 0 → R(δ1) → D(V ) →
R(δ2) → 0. The fact that D(V ) is étale implies that u(δ1) + u(δ2) = 0, and (because of

theorem 2.4.1) u(δ1) > 0. If u(δ1) = u(δ2) = 0, then R(δ1) and R(δ2) are étale, and V

itself is an extension of two representations.

Let S be the set {(δ1, δ2,L)} where δ1 and δ2 are characters Q×p → E×, and L = ∞
if δ1δ

−1
2 is neither of the form x−i with i > 0 nor of the form |x|pxi with i > 1, and

L ∈ P1(E) otherwise. Theorem 3.5.2 above allows us to construct for every s ∈ S a

nontrivial extension D(s) of R(δ2) by R(δ1), and vice versa.

If s ∈ S, then we set w(s) = w(δ1)−w(δ2). We define S∗ as the set of s ∈ S such that

u(δ1) + u(δ2) = 0 and u(δ1) > 0, and we then set u(s) = u(δ1) if s ∈ S∗. We define the

“crystalline”, “semistable” and “nongeometric” parameter spaces as follows.

1. Scris
∗ = {s ∈ S∗ such that w(s) ∈ Z>1 and u(s) < w(s) and L =∞};

2. Sst
∗ = {s ∈ S∗ such that w(s) ∈ Z>1 and u(s) < w(s) and L 6=∞};

3. Sng
∗ = {s ∈ S∗ such that w(s) /∈ Z>1}.

Let Sirr = Scris
∗ t Sst

∗ t Sng
∗ .

Theorem 3.6.1. — If s ∈ Sirr, then D(s) is étale, and the attached representation V (s)

is trianguline and irreducible. Every 2-dimensional irreducible trianguline representation

is of the form V (s) for some s ∈ Sirr (after possibly extending scalars), and we have

V (s) = V (s′) if and only if s ∈ Scris
∗ and s′ = (xw(s)δ2, x

−w(s)δ1,∞).

In particular, if s ∈ S \ Sirr, then either D(s) is étale but V (s) is reducible, or D(s) is

not even étale (this happens, for example, if w(s) ∈ Z>1 and u(s) > w(s)). These cases

are examined in §3 of [Col08].

If s ∈ Scris
∗ , then the representation V (s) becomes crystalline over an abelian extension

of Qp after possibly twisting by a character. If s ∈ Sst
∗ , then the representation V (s)
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becomes semistable (noncrystalline) over an abelian extension of Qp after possibly twist-

ing by a character. If s ∈ Sng
∗ , then V (s) is not a twist of a de Rham representation.

In the cases where V (s) is crystalline or semistable, Colmez has explicitly determined in

§4.5 and §4.6 of [Col08] the filtered ϕ- and (ϕ,N)-modules Dcris(V (s)) and Dst(V (s)),

respectively, in terms of s.

Let us give as an example the description of the parameter s corresponding to the

representation Vpf arising from a modular eigenform of level N prime to p, weight k > 2

and character ε. Let ap ∈ OE be the eigenvalue of the Hecke operator Tp. We assume that

ap ∈ mE so that Vpf restricted to Dp is irreducible. If y ∈ E×, then let µy : Q×p → E× be

the character defined by µy(z) = yvalp(z). Let x0 : Q×p → E× be the character defined by

x0(z) = z|z|p, so that x0(p) = 1 and x0(z) = z if z ∈ Z×p . The result below then follows

from the computations of §4.5 of [Col08].

Theorem 3.6.2. — We have (Vpf)∗ = V (µy, µε(p)/yx
1−k
0 ,∞) where y ∈ mE is such that

y2 − apy + ε(p)pk−1 = 0.

The equation for y has (in general) two solutions, giving two different parameters s

and s′ for the same representation. This corresponds to the phenomenon described at

the end of theorem 3.6.1.

The constructions of this paragraph have been generalized to 2-dimensional trianguline

representations of Gal(Qp/K) by Nakamura in [Nak09], for K a finite extension of Qp.

4. Arithmetic applications

In this chapter, we explain the role that trianguline representations play in the p-adic

local Langlands correspondence and then in the theory of overconvergent modular forms.

