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Abstract. — Irreducible crystalline representations of dimension 2 of Gal(Qp/Qp) are all
twists of some representations Vk,ap

which depend on two parameters, the weight k and
the trace of the Frobenius map ap. We show that the reduction modulo p of Vk,ap

is a
locally constant function of ap (with an explicit radius), and a locally constant function of
the weight k if ap 6= 0. We then give (for p 6= 2) an algorithm for computing the reduction
modulo p of Vk,ap

. The main ingredient is Fontaine’s theory of (ϕ,Γ)-modules, as well as
the theory of Wach modules.
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Introduction

Let p be a prime number, and let E be a finite extension of Qp, with ring of integers

OE, maximal ideal mE, uniformizer πE, and residue field kE. If k > 2 and ap ∈ mE, let

Dk,ap be the filtered ϕ-module given by Dk,ap = Ee1 ⊕ Ee2, where:{
ϕ(e1) = pk−1e2
ϕ(e2) = −e1 + ape2

and FiliDk,ap =


Dk,ap if i 6 0,

Ee1 if 1 6 i 6 k − 1,

0 if i > k.
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By the theorem of Colmez-Fontaine (théorème A of [CF00]), there exists a crystalline

E-linear representation Vk,ap of Gal(Qp/Qp) such that Dcris(V
∗
k,ap

) = Dk,ap , where V ∗k,ap is

the dual of Vk,ap . The representation Vk,ap is crystalline, irreducible, and its Hodge-Tate

weights are 0 and k− 1. Let T denote a Gal(Qp/Qp)-stable lattice of Vk,ap , and let V k,ap

be the semisimplification of T/πET . It is well-known that V k,ap depends only on Vk,ap ,

and not on the choice of T .

We should therefore be able to describe V k,ap in terms of k and ap, but this seems to

be a difficult problem. Note that it is easy to make a list of all semisimple 2-dimensional

kE-linear representations of Gal(Qp/Qp): they are either direct sums of two characters

(after possibly extending scalars), or they are absolutely irreducible, and are then twists

of the representation ind(ωr2) for some 1 6 r 6 p (ind(ωr2) is the unique irreducible repre-

sentation of Gal(Qp/Qp) whose restriction to inertia is ωr2 ⊕ ω
pr
2 , and whose determinant

is ωr, where ω2 is the fundamental character of level 2 and ω is the cyclotomic character).

If 2 6 k 6 p, then the theory of Fontaine-Laffaille gives us V k,ap = ind(ωk−12 ). If

k = p+ 1, or k > p+ 2 and vp(ap) > b(k − 2)/(p− 1)c, then theorem 4.1.1, remark 4.1.2

and proposition 4.1.4 of [BLZ04] show that V k,ap = ind(ωk−12 ). For other values of k

and ap, we can get a few additional results by using the p-adic Langlands correspondence

(see [BG09] or conjecture 1.5 of [Bre03], combined with [Ber10]), or by computing

the reduction in specific cases, using congruences of modular forms (Savitt-Stein and

Buzzard, see for instance §6.2 of [Bre03]). However, no general formula is known or (at

the time of writing) even conjectured.

Our first result is that for a fixed k, the map ap 7→ V k,ap is locally constant with

an explicit radius, and that if we view k � valp(ap) as an element of the weight space

lim←−n Z/p
n−1(p− 1)Z, then for a fixed ap 6= 0, the map k 7→ V k,ap is locally constant.

Let α(r) =
∑

n>1br/pn−1(p− 1)c, so that for example α(k − 1) 6 b(k − 1)p/(p− 1)2c.

Theorem A. — If valp(ap − a′p) > 2 · valp(ap) + α(k − 1), then V k,a′p = V k,ap.

The fact that V k,ap is a locally constant function of ap had been observed by many

people (Colmez, Fontaine, Kisin, Mézard, Paškūnas, . . . ). The novelty in theorem A is

the explicit radius. The proof uses the theory of Wach modules, and consists in showing

that if one knows the Wach module for Vk,ap , then one can deform it to a Wach module

for Vk,a′p , if a′p is sufficiently close to ap. By being careful, one can get the explicit radius

of theorem A (this method is the one which is sketched in §10.3 of [BB04]).

