MULTIVARIABLE LUBIN-TATE (¢,I')-MODULES
AND FILTERED ¢-MODULES

by

Laurent Berger

Abstract. — We define some rings of power series in several variables, that are attached
to a Lubin-Tate formal module. We then give some examples of (¢, I')-modules over those
rings. They are the global sections of some reflexive sheaves on the p-adic open unit polydisk,
that are constructed from a filtered ¢-module using a modification process. We prove that
we obtain every crystalline (¢, I')-module over those rings in this way.
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Introduction

Let F be the unramified extension of Q,, of degree h and let ¢ = p" so that the residue
field of Op is F;,. We fix an embedding F’ C Qp so that if ¢ : FF — F denotes the
absolute Frobenius map, which lifts z — 2? on F,, then the h embeddings of F' into Qp
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h_semilinear Frobenius map. If

are given by Id, o,...,0"~!. The symbol ¢, denotes a o
K is a subfield of Q,, then let Gx = Gal(Q,/K).

The goal of this article is to present a first attempt at constructing some “multivariable
Lubin-Tate (¢, I')-modules”, that is some (p,, ['r)-modules over rings of power series in
h variables, on which I'r = Op acts by a formula arising from a Lubin-Tate formal
Op-module. A construction of such (¢,, I'r)-modules, but “in one variable”, was carried
out by Kisin and Ren in [KRO09]: they prove that in certain cases, the (¢,, I'r)-modules
arising from Fontaine’s standard construction of [Fon90] are overconvergent. In order to
do so, Kisin and Ren adapt the construction of (¢, I')-modules attached to filtered (¢, N)-
modules given in [Ber08b] to their setting, which allows them to attach a (¢4, I'p)-module
in one variable to a filtered ¢ ,-module. They then point out in the introduction of [KR09]
that “it seems likely that in order to obtain a classification valid for any crystalline G k-
representation one needs to consider higher dimensional subrings of W (Fr R), constructed
using the periods of all the conjugates of [the Lubin-Tate group]”.

The motivation for these computations is the hope that we can construct some repre-
sentations of the Borel subgroup of GLs(F'), for example using the recipe given by Colmez
in [Col10], that would shed some light on the p-adic local Langlands correspondence for
GL3(F) (see [Brel0]). Theorems A, B and C below are a very first step in this direc-
tion, but remain insufficient. In particular, the “p-adic Fourier theory” of Schneider and
Teitelbaum (see [STO01]) will very likely play an important role in the sequel.

We now describe our results in more detail. Let LT} be the Lubin-Tate formal Op-
module for which multiplication by p is given by [p|(T) = pT + T?. We denote by [a|(T)
the element of Op[T] that gives the action of a € Op on LT),. We consider two rings
RY(Y) and R(Y) of power series in the h variables Yy, ..., Y,_1, with coefficients in F.
The ring RT(Y) is the ring of power series that converge on the open unit polydisk,
and R(Y) is the Robba ring that corresponds to it, by adapting Schneider’s construction
given in the appendix of [Zab12|. The action of the group O on those rings is given by
the formula a(Y;) = [07(a)](Y;), and the Frobenius map ¢, is given by ¢,(Y;) = [p](¥;).

The construction of p-adic periods for Lubin-Tate groups gives rise to a map R*(Y) —
B;ﬁg, where ]~3;§g is the Fréchet completion of BT = W (E*1)[1/p], and we prove (corollary
3.7) that this map is in fact injective (remark: if R*(Y") denotes the completion of the
perfection of R*(Y), then the map above extends to a map R*(Y) — ]~3§g but note
that, by the theory of the field of norms of [FW79] and [Win83|, this latter map is not
injective anymore if i > 2. This has prevented us from studying étale ¢,-modules using

Kedlaya’s methods, so such considerations are absent from this article).
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Let D be a finite dimensional F-vector space, endowed with an F-linear Frobenius map
¢g: D — D, and an action of G on D that factors through I'r and commutes with ¢,.
Foreach 0 < j < h—1, let Fil; be a filtration on F ®}'f D ~ D that is stable under I'p.

For example, if V is an F-linear crystalline representation of G of dimension d, then
Deis(V) is a free F' ®q, F-module of rank d, and we have

Deris(V) =D @ (D) & - -- & " (D),

according to the decomposition of F' ®q, F' as [1,:.p_,r F. Each /(D) has the filtration
induced from Ds(V), and we set FﬂfD = 7 (Fil" Deis (V) N 7 (D)).
The composite of the map R*(Y) — B, with the map ¢~* : B}, — B, gives rise to a
map i : RT(Y) — ]f%jig. Let logy,r(T") be the logarithm of LT}, and let \; = log;(Y;)/Y;
and A = XX - -+ X \—1 (note that the image of ["Zj logyr(Y;) in B}

rig 18 some Q,-multiple
of t =log(1 + X), so that A is an analogue of ¢t/X). Define

MH(D) = {y € R"(Y)[1/\ ®@r D, u,(y) € Fil° ,(Bar ®% ' D) for all k > h}.