4.1. The p-adic local Langlands correspondence. — We only give a cursory de-

scription of the p-adic local Langlands correspondence, and refer to the Bourbaki seminar

[Ber10] for a detailed survey and adequate references.

The p-adic local Langlands correspondence for GL2(Qp) is a bijection, between cer-

tain 2-dimensional p-adic representations of Gal(Qp/Qp), and certain representations

of GL2(Qp). The first examples of this correspondence were constructed by Breuil,

for semistable and crystalline representations of Gal(Qp/Qp). These examples inspired

Colmez to use (ϕ,Γ)-modules in order to give a “functorial” construction of these exam-

ples, and he realized that the natural condition to impose on the p-adic representations

which he was considering was that the attached (ϕ,Γ)-module be an extension of two

(ϕ,Γ)-modules of rank 1. This is what led him to define trianguline representations.
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In the notation of §3.6, if s ∈ Sirr, then the representation of GL2(Qp) corresponding

to V (s) by the p-adic local Langlands correspondence is a p-adic unitary Banach space

representation Π(s) of GL2(Qp) constructed as follows.

Let logL be the logarithm normalized by logL(p) = L (if L = ∞, then we set log∞ =

valp) and if s ∈ S, let δs be the character x−1
0 δ1δ

−1
2 . Note that if s ∈ Sirr then we can

have L 6= ∞ only if δs is of the form xi with i > 0. We can define the notion of a class

Cu function for u ∈ R>0 generalizing the usual case u ∈ Z>0. We denote by B(s) the

space of functions f : Qp → E which are of class Cu(s) and such that x 7→ δs(x)f(1/x)

extends at 0 to a function of class Cu(s). The space B(s) is then endowed with an action

of GL2(Qp) given by the formula:[(
a b
c d

)
· f
]

(y) = (x|x|pδ−1
1 )(ad− bc) · δs(cy + d) · f

(
ay + b

cy + d

)
.

The space M(s) is defined by the following conditions

1. if δs is not of the form xi with i > 0, then M(s) is the space generated by 1 and by

the functions y 7→ δs(y − a) with a ∈ Qp;

2. if δs is of the form xi with i > 0, then M(s) is the intersection of B(s) with the

space generated by the functions y 7→ δs(y − a) and y 7→ δs(y − a) logL(y − a) with

a ∈ Qp.

We finally set Π(s) = B(s)/M̂(s) where M̂(s) is the closure of M(s) inside B(s).

Theorem 4.1.1. — The unitary Banach space representation Π(s) of GL2(Qp) is

nonzero, topologically irreducible and admissible in the sense of Schneider-Teitelbaum.

These representations Π(s) are called the “unitary principal series” and the above

theorem is theorem 0.4 of [Col10b]. Colmez then proceeds in [Col10c] to attach to

any 2-dimensional p-adic representation of Gal(Qp/Qp) a representation of GL2(Qp),

and he proves that these have the required properties by using the fact that this is true

for trianguline representations, that his construction is suitably continuous, and that

trianguline representations are Zariski dense in the deformation space of all 2-dimensional

p-adic representations.

4.2. Families of Galois representations. — In this paragraph, we recall the ex-

istence of certain rigid analytic spaces that parametrize some families of p-adic Galois

representations. Recall that the rigid analytic space attached to Qp ⊗Zp Zp[[X]] is the

p-adic open unit disk and that more generally, the rigid analytic space attached to

E ⊗OE
OE[[X1, . . . , Xn]] is the n-dimensional ball over E.

We start with a simple example; the group 1 + pZp is topologically generated by the

element 1 + p (unless p = 2; the constructions of this paragraph can easily be adapted to
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work when p = 2). This implies that a character on 1 + pZp is determined by its value

at 1 + p. Consider the ring R = Zp[[X]] and the character ηR : 1 + pZp → R× given by

ηR(1 + p) = 1 + X. Any character η = 1 + pZp → 1 + mE is obtained from ηR by the

formula η(g) = f ◦ ηR(g), where f : R → mE is given by f(X) = η(1 + p) − 1. There is

therefore a bijection between the E-valued points of the rigid analytic space attached to

Qp ⊗Zp Zp[[X]] (that is, mE) and the set of characters η : 1 + pZp → 1 + mE. The ring R

is an example of a universal deformation ring, and the rigid analytic space attached to

R[1/p] (the p-adic open unit disc) parametrizes the family of all Q
×
p -valued characters of

1 + pZp.

