CENTRAL CHARACTERS FOR SMOOTH IRREDUCIBLE MODULAR REPRESENTATIONS OF $GL_2(\mathbf{Q}_p)$

by

Laurent Berger

To Francesco Baldassarri, on the occasion of his 60th birthday

Abstract. — We prove that every smooth irreducible $\overline{\mathbf{F}}_p$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ admits a central character.

Introduction

Let Π be a representation of $\operatorname{GL}_2(\mathbf{Q}_p)$. We say that Π is smooth, if the stabilizer of any $v \in \Pi$ is an open subgroup of $\operatorname{GL}_2(\mathbf{Q}_p)$. We say that Π admits a central character, if every $z \in \operatorname{Z}(\operatorname{GL}_2(\mathbf{Q}_p))$, the center of $\operatorname{GL}_2(\mathbf{Q}_p)$, acts on Π by a scalar. The smooth irreducible representations of $\operatorname{GL}_2(\mathbf{Q}_p)$ over an algebraically closed field of characteristic p, admitting a central character, have been studied by Barthel–Livné in [**BL94**, **BL95**] and by Breuil in [**Bre03**]. The purpose of this note is to prove the following theorem.

Theorem A. — If Π is a smooth irreducible $\overline{\mathbf{F}}_p$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, then Π admits a central character.

The idea of the proof of theorem A is as follows. If Π does not admit a central character, and if $f = \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$, then for any nonzero polynomial $Q(X) \in \overline{\mathbf{F}}_p[X]$, the map $Q(f) : \Pi \to \Pi$ is bijective, so that Π has the structure of a $\overline{\mathbf{F}}_p(X)$ -vector space. The representation Π is therefore a smooth irreducible $\overline{\mathbf{F}}_p(X)$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, which now admits a central character, since f acts by multiplication by X. It remains to apply Barthel– Livné and Breuil's classification, which gives the structure of the components of Π after extending scalars to a finite extension K of $\overline{\mathbf{F}}_p(X)$. A corollary of this classification is that these components are all "defined" over a subring R of K, where R is a finitely generated $\overline{\mathbf{F}}_p$ -algebra. This can be used to show that Π is not of finite length, a contradiction.

²⁰⁰⁰ Mathematics Subject Classification. — 22E50.

Key words and phrases. — Smooth representation; admissible representation; parabolic induction; supersingular representation; central character; Schur's lemma.

LAURENT BERGER

Note that it is customary to ask that smooth irreducible representations of $\operatorname{GL}_2(\mathbf{Q}_p)$ also be admissible (meaning that Π^U is finite-dimensional for every open compact subgroup U of G). A corollary of Barthel–Livné and Breuil's classification is that every smooth irreducible $\overline{\mathbf{F}}_p$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ that admits a central character is admissible, and hence theorem A implies that every smooth irreducible $\overline{\mathbf{F}}_p$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$ is admissible. In particular, such a representation also satisfies Schur's lemma: every $\operatorname{GL}_2(\mathbf{Q}_p)$ -equivariant map is a scalar. Our theorem A can also be seen as a special case of Schur's lemma, since $\begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$ is a $\operatorname{GL}_2(\mathbf{Q}_p)$ -equivariant map.

There are (at least) two standard ways of proving Schur's lemma: one way uses admissibility, and the other works for smooth irreducible *E*-linear representations of $\operatorname{GL}_2(\mathbf{Q}_p)$, but only if *E* is uncountable (see proposition 2.11 of [**BZ76**]). In order to prove theorem A, we cannot simply extend scalars to an uncountable extension of $\overline{\mathbf{F}}_p$, as we do not know whether the resulting representation will still be irreducible.

We finish this introduction by pointing out that a few years ago, Henniart had sketched a different (and more complicated) argument for the proof of theorem A.

1. Barthel–Livné and Breuil's classification

Let *E* be a field of characteristic *p*. In this section, we recall the explicit classification of smooth irreducible *E*-linear representations of $GL_2(\mathbf{Q}_p)$, admitting a central character.