Theorem B. — If ap 6= 0 and k > 3 · valp(ap) + α(k − 1) + 1, then there exists m =

m(k, ap) such that V k′,ap = V k,ap, if k′ > k and k′ − k ∈ pm−1(p− 1)Z.
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The main result of [BG09] shows for example that if 0 < valp(ap) < 1 and if k 6≡
3 mod p− 1, then V k,ap depends only on k mod p− 1. The proof of theorem B consists in

showing that the representations Vk,ap occur in the families of trianguline representations

constructed in §5.1 of [Col08] and §3 of [Che10]. The restriction ap 6= 0 is essential, since

the conclusion of theorem B fails for ap = 0. In this case, the corresponding weight space

is quite different: see [Ber09] for a construction of a p-adic family of representations

which interpolates the Vk,0.

Our second result is an algorithm, which can be programmed, and which, given the

data of k, and ap mod πnE for n large enough, will return V k,ap . This algorithm is based on

Fontaine’s theory of (ϕ,Γ)-modules (see A.3 of [Fon90]), and its refinement for crystalline

representations, the theory of Wach modules (see [Ber04]). In order to give the statement

of the result, we give a few reminders about the theory of (ϕ,Γ)-modules for kE-linear

representations. Let Γ be a group isomorphic to Z×p via a map χ : Γ → Z×p . The

field kE((X)) is endowed with a kE-linear Frobenius map ϕ given by ϕ(f)(X) = f(Xp),

and an action of Γ given by γ(f)(X) = f((1 + X)χ(γ) − 1). A (ϕ,Γ)-module (over

kE) is a finite dimensional kE((X))-vector space, endowed with a semilinear Frobenius

map whose matrix satisfies Mat(ϕ) ∈ GLd(kE((X))) in some basis, and a commuting

semilinear continuous action of Γ. By a theorem of Fontaine (see A.3.4 of [Fon90]), the

category of (ϕ,Γ)-modules over kE is naturally isomorphic to the category of kE-linear

representations of Gal(Qp/Qp). The group Γ is topologically cyclic (at least if p 6= 2), so

that a (ϕ,Γ)-module is determined by two matrices P and G, the matrices of ϕ and of

a topological generator γ of Γ in some basis. In the sequel, we denote by rep(P,G) the

kE-linear representation attached to the (ϕ,Γ)-module determined by P and G.

If f(X) ∈ OE[[X]], set ϕ(f)(X) = f((1 + X)p − 1) so that in particular, ϕ(X) = XQ

where Q = ((1 +X)p − 1)/X, and let Γ act on OE[[X]] by η(f)(X) = f((1 +X)χ(η) − 1).

Assume from now on that p 6= 2, so that the group Γ is topologically cyclic, and let

γ be a topological generator of Γ. We write γ1 = γp−1, so that χ(γ1) is a topological

generator of 1 + pZp. If G is the matrix of γ in some basis, then the matrix of γ1 is

G1 = Gγ(G) · · · γp−2(G).

Definition. — Let Wk,ap(n) be the set of pairs of matrices (P,G), with P,G ∈
M2(OE[[X]]/(πnE, ϕ(X)k)), satisfying the following conditions:

1. Pϕ(G) = Gγ(P );

2. G ≡ Id modX;

3. det(P ) = Qk−1 and Tr(P ) ≡ ap mod X;

4. Π(G1) ≡ 0 mod Q, where Π(Y ) = (Y − 1)(Y − χ(γ1)
k−1).
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If (P,G) ∈ Wk,ap(n), then we denote by P and G two matrices in M2(kE[[X]]) which are

equal modulo ϕ(X)k to the reductions modulo πE of P andG (note that in kE[[X]], we have

ϕ(X) = Xp). They then satisfy the relation Pϕ(G) ≡ Gγ(P ) mod ϕ(X)k, and in propo-

sition 4.1 below, we prove that we can modify G modulo Xk so that Pϕ(G) = Gγ(P ),

and that the resulting representation rep(P ,G) does not depend on the modification.