Suppose now that η : Z×p → k×E is a character, and let E0 be the smallest extension of

Qp whose residue field is kE (that is, E0 = E ∩Qnr
p ). The natural parameter space for

characters η : Z×p → Z
×
p whose reduction modulo mZp

is η is, as above, the rigid analytic

space attached to E0 ⊗OE0
OE0 [[X]]. We denote this space by Xη.

There is likewise a parameter space X u
δ

for characters δ : Q×p → Q
×
p which have a

fixed slope u and such that δ(p)/pu ∈ k×E and δ |Z×p ∈ k
×
E are fixed, and this parameter

space is the rigid analytic space attached to E0 ⊗OE0
OE0 [[X1, X2]]. Denote by δ(x) the

character corresponding to a point x ∈ X u
δ

. Colmez proves in §5.1 of [Col08] that

the representations V (s) live in analytic families of trianguline representations, and his

construction has been completed by Chenevier (see §3 of [Che10]). For example, we

have the following theorem.

Theorem 4.2.1. — If (δ1, δ2,∞) ∈ Sirr, then there exist a neighbourhood U of (δ1, δ2) ∈
X u1

δ1
×X u2

δ2
and a free OU -module V of rank 2 with an action of Gal(Qp/Qp), such that

V (u) = V (δ1(u), δ2(u),∞) if u ∈ U .

Recall that Mazur generalized the construction of Xη in [Maz89], where he proved

that for certain groups G and representations ρ : G→ GLd(Fp), there exists a parameter

space Xρ for the set of all isomorphism classes of representations ρ : G→ GLd(Zp) having

reduction modulo mZp
isomorphic to ρ. This applies, for example, if End(ρ) = Fp and if

either G = Gal(QS/Q) is the Galois group of the maximal extension QS of Q which is

unramified outside of a finite set of places S, or if G = Gal(Qp/Qp).

If G = Gal(Qp/Qp) and d = 2, then for most representations ρ : G → GLd(kE), the

rigid analytic space Xρ is the one attached to E0⊗OE0
OE0 [[X1, X2, X3, X4, X5]]. Theorem

4.2.1 then implies that inside the 5-dimensional space Xρ, there is a countable number of

4-dimensional subspaces corresponding to trianguline representations. The “trianguline

locus” of Xρ is Zariski dense (it is however a “thin subset” of Xρ in the terminology of
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§4 of [BC10]). This can be compared with the following result (theorems B and C of

[BC08]).

Theorem 4.2.2. — If b > a, then the locus of Xρ corresponding to crystalline (or

semistable or de Rham or Hodge-Tate) representations, with Hodge-Tate weights in the

range [a, b], is a closed analytic subspace of Xρ.

4.3. Overconvergent modular forms. — Overconvergent modular forms are objects

defined by Coleman in [Col96], which are p-adic generalizations of classical modular forms

(for a survey about overconvergent modular forms, see the Bourbaki seminar [Eme09]).

An “overconvergent modular form of finite slope” has a q-expansion, which is a p-adic

limit of q-expansions of classical modular eigenforms. One can attach Galois represen-

tations to these objects, by taking the limit of the Galois representations attached to

the eigenforms in the converging sequence. In this paragraph, we directly define some

p-adic representations of Gal(Q/Q) by a p-adic interpolation process, and merely recall

that these representations are the ones that are attached to “overconvergent modular

eigenforms of finite slope”.

Let N > 1 be an integer prime to p and let S be the set of primes dividing pN

and∞. Fix some 2-dimensional Fp-representation ρ of Gal(QS/Q). Let X S
ρ be the rigid

analytic space attached to the universal deformation space for ρ, so that every x ∈X S
ρ (E)

corresponds to an E-linear representation Vx of Gal(Q/Q), which is unramified outside of

S, and whose reduction modulo mE is isomorphic to ρ. For most representations ρ, X S
ρ

is a 3-dimensional rigid analytic ball by results of Weston (see theorem 1 of [Wes04]).