We denote the center of $\operatorname{GL}_2(\mathbf{Q}_p)$ by Z. If $r \ge 0$, then $\operatorname{Sym}^r E^2$ is a representation of $\operatorname{GL}_2(\mathbf{F}_p)$ which gives rise, by inflation, to a representation of $\operatorname{GL}_2(\mathbf{Z}_p)$. We extend it to $\operatorname{GL}_2(\mathbf{Z}_p)$ Z by letting $\begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$ act trivially. Consider the representation

$$\operatorname{ind}_{\operatorname{GL}_2(\mathbf{Z}_p) \operatorname{Z}}^{\operatorname{GL}_2(\mathbf{Q}_p)} \operatorname{Sym}^r E^2$$

The Hecke algebra

$$\operatorname{End}_{E[\operatorname{GL}_{2}(\mathbf{Q}_{p})]}\left(\operatorname{ind}_{\operatorname{GL}_{2}(\mathbf{Z}_{p})Z}^{\operatorname{GL}_{2}(\mathbf{Q}_{p})}\operatorname{Sym}^{r}E^{2}\right)$$

is isomorphic to E[T] where T is a Hecke operator, which corresponds to the double class $\operatorname{GL}_2(\mathbf{Z}_p) \operatorname{Z} \cdot \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \cdot \operatorname{GL}_2(\mathbf{Z}_p)$. If $\chi : \mathbf{Q}_p^{\times} \to E^{\times}$ is a smooth character, and if $\lambda \in E$, then let

$$\pi(r,\lambda,\chi) = \frac{\operatorname{ind}_{\operatorname{GL}_2(\mathbf{Z}_p)}^{\operatorname{GL}_2(\mathbf{Z}_p)}\operatorname{Sym}^r E^2}{T-\lambda} \otimes (\chi \circ \det)$$

This is a smooth representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, with central character $\omega^r \chi^2$ (where ω : $\mathbf{Q}_p^{\times} \to \mathbf{F}_p^{\times}$ is given by $p^n x_0 \mapsto \overline{x}_0$, with $x_0 \in \mathbf{Z}_p^{\times}$). Let $\mu_{\lambda} : \mathbf{Q}_p^{\times} \to E^{\times}$ be given by $\mu_{\lambda}|_{\mathbf{Z}_p^{\times}} = 1$, and $\mu_{\lambda}(p) = \lambda$. If $\lambda = \pm 1$, then we have two exact sequences:

$$0 \to \operatorname{Sp}_E \otimes (\chi \mu_{\lambda} \circ \det) \to \pi(0, \lambda, \chi) \to \chi \mu_{\lambda} \circ \det \to 0,$$
$$0 \to \chi \mu_{\lambda} \circ \det \to \pi(p - 1, \lambda, \chi) \to \operatorname{Sp}_E \otimes (\chi \mu_{\lambda} \circ \det) \to 0,$$

where the representation Sp_E is the "special" representation with coefficients in E.

Theorem 1.1. — If E is algebraically closed, then the smooth irreducible E-linear representations of $GL_2(\mathbf{Q}_p)$, admitting a central character, are as follows:

- 1. $\chi \circ \det;$
- 2. $\operatorname{Sp}_E \otimes (\chi \circ \det);$
- 3. $\pi(r, \lambda, \chi)$, where $r \in \{0, \dots, p-1\}$ and $(r, \lambda) \notin \{(0, \pm 1), (p-1, \pm 1)\}$.

This theorem is proved in [**BL95**] and [**BL94**], which treat the case $\lambda \neq 0$, and in [**Bre03**], which treats the case $\lambda = 0$.

We now explain what happens if E is not algebraically closed.

Proposition 1.2. If Π is a smooth irreducible E-linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, admitting a central character, then there exists a finite extension K/E such that $(\Pi \otimes_E K)^{ss}$ is a direct sum of K-linear representations of the type described in theorem 1.1.