The ring R*(Y) is a Fréchet-Stein algebra in the sense of [ST03], and we therefore have
the notion of coadmissible R*(Y)-modules, which are the global sections of coherent

sheaves on the open unit polydisk.

Theorem A. — The module M (D) is a reflexive coadmissible R (Y)-module, for all
0<j<h—1 MHYD)N/A is a free RY(Y)[A;/A]-module of rank d, and we have
M*H(D) = N!ZgMF(D)[A; /Al

The definition of M™ (D) is analogous to the one given in [Ber08b], [KR09] and similar
articles. When h = 1, the proof of theorem A relies on the fact that M* (D) can be seen
as a vector bundle on the open unit disk. Our proof of theorem A relies on the one
dimensional case, and on the interpretation of M (D) as the global sections of a coherent

sheaf on the open unit polydisk.

Remark. — If h < 2, then RT(Y) is of dimension < 2 and one can then prove that
M™(D), being reflexive, is actually free of rank d (see remark 5.7). If h > 3, I do not
know whether M* (D) is free of rank d in general.

Let M(D) = R(Y) ®r+v) MT(D), so that M(D) is a (¢4, I'p)-module over the multi-
variable Robba ring R(Y) (see definition 6.4).

Theorem B. — If V is an F-linear crystalline representation of Gg, and if D arises
from Deis(V') as above, then there is a natural map ELg QR(Y) M(D) — ]§Lg ®KrV, and

this map is an isomorphism.
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If M is a (¢g, ['r)-module over R(Y), then we set Deyis(M) = (R(Y)[1/t] @ry) M)FF,
and we say that M is crystalline if (1) M[A;/A] is a free R(Y)[A;/A]-module of some rank
d for all j, (2) M = NZiM[);/A], and (3) dim Deys(M) = d. For example, if D is a
filtered p,-module with & filtrations Fil as above, on which the action of I'p is trivial,

then M(D) is a crystalline (¢,, I'r)-module.

Theorem C. — The functors M — Deis(M) and D — M(D), between the category of
crystalline (pg, I'r)-modules over R(Y') and the category of p,-modules with h filtrations,

are mutually inverse.

Note that if h = 1, then the (¢, I')-modules that we construct are the classical cyclo-
tomic ones, and theorems A, B and C are well-known.

We now give a short description of the contents of this article: in §1, we give some
reminders about the p-adic periods of Lubin-Tate formal Op-modules. In §2, we define
the various rings of power series that we use, and establish some of their properties. In
§3, we embed those rings in the usual rings of p-adic periods. In §4, we briefly survey
Kisin and Ren’s construction and explain why (¢,, I'r)-modules over rings of power series
in several variables are needed. In §5, we attach such objects to filtered ¢,-modules and
prove theorem A. In §6, we define (¢4, I'r)-modules and prove theorem B. In §7, we study

crystalline (¢,, ['r)-modules and prove theorem C.

1. Periods of Lubin-Tate formal groups

Let LTy be the Lubin-Tate formal Op-module for which multiplication by p is given
by [p|(T) = pT + T?. We denote by [a](T") the element of Op[T] that gives the action of
a € Op on LT, and by S(T,U) =T @® U the element of O[T, U] that gives addition.

Let 7o = 0 and for each n > 1, let m, € Q, be such that [p](m,) = m,_1, with m # 0.
We have val,(m,) = 1/¢" ' (¢—1) ifn > 1. Let F,, = F(m,) and let F, = U,>1F,,. Recall
that Gal(F/F) ~ Op and that the maximal abelian extension of F'is Fi, - F"™™. Denote
by Hp the group Gal(Q,/Fx), by I'p the group Gal(F../F) and by xpr the isomorphism
xur - I'r — OF. In the sequel, we sometimes directly identify I'x with O, that is we
drop “xpr” from the notation to make the formulas less cumbersome.

Let Et = Im  Oc,/p and At = W(E") denote Fontaine’s rings of periods (see
[Fon94]). Note that we take the limit with respect to the maps x — x%, which does not
change the rings. Let ¢, : At — A" be given by @, = ¢". Recall that in §9.2 of [Col02],
Colmez has constructed a map {-} : E* — A having the following property: if z € E¥,
then {z} is the unique element of A* that lifts z and satisfies p,({z}) = [p]({z}).
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Let 6 : AT — Oc, denote Fontaine’s map (see [Fon94]). If » = (2o, zy,...), then
O({x}) = limy, o0 [p"](Zn), where Z,, € O, is any lift of z,,.

Let u = {(To,71,...)} € AT, so that g(u) = [x1r(9)](u) if g € Gr.

Let log;p(T) € F[T] denote the Lubin-Tate logarithm map, which converges on the
open unit disk and satisfies log;([a](T)) = a - log;p(T) if @ € Op. Recall (see §9.3
of [Col02]) that log;y(u) converges in B,
xur(g) - tr.