Let Ccl be the set of points (x, λ) ∈ X S
ρ × Gm such that Vx is the representation

attached to a modular eigenform f on Γ1(N) and λ is a root of X2 − apX + ε(p)pk−1

(where k is the weight of f and Tp(f) = apf). Let C be the Zariski closure of Ccl inside

X S
ρ ×Gm. By §1.5 of [CM98], we have the following result.

Theorem 4.3.1. — The variety C is a rigid analytic curve.

Coleman and Mazur then show in [CM98] that the Galois representations Vx cor-

responding to points (x, λ) ∈ C(Qp) are the ones which are attached to the “level N

overconvergent modular eigenforms of finite slope” defined by Coleman. The curve C is

called the eigencurve (note that the construction of the eigencurve is given in [CM98]

assuming that N = 1 and that p > 2. The general case is treated in [Buz07]).

The projection of C on X S
ρ is then a complicated space (for instance, it has infinitely

many double points) which is the “infinite fern” of [Maz97] and [GM98], see §2.5

of [Eme09]. The following result (a consequence of theorem 6.3 of [Kis03] combined
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with theorem 3.3.5) describes the restriction to Gal(Qp/Qp) of the representations of

Gal(Q/Q) which are constructed in this way.

Theorem 4.3.2. — If f is an overconvergent modular eigenform of finite slope of level

N (i.e. if (Vpf, λ) ∈ C(E) by the above remark), then Vpf is a trianguline representation.

The idea is that if f is classical, then we know Dcris(Vpf) by Scholl’s theorem recalled

in 3.2, and Kisin deduces that Vpf satisfies the hypothesis of theorem 3.3.5 from the

classical case by a p-adic interpolation argument.

We then have the following result, Emerton’s generalization of the Fontaine-Mazur

conjecture for modular forms.

Theorem 4.3.3. — If V is an irreducible 2-dimensional p-adic representation of

Gal(Q/Q), such that

1. the restriction of V to I` is trivial for all ` except a finite number,

2. the restriction of V to Dp is trianguline,

3. V satisfies hypotheses (1), (2) and (3’) of §3.2,

then V is a twist of the Galois representation attached to an overconvergent cuspidal

eigenform of finite slope.

We now describe the parameter s ∈ S such that (Vpf)∗ = V (s), just as we did for

classical modular forms at the end of §3.6. Let f be a finite slope overconvergent modular

eigenform of level N and character ε. Let k = w(det(Vpf))+1 ∈ E (so that if f is classical,

then k is the weight of f), let λ ∈ E be such that (Vpf, λ) ∈ C, and let µλ : Q×p → E×

be the character z 7→ λvalp(z). The following result is proposition 5.2 of [Che08] (it is a

direct consequence of theorem 6.3 of [Kis03] and theorem 0.8 of [Col08]). Note that if

k ∈ Z>1 and either valp(λ) = 0 or valp(λ) = k − 1, then Vpf is reducible in an obvious

way.

Theorem 4.3.4. — We have (Vpf)∗ = V (δ1, det(Vpf)−1 · δ−1
1 ,Lf ) where we have the

following conditions.

1. If k ∈ Z>1 and 0 < valp(λ) < k − 1, then δ1 = µλ and if Lf 6= ∞, then Vpf is

semistable and Lf is the L-invariant of f ;

2. If k ∈ Z>1 and valp(λ) > k − 1, then δ1 = x1−kµλ and Lf =∞;

3. If k /∈ Z>1, then δ1 = µλ and Lf =∞.

Coleman’s “small slope criterion” for the classicality of overconvergent modular eigen-

forms (§6 of [Col96]) can then be interpreted as follows in terms of Galois representations:

if k > 1 and 0 < valp(λ) < k − 1, then the representation Vpf is potentially semistable
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at p, and therefore the overconvergent modular form f is classical, as predicted by the

Fontaine-Mazur conjecture (theorem 3.2.4).