Proof. — Barthel and Livné's methods show (as is observed in §5.3 of [**Paš10**]) that Π is a quotient of

$$\Sigma = \frac{\operatorname{ind}_{\operatorname{GL}_2(\mathbf{Z}_p)Z}^{\operatorname{GL}_2(\mathbf{Q}_p)}\operatorname{Sym}^r E^2}{P(T)} \otimes (\chi \circ \det),$$

for some integer $r \in \{0, \ldots, p-1\}$, character $\chi : \mathbf{Q}_p^{\times} \to E^{\times}$, and polynomial $P(Y) \in E[Y]$. Let K be a splitting field of P(Y), write $P(Y) = (Y - \lambda_1) \cdots (Y - \lambda_d)$, and let $P_i(Y) = (Y - \lambda_1) \cdots (Y - \lambda_i)$ for $i = 0, \ldots, d$. The representations $P_{i-1}(T)\Sigma/P_i(T)\Sigma$ are then subquotients of the $\pi(r, \lambda_i, \chi)$, for $i = 1, \ldots, d$. \Box

We finish this section by recalling that if $\lambda \neq 0$, then the representations $\pi(r, \lambda, \chi)$ are parabolic inductions (when $\lambda = 0$, they are called supersingular). Let $B_2(\mathbf{Q}_p)$ be the upper triangular Borel subgroup of $GL_2(\mathbf{Q}_p)$, let χ_1 and $\chi_2 : \mathbf{Q}_p^{\times} \to E^{\times}$ be two smooth characters, and consider the parabolic induction $\operatorname{ind}_{B_2(\mathbf{Q}_p)}^{GL_2(\mathbf{Q}_p)}(\chi_1 \otimes \chi_2)$. The following result is proved in [**BL94**] and [**BL95**].

Theorem 1.3. — If $\lambda \in E \setminus \{0; \pm 1\}$, and if $r \in \{0, \ldots, p-1\}$, then $\pi(r, \lambda, \chi)$ is isomorphic to $\operatorname{ind}_{B_2(\mathbf{Q}_p)}^{\operatorname{GL}_2(\mathbf{Q}_p)}(\chi \mu_{1/\lambda} \otimes \chi \omega^r \mu_{\lambda})$.

2. Proof of the theorem

We now give the proof of theorem A. Let Π be a smooth irreducible $\overline{\mathbf{F}}_p$ -linear representation of $\operatorname{GL}_2(\mathbf{Q}_p)$. We have $\Pi^{(1+p\mathbf{Z}_p)\cdot\operatorname{Id}} \neq 0$ (since a *p*-group acting on a \mathbf{F}_p -vector space always has nontrivial fixed points), so that if Π is irreducible, then $(1 + p\mathbf{Z}_p) \cdot \operatorname{Id}$

LAURENT BERGER

acts trivially on Π . If $g \in \mathbf{Z}_p^{\times} \cdot \mathrm{Id}$, then $g^{p-1} = \mathrm{Id}$ on Π , so that $\Pi = \bigoplus_{\omega \in \mathbf{F}_p^{\times}} \Pi^{g=\omega \cdot \mathrm{Id}}$. Since Π is irreducible, this implies that the elements of $\mathbf{Z}_p^{\times} \cdot \mathrm{Id}$ act by scalars.

If $f = \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$, then for any nonzero polynomial $Q(X) \in \overline{\mathbf{F}}_p[X]$, the kernel and image of the map $Q(f) : \Pi \to \Pi$ are subrepresentations of Π . If Q(f) = 0 on a nontrivial subspace of Π , then f admits an eigenvector for an eigenvalue $\lambda \in \overline{\mathbf{F}}_p^{\times}$. This implies that $\Pi = \Pi^{f=\lambda \cdot \mathrm{Id}}$, so that Π does admit a central character. If this is not the case, then Q(f)is bijective for every nonzero polynomial $Q(X) \in \overline{\mathbf{F}}_p[X]$, so that Π has the structure of a $\overline{\mathbf{F}}_p(X)$ -vector space, and is a $\overline{\mathbf{F}}_p(X)$ -linear smooth irreducible representation of $\mathrm{GL}_2(\mathbf{Q}_p)$, admitting a central character.

Let $E = \overline{\mathbf{F}}_p(X)$. Proposition 1.2 gives us a finite extension K of E, such that $(\Pi \otimes_E K)^{ss}$ is a direct sum of K-linear representations of the type described in theorem 1.1. The $\overline{\mathbf{F}}_p$ linear representation underlying $(\Pi \otimes_E K)^{ss}$ is isomorphic to $\Pi^{[K:E]}$, and hence of length [K:E]. We now prove that none of the K-linear representations of the type described in theorem 1.1 are of finite length, when viewed as $\overline{\mathbf{F}}_p$ -linear representations.