Let Qx(T) be the minimal polynomial of 7, over F. We have Qo(T) =T, Q(T) =
p+ T4 and Quii(T) = Qu([pl(T)) if k& > 1. Note that log(T) = T - [Tp=1 Qu(T)/p.
Indeed, logp(T) = limg,oo p~* - [p*](T) (§9.3 of [C0l02]) and [p*](T) = Qo(T) - - Qi(T).
Let exp;p(T) denote the inverse of log;(T). We have exp;p(T) = 222, e,/ T with
vp(er) = —k/(q — 1). For example, logg (1) = log(1 4+ T') and expg, (T') = exp(T) — 1.

to an element ¢z which satisfies g(tp) =

Remark 1.1. — Our special choice of [p|(T) = pT + T is the simplest. Since [p|(T")
belongs to Z,[T, the series Q(T), log;r(T") and exp;(7T") all have coefficients in Q,. It
also implies that [o(a)|(T) = o([a]|(T)), since [a](T) = expyr(a - logir(T)).

Lemma 1.2. — If 2 € mcg,, then

[1+al(z) — = ds

= logyp(2) - @(2’7 0) + O(a),

asa— 0 in Op.

Proof. — We are looking at the limit of (S(z, [a](2))—z)/a as a — 0. If a is small enough,
then [a](2) = expyr(a - log;r(2)) = a - logir(z) + O(a?), which implies the lemma. O

2. Rings of multivariable power series

We consider power series in the h variables Yy, ..., Y,_1. f Y™ = Y™ ... V""" is a
monomial, then its weight is w(m) = mg + pm; + - - - + p"'my,_q. If I is a subinterval of
[0; +o0] and if J = {j1,...,jk} is a subset of {0,...,h — 1}, then (adapting Appendix A
of [Zab12] to our situation) we define R?({Y;},cs) to be the ring of power series

f(}/;1a7}/;k) = Z am1...ka3‘T1 }/;;nkv

such that val,(a,,) + w(m)/r — +oo for all r € I. In other words, f(Y') is required to
converge on the polyannulus {(Yy, ..., Ys_1) such that |Yo| = p~ /7, ..., [YVie| = p 2"/}
for all r € 1. We then define W(f(Y),r) = inf,,ez(val,(a,) +w(m)/r) and, if I is closed,
W(H(Y). 1) = infye W(F(Y), 7).
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We let R*({Y;}jes) = RO+®[({Y;};c;) be the ring of holomorphic functions on
the open unit polydisk corresponding to J. The Robba ring R({Y;};cs) is defined as
R({Y;}jes) = UrsoRIF®({Y}}es). In order to lighten the notation, we write R (Y),
RHY(Y) and R(Y) instead of R (Yy,..., Vs 1), RT(Yo,...,Ys 1) and R(Yo, ..., Vs 1).

The rings R!({Y;};cs) are endowed with an F-linear action of I'r, given by the formula

a(Y;) = [07(a)](Y;). There is also an F-linear Frobenius map :
g RI({Y5}es) = R ({Yi}e),

given by Y; — [p|(Y;), for appropriate I and I’.
On the ring R?(Y'), we can define in addition an absolute o-semilinear Frobenius map
by Y; =Y for 0<j<h—2and Y, ; — [p|(Yp). This map ¢ has the property that

" = ¢,, and it also commutes with ['z.

Let t; = log;+(Y;). Since a(Y;) = [0%(a)](V;) if a € Tp, we have a(t;) = o'(a) - t; so
that g(to---th-1) = Npjq,(xur(9)) - to- - tho1 = Xeye(9) - to- - th—1 if g € G as well as
o(tg---tho1) =p-to---th—1. The element ¢ - --t,_1 therefore behaves like a Q,-multiple
of the “usual” ¢ of p-adic Hodge theory (see proposition 3.4 for a more precise statement).

The following two propositions are variations on the “Weierstrass division theorem”.

Proposition 2.1. — Let [ = [0;s] or [0; s[ and let P(T) € Op[T] be a monic polynomial
of degree d whose nonleading coefficients are all divisible by p. If f € R'({Y;}jes), then
there exists g € R'({Y}}jes) and fo, ..., fao1 € RY({Y}}jengiy) such that

f=fotr fiYit-+ fi Y g P(Y).

Proof. — If I = |[0; 5] is closed, then this is a straightforward consequence of the Weier-
strass division theorem. Since g and the f;’s are uniquely determined, the result extends
to the case when I = [0; s]. O

Proposition 2.2. — Let I = [s;s] and let P(T) € Op[T] be a monic polynomial of
degree d, all of whose roots are of valuation —1/s. If f € R'({Y;};es), then there exists
9 € R'"({Yj}jes) and fo, ..., fa-r € R'({Yj}jengsy) such that

f=F+ MYt o+ faaY " 4 g PY)).
Proof. — The polynomial Q(T) = P(1/T)T¢/P(0) is monic and all its roots are of
valuation 1/s. Write f = f* 4+ f~ where f* contains positive powers of Y; and f~

contains negative powers of Y;. One may Weierstrass divide f* by P(Y;) and f~ by
Q(1/Y;), which implies the proposition. ]
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Lemma 2.3. — If I is a closed interval, then the action of Tr on RI(Y) is locally

Q,-analytic, and we have

L+ a7 (V) = £0) + 3 o/(a) o (Y)) - 55(045,0) - 35-(Y) + Ofa).