Theorem C. — If n > 1, then Wk,ap(n) is nonempty, and there exists n(k, ap) > 1 with

the property that if n > n(k, ap), and if (P ,G) is the image of any (P,G) ∈ Wk,ap(n),

then rep(P ,G)ss = V
∗
k,ap.

This theorem suggests the following algorithm. Choose some integer n > 1; since the

set M2(OE[[X]]/(πnE, ϕ(X)k)) is finite, we can determine all the elements of Wk,ap(n), by

checking for each pair of matrices (P,G) whether it satisfies conditions (1), (2), (3) and

(4). For each pair (P,G) ∈ Wk,ap(n), we compute rep(P ,G)ss. If we get two different kE-

linear representations from Wk,ap(n) in this way, then we replace n by n + 1; otherwise,

n = n(k, ap) and V
∗
k,ap = rep(P ,G)ss. The theorem above ensures that the algorithm

terminates, and returns the correct answer. The proof of theorem C is a simple application

of the theory of Wach modules. It would be useful to have an effective bound for n(k, ap),

and theorem A is probably an ingredient in the determination of such a bound.

In order to implement the algorithm, we need to be able to identify rep(P ,G) given P

and G, and one way of doing so is explained in §5 (another approach is being developed

in Jérémy Le Borgne’s PhD thesis). The implementation itself should be rather straight-

foward, once we have a library of routines for working with (ϕ,Γ)-modules. However,

the algorithm as it is given here is quite crude, and can certainly be improved, so as to

have a reasonable running time for small values of p and k. Note finally that it is easy

to modify the algorithm so that it works for p = 2.

1. Crystalline representations and Wach modules

Let Γ be the group defined in the introduction and let AE be the πE-adic completion of

OE[[X]][1/X], so thatAE is the ring of power series f(X) =
∑

n∈Z anX
n with an ∈ OE and

a−n → 0 as n→ +∞. The ring AE is endowed with an OE-linear Frobenius map ϕ given

by ϕ(f)(X) = f((1 +X)p− 1) and an action of Γ given by η(f)(X) = f((1 +X)χ(η)− 1)

for η ∈ Γ. An étale (ϕ,Γ)-module (over OE) is a finite type AE-module D endowed with a

semilinear Frobenius map such that ϕ(D) generates D as anAE-module, and a commuting

semilinear continuous action of Γ. By a theorem of Fontaine (see A.3.4 of [Fon90]),

the category of étale (ϕ,Γ)-modules over OE is naturally isomorphic to the category

of OE-linear representations of Gal(Qp/Qp). We denote the corresponding functor by
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D 7→ V (D), and the inverse functor by V 7→ D(V ). If we restrict this equivalence

of categories to objects killed by πE, then we recover the equivalence described in the

introduction.

An effective Wach module of height h is a free OE[[X]]-module N of finite rank, with a

Frobenius map ϕ and an action of Γ, such that:

1. AE ⊗OE [[X]] N is an étale (ϕ,Γ)-module;

2. Γ acts trivially on N/XN;

3. N/ϕ∗(N) is killed by Qh, where ϕ∗(N) is the OE[[X]]-module generated by ϕ(N).

If N is a Wach module, then we can attach to it the E-linear representation V (N) =

E ⊗OE
V (AE ⊗OE [[X]] N). We can also define a filtration on N, by Filj N = {y ∈ N such

that ϕ(y) ∈ Qj · N}, and the E-vector space E ⊗OE
N/XN then has the structure of a

filtered ϕ-module. By combining proposition III.4.2 and theorem III.4.4 of [Ber04], we

get the following result.

Proposition 1.1. — If N is an effective Wach module of height h, then V (N) is crys-

talline with Hodge-Tate weights in [−h; 0], and Dcris(V (N)) ' E ⊗OE
N/XN.

All crystalline representations with Hodge-Tate weights in [−h; 0] arise in this way.

The matrix of ϕ gives a well-defined equivalence class in Md(E ⊗OE
OE[[X]]), and we

have the following result, which follows from §III.3 of [Ber04].