Let Σ be one such representation, and let $\lambda \in K$ be the corresponding Hecke eigenvalue. We now construct a subring R of K, which is a finitely generated $\overline{\mathbf{F}}_p$ -algebra, and an Rlinear representation Σ_R of $\operatorname{GL}_2(\mathbf{Q}_p)$, such that $\Sigma = \Sigma_R \otimes_R K$.

If $\lambda \in \overline{\mathbf{F}}_p$, then theorem 1.1 shows that

$$\Sigma = \frac{\operatorname{ind}_{\operatorname{GL}_2(\mathbf{Z}_p)}^{\operatorname{GL}_2(\mathbf{Z}_p)} \operatorname{Sym}^r \overline{\mathbf{F}}_p^2}{T - \lambda} \otimes_{\overline{\mathbf{F}}_p} K(\chi \circ \det), \text{ or } \operatorname{Sp}_{\overline{\mathbf{F}}_p} \otimes_{\overline{\mathbf{F}}_p} K(\chi \circ \det), \text{ or } K(\chi \circ \det).$$

We can then take $R = \overline{\mathbf{F}}_p[\chi(p)^{\pm 1}]$, and $\Sigma_R = (\operatorname{ind}_{\operatorname{GL}_2(\mathbf{Z}_p)Z}^{\operatorname{GL}_2(\mathbf{Q}_p)} \operatorname{Sym}^r \overline{\mathbf{F}}_p^2/(T-\lambda)) \otimes_{\overline{\mathbf{F}}_p} R(\chi \circ \det)$, or $\operatorname{Sp}_{\overline{\mathbf{F}}_p} \otimes_{\overline{\mathbf{F}}_p} R(\chi \circ \det)$, or $R(\chi \circ \det)$, respectively.

If $\lambda \notin \mathbf{F}_p$, then by theorem 1.3, we have

$$\Sigma = \operatorname{ind}_{\mathrm{B}_2(\mathbf{Q}_p)}^{\mathrm{GL}_2(\mathbf{Q}_p)}(\chi \mu_{1/\lambda}, \chi \omega^r \mu_{\lambda}).$$

We can take $R = \overline{\mathbf{F}}_p[\lambda^{\pm 1}, \chi(p)^{\pm 1}]$, and let Σ_R be the set of functions $f \in \Sigma$ with values in R.

In the first case, Σ_R is a free *R*-module, while in the second case, Σ_R is isomorphic as an *R*-module to $C^{\infty}(\mathbf{P}^1(\mathbf{Q}_p), R)$ and hence also free. In either case, if $f \in R$ is nonzero and not a unit and $j \in \mathbf{Z}$, then $f^{j+1} \cdot \Sigma_R$ is a proper $\overline{\mathbf{F}}_p$ -linear subrepresentation of $f^j \cdot \Sigma_R$, so that the underlying $\overline{\mathbf{F}}_p$ -linear representation of Σ_R is not of finite length. Since $\Sigma_R \subset \Sigma$, the underlying $\overline{\mathbf{F}}_p$ -linear representation of Σ is not of finite length, which is a contradiction. This finishes the proof of theorem A.

Acknowledgments. I am grateful to C. Breuil, G. Chenevier, P. Colmez, G. Henniart, F. Herzig, M. Schein, M.-F. Vignéras and the referee for helpful comments.

References

- [BL94] L. BARTHEL and R. LIVNÉ "Irreducible modular representations of GL₂ of a local field", *Duke Math. J.* **75** (1994), no. 2, p. 261–292.
- [BL95] L. BARTHEL and R. LIVNÉ "Modular representations of GL₂ of a local field: the ordinary, unramified case", J. Number Theory 55 (1995), no. 1, p. 1–27.
- [BZ76] I. BERNŠTEĬN and A. ZELEVINSKII "Representations of the group GL(n, F), where F is a local non-Archimedean field", *Russian Math. Surveys* **31** (1976), no. 3, p. 1–68.
- [Bre03] C. BREUIL "Sur quelques représentations modulaires et *p*-adiques de $GL_2(\mathbf{Q}_p)$: I", *Compositio Math.* **138** (2003), no. 2, p. 165–188.
- [Paš10] V. PAŠKŪNAS "The image of Colmez's Montréal functor", preprint, 2010.

LAURENT BERGER