Proof. — The above formula follows from the fact that [1 + a](Y;) = Y; @ [a](Y;) =
Y; & (07(a) - logp(Y;) + O(a?)). O

Proposition 2.4. — Let p = (p1,...,pn-1) and let Ry (T1,...,Ty_1) denote the ring
of Laurent series converging for |T;| = p;, with coefficients in Fy. If the z; € mg are
such that logi(z:) # 0, |zi| = pi and g(z;) = [6°(9)|(z:) for g € OF, then the map

R%k (11, ...,Th—1) = C, given by evaluating at (z1,...,25_1) s injective.

Proof. — Suppose that f(z1,...,2,-1) = 0 for some f € RE, (T1,...,Th-1). If g € Tp,
then f(g(z1),...,9(zn-1)) = 0. If g = 1 4+ a with a small, then lemma 1.2 provides
us with h — 1 elements w1, ...,yn_1 of Fx such that g(z) = z + o'(a) - y; + O(a?).
Since y; = logyr(2;) - dS/dU(z;,0) and dS/dU is a unit and log;(z;) # 0, the elements
Y1, - - -, Yn—1 are all nonzero.

If f # 0 and m is the smallest index for which f has a nonzero partial derivative
of order m at (z1,...,2,_1) and if we expand f(g(z1),...,9(zn_1)) around (z1,...,25_1)

(which generalizes lemma 2.3), then we get

‘ , dm f
Yoo (aNa)y) - (0" @)y ) — (21,5 2nm1)
Jittjh—1=m dlel T dT;ﬁE
+ O(am—I—l)'
Since f(g(z1),...,9(zn—1)) = 0, the above linear combination is a homogeneous poly-

nomial, of degree m in h — 1 variables and coefficients in F., that is identically zero
on (0%(a),...,0"(a)). The shortest nonzero polynomial that is identically zero on
(c%(a),...,0" (a)) can be taken to have coefficients in F' and Artin’s theorem on the
algebraic independence of characters implies that it is equal to zero. Since all the y;’s are

nonzero, all the partial derivatives of order m of f are zero, so that finally f = 0. m

3. Embeddings in Bgr

We now explain how to embed the rings of power series of the previous section in the
usual rings of p-adic periods. Let B’ be the ring defined in §2.1 of [Ber02]. This ring is
complete with respect to the valuation V (-, I') (an equivalent valuation is denoted by V;(+)
in §2.1 of ibid.). Recall that if x = 3, pF[z] € AT, then V(z,r) = infy(valg(zy) +
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krp/(p —1)). Set rp = p" - q/(¢—1)- (p—1)/p (for example, rq, = 1 and if h > 1,
then rp < p"=1).

Proposition 3.1. — Ifr > rp and m € Z, then V(¢ ()™, r) =m-p’ - q/(q— 1) for
0<j<h—1.

Proof. — Recall that v = {7} where 7 = (7,7, ...) with val,(m,) = 1/¢" (¢ — 1)
for n > 1, so that valg(r) = ¢/(¢ — 1). We have ¢/ (u) = [7%] + X1 P*[ur,;] where
valg(uy ;) > 0, so that if r > rp, then (u)/[7?'] is a unit of A" and the proposition
follows. O

Note that a better estimate on the valg(uy ;) would allow us to take a smaller value for
re. Let s, = p""(¢—1) and let 7, = p"*(p—1) (so that s, - q/(¢—1) =r,-p/(p—1)).

Proposition 3.2. — Ifn > h, and if f(Y) € REns(Y), then f(u,..., 0" (u)) con-

verges in Blrmimnl,

Proof. — If f(Y) = S ezn an Y™ € RE(Y), then val,(ay,) +w(m)/(p" (¢ — 1)) —
+o0. If n > h, then 7, > rr so that V (¢’ (u)™,r) =m;-p’ -q/(¢g—1) for 0< j < h—1
by proposition 3.1, and then

V(amo ..... mh,lumo e gohil(u)mhilvrn) — +00.
The series f(u,...,¢" (u)) therefore converges in B!, L

Corollary 8.3. — Ifn > h, and if f(Y) € RON(Y), then f(u,..., " (u)) converges
in BOmIIf f(Y) € RT(Y), then f(u,...,¢" Y (u)) converges in B,

rig-

Proof. — If f € RI%(Y), then each term of the series f(u,...,¢" '(u)) belongs to
B* so that it converges in BI%™! by the maximum modulus principle (corollary 2.20 of
[Ber02]). The second assertion follows by passing to the limit. O

The image of log;(Yp) - - - logrp(Yr—1) in B;ﬁg C By is a-t with a € Q,, as we have

+
rig
that is t = log;p(Y0) - - -logrp(Ys—1)/a. In the following proposition, we determine the

seen above. We henceforth denote by ¢ the element of R*(Y) whose image in B, is t,

valuation of a (this is not used in the rest of this article).