We finish this paragraph by discussing the weight-characters of overconvergent cuspidal

eigenforms of finite slope. Let W be the weight space, that is the parameter space for

characters of Z×p . The space W is the union of the p− 1 balls Xχi
cycl

where 0 6 i 6 p− 2

(unless p = 2; W is then the union of two balls). If V is a p-adic representation of

Gal(Qp/Qp), then by class field theory x0·det(V ) gives a character of Q×p whose restriction

to Z×p is the weight-character κV of V . This gives rise to a map κ : X S
ρ → W and by

composition to a map C → W that satisfies the following property by §1.5 of [CM98].

Theorem 4.3.5. — The map C → W is, locally in the domain, finite and flat.

We now explain that if N = 1 and p ∈ {2, 3, 5, 7}, then one can give a “local” realization

of the eigencurve. A point (κ, λ) ∈ W ×Gm is said to be special if κ = xk0 for some k > 2

and λ2 = pk−2. Let W ×̃Gm be the blow-up of W ×Gm at the special points (so that

W ×̃Gm can be seen as a subspace of the space S of §3.6).

Consider the map C → W ×̃Gm given by (Vx, λ) 7→ (κx, λ,Lx) at the special points and

by (Vx, λ) 7→ (κx, λ) elsewhere. The following theorem is the main result of [Che08].

Theorem 4.3.6. — The map C → W ×̃Gm is a rigid analytic map, and if N = 1 and

p ∈ {2, 3, 5, 7}, then it is a closed immersion.

Some important ideas underlying the proof of this theorem are Colmez’s theorem 0.5

of [Col10a] expressing the L-invariant as the derivative of the Up-eigenvalue, the fact

that if p ∈ {2, 3, 5, 7} and S = {p,∞}, then an odd 2-dimensional p-adic representation

of Gal(QS/Q) is determined by its restriction to Gal(Qp/Qp) (see proposition 1.8 of

[Che08]), and a local study of families of trianguline representations.

4.4. Trianguline representations and Selmer groups. — Since the (ϕ,Γ)-module

attached to a trianguline representation V has a particularly simple structure, one can

use this structure to study the cohomology groups attached to V , in particular the Selmer

group and its variants. Some of the techniques that are available in the ordinary case for

that study (such as [Gre89]) can be extended to the case of trianguline representations.

For example, it is possible to give a generalized definition of the usual L-invariant

(see Benois’ [Ben09], where an L-invariant is constructed for representations that are

not necessarily 2-dimensional), and to study the Selmer groups corresponding to families

of trianguline representations, such as those carried by the eigencurve or more general

eigenvarieties (as in the book [BC09] by Belläıche and Chenevier, and in Pottharst’s
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[Pot08] and [Pot10]). In this way, it is possible to prove some new cases of the Bloch-

Kato conjectures, by establishing some “lower semicontinuity” results about the rank of

the Selmer groups (see [BC09] and Belläıche’s [Bel11]).

The systematic study of families of trianguline representations, in connection with the

theory of families of automorphic forms, is an increasingly important topic which we do

not say anything more about, because it is rapidly progressing and deserves a survey of

its own.
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no. 223, p. 185–220, With an appendix by Luc Illusie, Périodes p-adiques (Bures-
sur-Yvette, 1988).

[Sai97] T. Saito – “Modular forms and p-adic Hodge theory”, Invent. Math. 129 (1997),
no. 3, p. 607–620.

[Sch90] A. Scholl – “Motives for modular forms”, Invent. Math. 100 (1990), no. 2, p. 419–
430.

[Sen80] S. Sen – “Continuous cohomology and p-adic Galois representations”, Invent. Math.
62 (1980), no. 1, p. 89–116.

[Ser94] J.-P. Serre – Cohomologie galoisienne, fifth ed., Lecture Notes in Mathematics,
vol. 5, Springer-Verlag, Berlin, 1994.

[Tsu99] T. Tsuji – “p-adic étale cohomology and crystalline cohomology in the semi-stable
reduction case”, Invent. Math. 137 (1999), no. 2, p. 233–411.

[Wes04] T. Weston – “Unobstructed modular deformation problems”, Amer. J. Math. 126
(2004), no. 6, p. 1237–1252.

Laurent Berger