Proposition 1.2. — If N is an effective Wach module, then the elementary divisors (in

the ring E⊗OE
OE[[X]]) of the matrix of ϕ are the ideals generated by Qh1 , . . . , Qhd, where

h1, . . . , hd are the opposites of the Hodge-Tate weights of V (N).

Recall that Zp[[X]]/Q ' Zp[ζp]. The Qp(ζp)-vector space E⊗OE
N/QN is endowed with

an action of Γ, and by propositions III.2.1 and III.2.2 of [Ber04], we have the following.

Proposition 1.3. — If N is an effective Wach module, if V (N) is the attached represen-

tation viewed as a Qp-linear representation, and if η ∈ Γ is such that χ(η) ∈ 1+pZp, then

there exists a basis of Qp ⊗Zp N/QN over Qp(ζp), in which the matrix of η is diagonal,

and whose coefficients on the diagonal are the χ(η)hj , where h1, . . . , hd are the opposites

of the Hodge-Tate weights of V (N).

If V (N) is an E-linear representation of dimension d, with Hodge-Tate weights

h1, . . . , hd, then the Hodge-Tate weights of the underlying Qp-linear representation are

the integers hi, each counted [E : Qp] times; in particular,
∏d

i=1(γ1 − χ(γ1)
hi) = 0 on

E ⊗OE
N/QN where γ1 = γp−1.
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2. Local constancy with respect to ap

In this section, we give a proof of theorem A. The main idea is to deform a Wach

module, and in order to do this we need to prove a few “matrix modification” results.

Lemma 2.1. — If P0 ∈ M2(OE) is a matrix with eigenvalues λ 6= µ, and if δ = λ− µ,

then there exists Y ∈ M2(OE) such that Y −1 ∈ δ−1 M2(OE) and Y −1P0Y =
(
λ 0
0 µ

)
.

Proof. — The matrix P0 corresponds to an endomorphism f of an E-vector space, such

that f preserves some lattice M . Let v and w be two eigenvectors for the eigenvalues

λ and µ, such that v and w are in M , but not in πEM . If x ∈ M , then we can write

x = αv+ βw, so that f(x) = αλv+ βµw. Solving for αv and βw shows that they belong

to δ−1M . The lemma follows by taking for Y the matrix of {v, w}.

Corollary 2.2. — If α > 0 and ε ∈ OE are such that valp(ε) > 2 valp(δ)+α, then there

exists H0 ∈ pα M2(OE) such that det(Id +H0) = 1 and Tr(H0P0) = ε.

Proof. — If y ∈ OE, let H0 = Y
(
y −y
y −y

)
Y −1, so that det(Id +H0) = 1 and Tr(H0P0) = yδ.

If valp(y) > valp(δ) + α, then H0 ∈ pα M2(OE), so that we can have Tr(H0P0) = ε with

y ∈ OE as soon as valp(ε) > 2 valp(δ) + α.

Recall that γ is a topological generator of Γ. If r > 1, then

valp
(
(1− χ(γ))(1− χ(γ)2) · · · (1− χ(γ)r)

)
= α(r).

The following two propositions already appear in §10.3 of [BB04].

Proposition 2.3. — If G ∈ Id +X Md(OE[[X]]) and k > 2 and H0 ∈ pα(k−1) Md(OE),

then there exists H ∈ Md(OE[[X]]) such that H(0) = H0 and HG ≡ Gγ(H) mod Xk.

Proof. — Write G = Id +XG1 + · · · . We prove by induction on r > 1 that there

exists Hr ∈ pα(k−1)−α(r) Md(OE), such that if we set H = H0 + XH1 + · · · + Xk−1Hk−1,

then HG ≡ Gγ(H) mod Xk. Looking at the coefficient of Xr in the equation HG ≡
Gγ(H) mod Xk, we see that Hr is uniquely determined by H0, . . . , Hr−1, and that (1 −
χ(γ)r)Hr ∈ pα(k−1)−α(r−1) Md(OE), which completes the induction.

Proposition 2.4. — Let G ∈ Id +X Md(OE[[X]]) and P ∈ Md(OE[[X]]) satisfy det(P ) =

Qk−1 and Pϕ(G) = Gγ(P ).