Proposition 3.4. — In the ring Bl the product logyr(u) - - - logp ("1 (u)) belongs to
pht. Z; -t, where t is the usual t of p-adic Hodge theory.

Proof. — We have seen that log(u) - - - log; ("1 (u)) = a - t with a € Q,, and we now
compute val,(a). We have log;p(u) = u - [js; Qr(u)/p and likewise, if m = [¢] — 1, then
t =7 [rs1 @°(m)/p. This implies that 6(¢/log;r(u)) = (7 /u). Since both 7/~ ()
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and u/@,; " (u) are generators of ker(6) in At we have val,(0(t/logpr(u)) = 1/(p — 1) —
1/(g — 1). On the other hand, val,(6 o ¢/ (u)) = val,(lim,_[p"](72")) = 1+ p7 /(¢ — 1)
if 1 < j < h—1,so that val,(f(log; (¢ (u)))) = 1+ p’/(g — 1). This implies that
val,(a) = val,(f(a)) = h — 1, and hence the proposition. O

Definition 3.5. — Let 1, : RI"*(Y) — BI; be the compositum of the map defined
above, with the map ¢~ : Blrmrnl — Bloirol and the map Blrorol ¢ B/ defined in §2.2
of [Ber02].

It follows from the definition as well as the formulas for ¢ and the action of I'r on

RI(Y) that tpy1(0(f)) = tn(f) when applicable, and that g(c,(f)) = tn(g([f)) if g € Gp.
Since 1, (t) = p~"t, we can extend ¢, to 1, : RE#(Y)[1/t] — Bgg.

Theorem 3.6. — Ifn > h, if f € REI(Y), and if n = hk +i with 0 < i < h—1,
then we have 1,,(f) € Fil'Big if and only if f € Qu(Y;) - RlEnsal(Y).

Proof. — Recall that u = {(m,m1,...)} € A*. If m > 1 and u,, = 0(¢ ™(u)) € Fx,
then g(um) = [07™(g)](um). Note that if m = he, then u,, = 0(¢, (u)) = 7. The

theorem is equivalent to the assertion that fo " (uy,...,u,_s+1) = 0 in C, if and only if
f e Qu(Y;) - Rlensnl(Y). We have u,_; = 7, so that if f belongs to Q4 (Y;) - RIs»#*nl(Y),
then f " (un,. .., Un_pny1) = 0.

Since Q(7T') is a monic polynomial of degree d = ¢"*~1(q — 1), whose nonleading coef-
ficients are divisible by p, we can use proposition 2.2 to write f7 " = fo + Yifi +--- +
Y i+ Qu(Y;)r with f; a power series in the Y;’s with j # 4. Proposition 2.4 applied
to fo+mpfri+---+ W,‘j_lfd_l, with the 7T}’s a suitable permutation of the Y;’s, shows that
fotrmfi+--+mtfy_1 = 0. Therefore, f = Q(Y;)r°", which proves the theorem. [J

Corollary 3.7. — Ifn > h, then the map v, : R (Y) — B, is injective. If n € Z,
then the map v, : RT™(Y) — Bli is injective.

Proof. — The first assertion follows from theorem 3.6. The second follows from that,
and from the fact that ¢,11(@(f)) = tn(f) for the other n. O

Corollary 3.8. — If I C [sp;+oo|, and if f(Y) € RI(Y)[1/t], then f(Y) € RI(Y) if
and only if 1,(f) € Big for all n such that s, € I.

4. (¢, 'r)-modules in one variable

Before constructing (¢4, I'p)-modules over R(Y'), we review Kisin and Ren’s construc-

tion of (¢, I'r)-modules in one variable and explain why we need rings in several variables.
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Let Yy be the variable of §2, and let £(Y5) be Fontaine’s field of [Fon90] with coefficients
in F, that is £(Yy) = Og(Y0)[1/p] where O¢(Y)) is the p-adic completion of Op[Yy][1/Y0].
We let £1(Y;) and R(Y,) denote the corresponding overconvergent and Robba rings. If
I is a subinterval of [0; +o00], then we denote as above by R!(Y;) the set of power series
F(Yo) = ez am Y™ that belong to RY(Yp, ..., Y, 1) via the natural inclusion.

If K/F is a finite extension, then by the theory of the field of norms (see [FW79] and
[Win83|), there corresponds to it a finite extension Ex(Yy) of £(Yp), of degree K :
F.]. A (¢4, I'k)-module over Ex(Y)) is a finite dimensional Ex(Yp)-vector space D,
along with a semilinear ¢, and a compatible action of I'x,. We say that D is étale if
D = &k (Yo) ®og, (v) Do where Dy is a (¢4, I'x)-module over Og,(Yy). By specializing
the constructions of [Fon90], Kisin and Ren prove the following theorem in their paper
(theorem 1.6 of [KR09]).