If H0 ∈ pα(k−1) Md(OE), then there exists G′ ∈ Id +X Md(OE[[X]]) and H ∈
Md(OE[[X]]) with H(0) = H0 such that if P ′ = (Id +H)P , then P ′ϕ(G′) = G′γ(P ′).
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Proof. — Let H be the matrix constructed in proposition 2.3, and let G′k = G, so that

we have G′k − P ′ϕ(G′k)γ(P ′)−1 = XkRk ∈ Xk Md(OE[[X]]). Assume that j > k and that

we have a matrix G′j such that

G′j − P ′ϕ(G′j)γ(P ′)−1 = XjRj ∈ Xj Md(OE[[X]]).

If Sj ∈ Md(OE), and if we set G′j+1 = G′j +XjSj, then

G′j+1 − P ′ϕ(G′j+1)γ(P ′)−1 = G′j − P ′ϕ(G′j)γ(P ′)−1 +XjSj − P ′XjQjSjγ(P ′)−1

= Xj(Rj + Sj −Qj−k+1P ′SjQ
k−1γ(P ′)−1),

and we can find Sj such that Rj + Sj −Qj−k+1P ′SjQ
k−1γ(P ′)−1 ∈ X Md(OE[[X]]), since

the map S 7→ S−pj−k+1P ′(0) ·S · (Qk−1γ(P ′)−1)(0) is obviously a bijection from Md(OE)

to itself. By induction on j > k, this allows us to find a sequence (G′j)j>k, which converges

for the X-adic topology to a matrix G′ satisfying P ′ϕ(G′) = G′γ(P ′).

Proof of theorem A. — The representation V ∗k,ap is crystalline, with Hodge-Tate weights

0 and −(k − 1). By proposition 1.1, we can attach to it an effective Wach module Nk,ap

of height k − 1. If we choose a basis of Nk,ap , and denote by P and G the matrices of ϕ

and γ ∈ Γ, then Pϕ(G) = Gγ(P ). In addition, G ∈ Id +X Md(OE[[X]]), det(P ) = Qk−1,

det(P (0)) = pk−1 and Tr(P (0)) = ap. If a′p ∈ OE satisfies valp(ap − a′p) > valp(a
2
p −

4pk−1) + α(k − 1), then corollary 2.2 applied to ε = a′p − ap, and proposition 2.4, give

us matrices P ′ = (Id +H)P and G′, which define a Wach module N′ coming from a

crystalline representation V ′.

The matrix of ϕ on Dcris(V
′) is P ′(0), and has determinant pk−1 and trace a′p. Since

Id +H is invertible, the matrices P and P ′ are equivalent, and proposition 1.2 implies

that the filtration on Dcris(V
′) has weights 0 and −(k − 1). This shows that N′ = Nk,a′p .

If valp(ap− a′p) > valp(a
2
p− 4pk−1) +α(k− 1), then the matrices P ′ and G′ are congruent

modulo πE to P and G so that V k,a′p = V k,ap .

Finally, note that valp(a
2
p − 4pk−1) = 2 valp(ap) if valp(ap) < (k − 1)/2, and that if

valp(ap) > (k−1)/2, then the main result of [BLZ04] actually gives a better radius than

2 valp(ap) + α(k − 1).

3. Local constancy with respect to k

In this section, we give a proof of theorem B. The idea is to show that Vk,ap is a point

in one of the families of trianguline representations constructed by Colmez in §5.1 of

[Col08]. We start by briefly recalling Colmez’s constructions, referring the reader to

Colmez’s article for more details.
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Let RE denote the Robba ring with coefficients in E. If δ : Q×p → E× is a continuous

character, then one defines a 1-dimensional (ϕ,Γ)-module R(δ) by R(δ) = R · eδ where

ϕ(eδ) = δ(p)eδ and γ(eδ) = δ(χ(γ))eδ. Given two characters δ1 and δ2, Colmez constructs

non-trivial extensions 0 → R(δ1) → D → R(δ2) → 0, and under certain hypothesis

on δ1 and δ2, the 2-dimensional (ϕ,Γ)-module D is étale in the sense of Kedlaya (see

[Ked04]), and therefore gives rise to a p-adic representation V (δ1, δ2), by using Fontaine’s

construction. These representations are the trianguline representations of [Col08] (note

that if δ1δ
−1
2 is of the form xi with i > 0 or |x|xi with i > 1, then there are several

non-isomorphic possible extensions, and one needs to introduce an L-invariant; in this

case, we always take L =∞).