Theorem 4.1. — The functors
Vs (E(Yo)™ @ V) and D = (E(Yo)™ ey D)=

give rise to mutually inverse equivalences of categories between the category of F-linear

representations of G and the category of étale (4, I'x)-modules over Ex(Yo).

We say that an F-linear representation of G is F-analytic if it is Hodge-Tate with
weights 0 (i.e. Cy-admissible) at all embeddings 7 # Id. Kisin and Ren then go on to
show that if K C F, and if V is a crystalline representation of G, that is F-analytic,
then the (¢,, I'x)-module attached to V' is overconvergent (see §3.3 of ibid.).

Assume from now on that K C Fi, so that Ex(Yy) = E(Yp). If D is a (¢, ['kx)-module
over R(Yp), and if g € 'k is close enough to 1, then by standard arguments (see §4.1 of
[Ber02] or §2.1 of [KR09]), the series log(g) = log(1+ (g — 1)) gives rise to a differential
operator V, : D — D. The map LieI's — End(D) arising from v — Vg is Qp-linear,
and we say that D is F-analytic if this map is F-linear (see §2.1 of [KR09] and §1.3 of
[FXar]). This is equivalent to the requirement that V; = 0on D for 1 < j < h —1,

where V; is the partial derivative in the direction o7.

Theorem 4.2. — If V is an overconvergent F-linear representation of Gy, and if
D(V) = R(Yo) ®¢t(v) DY (V), then D(V) is F-analytic if and only if V is F-analytic.

Proof. — Choose 1 < j < h—1, and take n > 0 such that n = —j mod h. By proposition
3.2, we have a map 6 o " : RI»snl(Yy) — Blz — C,, giving rise to an isomorphism

C, @%¢ " DEl(V) 5 €, 0% V.

snisnl(Yp)
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We first prove that if D(V') is F-analytic, then V is C,-admissible at the embedding
o/, Let F denote the field of locally o’-analytic vectors of E., for the action of I'k.
Note that 6 o " (RIEm*)(Yp)) € FY). Let Dsen(V) be the FU)-vector space

DYL(V) = FD @pon misnssni(yy) 0 © ¢ " (DE (V).

It is of dimension d, its image in (C, ®% V)7 generates C, ®% V, and its elements are
all locally o7-analytic vectors of (C,®% V)* because D(V') is F-analytic and "oV, =
Voo™ Ify e Dé]gn(V), then (g(y) — y)/(07 o xur(g) — 1) has a limit as ¢ — 1, and
we call V;(y) this limit. We then have g(y) = exp(log,(0? o xrr(g)) - V;)(y) if g € Ik is
close to 1.

Recall that there exists a; € C, such that log, (07 o x1r(g)) = g(a;) — a;. For example,
one can take a; = log,(€ot(t;)). The element a; then belongs to I3 U) for obvious reasons
and satisfies V;(a;) = 1. Take y € DSen(V), and choose a;o € Fi such that |a; — a;ol,
is small enough. The series

e = Yt gry)

k>0

then converges for the topology of DSen(V> (the technical details concerning convergence
in such spaces of locally analytic vectors can be found in [BC13]) and a short computation
shows that V;(C(y)) = 0, so that C(y) € (C, ®% V)% for some n = n(y) > 0. In
addition, n(y) n(V%(y)) for k > 0, the series for C(V¥(y)) also converges for the
topology of DSen(V) and y = Yyzo(a; — a;0)"/k! - C(V?(y)).

If y1,...,yq is a basis of pY) (V), and if n > maxn(y;), then the above computations

Sen

show that the elements y; belong to FY) @p (C, ®7 V)% so that (C, ®% V)

generates (C, ®% V)7, This implies that V is C,-admissible at the embedding ¢7. This
is true for all 1 < j < h — 1, and therefore V' is F-analytic.

We now prove that if V' is C,-admissible at the embedding o7, then V; = 0 on D(V).

Choose n = hm — j with m > 0. Since j # 0 mod h, the map §o ™" : RlEnisnl(Yy) — C,

is injective by theorem 3.6. This implies that the map

[sn;5n] 9090 "
D (V) = Cp @lnioni(ve)

Dlsnisnl (V)

is injective, and hence the map DF»*(V) — C, ®% !V is also injective. Therefore, we
have an injection DInsel (V) — ((C, ®@% V)HrF )™ where ((C, ®% V)Hr)* denotes the set
of locally Q,-analytic vectors of (C, QT V)HF IV is C,-admissible at the embedding o7,
then ((C,®% V)7r)a = (F2"). One of the main results of [BC13] is that Vo = 0 on F2
(it is shown in [BC13] that, in a suitable sense, F" is generated by Fs, and the elements

ai,...,an_1). This implies that V; = 0 on DI»#n(V) since ¢ 0 V; = V0 ™. O
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Note that an analogous argument for the proof of the implication “D(V) is F-analytic

implies V' is F-analytic” was given by Bingyong Xie for those V' that are trivial on Hp.

Corollary 4.3. — IfV is an absolutely irreducible F-linear overconvergent representa-
tion of Gk, then there exists a character § of I'i such that V ® ¢ is F-analytic.

Proof. — We give a sketch of the proof. Choose some g € I'g such that log,(xrr(g)) # 0,
and let V = log(g)/log,(xrr(g)). Choose r > 0 large enough and s > ¢r. If a € Op,
and if val,(a) > n for n = n(r, s) large enough, then the series exp(a - V) converges to an
operator on DIl (V). This way, we can define a twisted action of I'x, on DI"*/(V), by the
formula hx x = exp(log,(xrr(h)) - V)(z). This action is now F-analytic by construction.

Since s > qr, the modules D" 734" </(V) for m > 0 are glued together by ¢, and this way,
we get a new action of 'k, on D(V'). Since ¢, is unchanged, this new (¢4, 'k, )-module
is étale, and therefore corresponds to a representation W of Gk, . This representation W
is F-analytic by theorem 4.2, and its restriction to Hp is isomorphic to V.

The space Hom(V, indggn W)Hr is nonempty, and is a finite dimensional representation
of I'k. Since I' is abelian, we find (possibly extending scalars) a character ¢ of I'x and
a nonzero f € Hom(V, indggnW)HF such that A(f) = d(h) - f if h € Gg. This f gives
rise to a nonzero G g-equivariant map V ® 6 — indggnW. Since indggnW is F-analytic

and V is absolutely irreducible, the corollary follows. O

Corollary 4.3 (as well as theorem 0.6 of [FXar]) suggests that if we want to attach
overconvergent (¢, I'x)-modules to all F-linear representations of Gk, then we need to
go beyond the objects in only one variable. We finish with a conjecture that seems
reasonable enough, since it holds for crystalline representations by the work of Kisin and
Ren (see also theorem 0.3 of [FXar]).

Conjecture 4.4. — If V is F-analytic, then it is overconvergent.

5. Construction of R (Y)-modules

We now explain how to construct some R*(Y)-modules M*(D) that are attached to
some filtered ¢,-modules D. Let D be a finite dimensional F-vector space, endowed with
an [-linear Frobenius map ¢, : D — D, and an action of Gy on D that factors through
I'r and commutes with ¢,.

For each 0 < j < h —1, let Fil; be a filtration on F ®j‘wj D ~ D that is stable under
I'p. If n € Z, let Bar ®j§" D denote the tensor product of Bgr and D above F, where F
maps to Bgr via 0. We then have b® a - d = 0™(a) - b ® d. Note that Bgg ®% D only
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depends on n mod h. Define Wi/ (D) = Fil?(BdR ®% D) so that Wi’ is a Gp-stable
B -lattice of Byg ®% D.

Example 5.1. — If V is an F-linear crystalline representation of G of dimension d,
then Dgs(V) is a free F' ®q, F-module of rank d and we have

DcriS(V) =D& SO(D) DD (ph_l(D>7

according to the decomposition of F ®q, F as [[yi.p,r F. Each ¢/(D) comes with the
filtration induced from Deyis(V), and we set Fil; D = ¢~ (Fil*Des (V) N @7 (D).

We now briefly recall some definitions from [STO03]. The ring R*(Y) is a Fréchet-
Stein algebra; indeed, its topology is defined by the valuations {W (-, [0; s,]) }nes, where
S is any unbounded set of integers, and the ring R%*»)(Y) is noetherian and flat over
ROsnl(V) if m > n € S. Recall that a coherent sheaf is then a family {M%]}, g
of finitely generated RI%*"(Y')-modules, such that R |(Y) @pioiesnyy MO = M10ssn]
forallm > n € S. A RT(Y)-module M is said to be coadmissible if M is the set of
global sections of a coherent sheaf {M%n]}, 5. We say that M is a reflexive coadmissible
R*(Y)-module if each M 5l is a reflexive RI%*/(Y')-module. By lemma 8.4 of [ST03],
this is the same as requiring that M itself be a reflexive R (Y)-module.

Let \; = logp(Y;)/Y; and A = Ao - - - Ap_1, so that for any n € Z, t is a Q,-multiple of
tn(A Yo+ Yu_1). Let f; = A/);, so that if k = j mod h, then ¢ (f;) is a unit of Bjj.

Ify=3,u®d € RTY)[1/N ®p D, let 1(y) =X, te(y;) @ d; € Bag @5 " D.

Definition 5.2. — Let M1 (D) be the set of y € RT(Y)[1/A] @ D that satisfy tx(y) €
Wik"(D) for all k > h.

Theorem 5.3. — If D is a @,-module with an action of I'r and h filtrations, then
1. Mt (D) is a reflexive coadmissible R*(Y)-module;
2. the RT(Y)[1/f;]-module M+ (D)[1/f;] is free of rank d for 0 < j < h—1;
3. M*(D) = NiZgM*(D)[1/f;].