If y ∈ E×, let µy : Q×p → E× be the character defined by µy(p) = y and µy|Z×p = 1.

Let χ : Q×p → E× be the character defined by χ(p) = 1 and χ(x) = x if x ∈ Z×p . The

following result follows from the computations of §4.5 of [Col08].

Proposition 3.1. — If y ∈ mE is a root of y2−apy+pk−1 = 0, such that valp(y) < k−1,

then V (µy, µ1/yχ
1−k) = V ∗k,ap.

We now recall Colmez’s construction (completed by Chenevier) of families of trianguline

representations. Recall first that there is a natural parameter space X for characters

δ : Q×p → E×. Denote by δ(x) the character corresponding to a point x ∈ X . The

following proposition is proposition 5.2 of [Col08] (if δ1δ
−1
2 (p) 6∈ pZ) and proposition 3.9

of [Che10] (for the general case).

Proposition 3.2. — If δ1 and δ2 are two characters as above, then there exists a neigh-

bourhood U of (δ1, δ2) ∈ X 2, and a free OU -module V of rank 2 with an action of

Gal(Qp/Qp), such that V (u) = V (δ1(u), δ2(u)) if u ∈ U .

Proof of theorem B. — Let k be such that k − 1 > valp(ap), and let δ1 = µap and δ2 =

µ1/apχ
1−k, so that V (δ1, δ2) = V ∗

k,ap+pk−1/ap
by proposition 3.1. Theorem A implies that if

valp(p
k−1/ap) > 2 ·valp(ap) +α(k−1), then V (δ1, δ2) = V

∗
k,ap . Proposition 3.2 implies the

existence of a neighbourhood U of (δ1, δ2) ∈ X 2, such that V (δ1(u), δ2(u)) is constant

on U . By applying this to δ1 = µap and δ2 = µ1/apχ
1−k′ , this implies that there exists m

such that V
∗
k′,ap = V

∗
k,ap if k′ > k and k′ − k ∈ pm−1(p− 1)Z, which finishes the proof of

theorem B.

4. The algorithm for computing the reduction

We start by giving a proof of the main technical result which is used in order to justify

that it is enough to work with truncations of (ϕ,Γ)-modules.
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Proposition 4.1. — If 1 6 n 6 +∞, and if P and Gk are two matrices in

Md(OE/πnE[[X]]), such that det(P ) = Qk−1 × unit, and Gk ≡ Id modX, and Pϕ(Gk) ≡
Gkγ(P ) mod ϕ(X)k, then:

1. there exists G ∈ Md(OE/πnE[[X]]) such that G ≡ Gk mod Xk and Pϕ(G) = Gγ(P );

2. if P ′ and G′ are two matrices, equal to P and G modulo ϕ(X)k and Xk respectively,

and satisfying the same conditions as P and G, then rep(P ′, G′) = rep(P,G).

Proof. — We start by proving (1). Since det(P ) = Qk−1 × unit, the same is true of

det(γ(P )) and hence we have Qk−1γ(P )−1 ∈ Md(OE/πnE[[X]]). We can therefore rewrite

the equation Pϕ(Gk) ≡ Gkγ(P ) mod ϕ(X)k as

Gk − Pϕ(Gk)γ(P )−1 ∈ XkQMd(OE/πnE[[X]]),

since this is true after multiplying by Qk−1, and Q is not a zero divisor in OE/πnE[[X]].

Assume that j > k and that we have a matrix Gj such that

Gj − Pϕ(Gj)γ(P )−1 = XjRj ∈ Xj Md(OE/πnE[[X]]).

If Sj ∈ Md(OE/πnE) and if we set Gj+1 = Gj +XjSj, then

Gj+1 − Pϕ(Gj+1)γ(P )−1 = Gj − Pϕ(Gj)γ(P )−1 +XjSj − PXjQjSjγ(P )−1

= Xj(Rj + Sj −Qj−k+1PSjQ
k−1γ(P )−1),

and we can find Sj such that Rj + Sj − Qj−k+1PSjQ
k−1γ(P )−1 ∈ X Md(OE/πnE[[X]]),

since the map S 7→ S − pj−k+1P (0) · S · (Qk−1γ(P )−1)(0) is obviously a bijection from

Md(OE/πnE) to itself. By induction on j > k, this allows us to find a sequence (Gj)j>k

which converges for the X-adic topology to a matrix G satisfying (1).

In order to prove (2), we start by showing that there exists a matrix M ∈
GLd(OE/πnE[[X]]), such that M−1P ′ϕ(M) = P . We have by hypothesis P ′ = P+ϕ(X)kS,

and hence P ′ = (1 + XkR)P with R = SQkP−1. By induction and successive approxi-

mations, we only need to show that if P ′ = (1 + XjRj)P with j > k, then there exists

Tj ∈ Md(OE/πnE) such that (1 +XjTj)
−1P ′ϕ(1 +XjTj) = (1 +Xj+1Rj+1)P . We have

(1 +XjTj)
−1 · (1 +XjRj) · P · ϕ(1 +XjTj)

= (1 +Xj(Rj − Tj +Qj−k+1PTjQ
k−1P−1) + O(Xj+1)) · P,

and the claim follows from the fact that the map T 7→ T − pj−k+1P (0) · T · (Qk−1P−1)(0)

is obviously a bijection from Md(OE/πnE) to itself. In order to prove (2), we are therefore

reduced to the case P = P ′. We now prove that in this case, we actually have G′ = G. If

we set H = G′G−1, then the two equations Pϕ(G) = Gγ(P ) and Pϕ(G′) = G′γ(P ) give

Pϕ(H) = HP , with H ≡ Id modXk. Let H0 = H and set Hm+1 = Pϕ(Hm)P−1. Since

H ≡ Id modXk, we can write H0 = Id +Xk−1ϕ0(X)R0 and an easy induction shows that
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we can write Hm = Id +Xk−1ϕm(X)Rm, with Rm ∈ Md(OE/πnE[[X]]), so that Hm → Id

as m → +∞. The equation Pϕ(H) = HP implies that Hm = H for all m > 0, so that

H = Id, and we are done.

We now give a proof of theorem C, which we recall here. Remember that p 6= 2.

Theorem 4.2. — If n > 1, then Wk,ap(n) is nonempty and there exists n(k, ap) > 1

with the property that if n > n(k, ap) and if (P ,G) is the image of any (P,G) ∈ Wk,ap(n),

then rep(P ,G)ss = V
∗
k,ap.

Proof. — The representation V ∗k,ap is a crystalline representation, with Hodge-Tate

weights −(k − 1) and 0. By proposition 1.1, there exists an effective Wach mod-

ule Nk,ap of height k − 1, with the property that V (Nk,ap) ' V ∗k,ap . If P and G

are the matrices of ϕ and γ in some basis of Nk,ap , then they satisfy the equations

Pϕ(G) = Gγ(P ) and G ≡ Id modX by definition. The determinant of V ∗k,ap is χk−1, so

that det(P ) = Qk−1×u with u ∈ 1 +XOE[[X]]. The map v 7→ ϕ(v)/v from 1 +XOE[[X]]

to itself is a bijection and since p 6= 2, every element of 1 + XOE[[X]] has a square root.

We can therefore modify P (and G accordingly) so that det(P ) = Qk−1. The fact that

Dcris(V
∗
k,ap

) = Dk,ap = E ⊗OE
Nk,ap/XNk,ap implies that Tr(P ) ≡ ap mod X. Finally, by

proposition 1.3, the operator (γ1−1)(γ1−χ(γ1)
k−1) is zero on E⊗OE

Nk,ap/QNk,ap , so that

if G1 = Gγ(G) · · · γp−2(G) and Π(Y ) = (Y − 1)(Y − χ(γ1)
(k−1)), then Π(G1) ≡ 0 mod Q.

This shows that the images of P and G in M2(OE[[X]]/(πnE, ϕ(X)k)) belong to Wk,ap(n)

for all n > 1, and hence that Wk,ap(n) is nonempty.

We now prove the existence of n(k, ap). There are only finitely many semisimple kE-

linear 2-dimensional representations of Gal(Qp/Qp) so that, if for infinitely many n there

exists (P,G) ∈ Wk,ap(n) whose image (P ,G) satisfies rep(P ,G)ss 6= V
∗
k,ap , then there

exists some semisimple kE-linear 2-dimensional representation U 6= V
∗
k,ap of Gal(Qp/Qp),

which arises from (P,G) ∈ Wk,ap(n) for infinitely many n’s. By a standard compacity

argument (recall that the Wk,ap(n) are finite sets), this implies that we can find a compat-

ible sequence (Pn, Gn)n>1 with each term “reducing mod πE” to U . The matrices Pn and

Gn converge to P and G in M2(OE[[X]]), and P and G still satisfy conditions (1), (2), (3)

and (4) of the definition of Wk,ap(n), since these conditions are continuous. In particular,

conditions (1), (2) and the first part of (3) imply that P and G define a Wach module,

which then comes from a crystalline representation V . Condition (3) then implies that

Dcris(V ) ' Dk,ap as ϕ-modules, while condition (4) along with proposition 1.3 implies

that the Hodge-Tate weights of V belong to {0;−(k−1)}. The fact that Dcris(V ) ' Dk,ap

implies that the sum of the weights is −(k − 1), so that Dcris(V ) ' Dk,ap as filtered



LOCAL CONSTANCY FOR SOME CRYSTALLINE REPRESENTATIONS 11

ϕ-modules, and hence V ' V ∗k,ap . But then U = V
ss

= V
∗
k,ap , which is a contradiction.

This shows the existence of n(k, ap) and finishes the proof of the theorem.

5. Identifying mod p representations

If P and G are two matrices in M2(kE[[X]]) such that det(P ) = Qk−1 × unit and

G ≡ Id modX and Pϕ(G) ≡ Gγ(P ) mod ϕ(X)k, then by proposition 4.1, there is a well-

defined kE-linear representation rep(P,G) attached to P and G. In this section, we give

a crude but effective method for determining rep(P,G).

Recall that if V is a kE-linear representation of Gal(Qp/Qp), then by B.1.4 of [Fon90]

there is a kE[[X]]-lattice D+(V ) inside D(V ), which is stable under ϕ and the action of

Γ, and such that any other such lattice N satisfies N ⊂ D+(V ). If M is the matrix of

a basis of N in a basis of D+(V ) then det(ϕ|N) = det(ϕ|D+(V )) · ϕ(det(M))/ det(M).

In particular, if det(ϕ|N) is Qk−1 × unit then det(M) divides Xk−1. The algorithm for

determining rep(P,G) is then the following:

1. make a list of all the kE-linear 2-dimensional representations of Gal(Qp/Qp);

2. for each of them, compute P and G, the matrices of ϕ and γ on D+(V ), to precision

Xpk+k−1;

3. make a list of all the M−1Pϕ(M) and M−1Gγ(M) for the finitely many M ∈
M2(kE[[X]]/Xpk+k−1) such that det(M) divides Xk−1

Step (2) is an interesting exercise in (ϕ,Γ)-modules. For example, if V = ind(ωr2) with

1 6 r 6 p, then D+(V ) has a basis in which Mat(ϕ) =
(

0 −Xp−r

Xr−1 0

)
. The corresponding

matrix of γ can then easily be computed.

Note also that in step (3), we need to multiply by M−1, so that the precision drops from

Xpk+k−1 to Xpk = ϕ(X)k. This procedure gives a complete list of all possible (P,G), along

with the corresponding representation. Given a pair (P,G), the representation rep(P,G)

can then be determined by a simple table lookup.
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