In the remainder of this section, we prove theorem 5.3. We now establish some prelim-
inary results. Let S = {hm + (h — 1) where m > 1}, and take n € S. Recall that on the
ring RI%)(Y), the map ¢, is defined for h < k < n. Let

M(D)n] = {3 € ROI(Y)[1/A] @ D, 1,(y) € Wik " (D) for all h < k < n}.
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For 0 < j < h — 1, recall that R?(Y}) is a ring of power series in one variable. Let
N = {y € RO V)[1/A] @5 D, tias(y) € Wii (D) for all 1 < k < m},
N ={y e R*"(Y)[1/N] ®F D, wnsj(y) € Wiz™ (D) for all k > 1}

Since R (Y;) = ¢?(R*(Yp)) if 0 < j < h — 1, the construction of N} is completely
analogous to that of M(F ®%’ D), given for example in §2.2 of [KR09].

Proposition 5.4. — The R*(Y;)-module NJr is free of rank d, for all n we have
N}O;S"] = ROs(Y])) ®72+ y N7, and the map By ®L’“h” N — Wi (D) is an

isomorphism for all k >

Proof. — Since there is only one variable, the proof is a standard argument, analogous
to the one which one can find in §II.1 of [Ber08b| or §2.2 of [KR09]. O

Let M = ROS(Y)[1/ ;] @givniy,) NI, where f; = A/A;.

Proposition 5.5. — We have M(D)%1[1/f,] = MI%*") and M(D)0sn) = ij][O;S”].

]

Proof. — In the sequel, we use the fact that Q;(Y;) - - Q(Y;) and \; generate the same
ideal of RI%*)(Y;) (recall that n = hm + (h — 1)). Let a and b be two integers such that

t*-Bip ©F D C Wi (D) C - Bir ©F D,
for all j. We then have M(D) sl ¢ \=b. RI%:l(Y) @ D by theorem 3.6.

We have <p_(hk+j)(7€[0;fn] (Y)[1/f;]) € Big for all 1 < k < m so that if y € MJ[O;S"]7
then o~ ("F+)(y) € W™/ (D) for all 1 < k < m. On the other hand, if y € M][-O;S"], then
y € A7 RO:(Y) ®@p D for some ¢ > 0, so that fa+cy € M(D)®su] This implies that

0;5n 1Sn
M M(D)O*I[L/ £

We now prove that M(D)ls:l ¢ M 0:5n] * Choose y € M(D)%) Since

M(D)n] ¢ A7 R (V) @p D,

we can write y = A7 3", 2, @dy. By Weierstrass dividing (proposition 2.1) the z;’s by the
polynomial (Q1(Y;) - Qm(Y;))*™, we can write y = (Q1(Y;) - Qm(Y;))* 2 + yo with
yo € ROI(Y)[1/] QR0isnl (v;) N[O ol

Note that (Q1(Y;) - Qm(Y; ))“*bz € M[0 I hecause t*Blr ®F D C Wi (D), so that
(QuY;) -+ Qm(¥;))" - D < N

Write yo = 3¢, ay ® ny, where a;, € RI%I(Y)[1/\] and ny, ..., ng is a basis of NJ[O;S"].
The element y, satisfies o, ‘@™ (yo) € Wi™(D) for all 1 < ¢ < m. By proposition 5.4,
the map

B:l_R ®Lhé(;rgn]( Y;) N[O o — WdR_j (D)
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is an isomorphism; this implies that ¢, “p™7(ax) € Bgg for all 1 < ¢ < m. Theorem 3.6
now implies that a; has no pole at any of the roots of 1(Y;), ..., Qm(Y;), so that we
have aj, € RI%n(Y)[1/f;]. This implies that y € M[O;s”], and therefore also y. This

proves that M(D)%s] M[O;S”] and therefore M(D )[0 sl[1/f,] = 0 [0:6m]
If x € ﬂij[O s", and if £ = jmod h with 0 < 7 < h—1, then the fact that = €
M(D)Ossnl[1/ 5] = ROs=1(Y)[1/ £ ORi0ssnl (v;) Nj[ ] 1mp11es that () € Wi ¥(D). This

is true for all h < k < n, so that x € M(D)%*»] and this proves the second assertion. [J
Lemma 5.6. — We have M+(D)[1/f]] = R+<Y)[1/f]] ®R+(Y]) N]+

Proof. — By combining propositions 5.4 and 5.5, we find that

M(D)Onl[1/ f;] = ROUY)[1/ 5] @ vy NS
Since M(D)* = N;M(D)%] we have M(D)*[1/f;] C ﬂjM(D)[O5S"][1/fj]. We also
have R (Y )[1/]‘}] Rr+(y; NJr C MT(D)[1/f;], and those two inclusions imply that
MT(D)[1/f;] = RT(Y )[1/f3] Or+(v;) Ny - O

Proof of theorem 5.3. — We first prove that the family {M(D)I%*]}, s is a coherent
sheaf. Take n > m € S. We have

ROs5m] (Y) ®piossn](v) M(D)[O;S"]
= RO (Y) @pioon vy (RO f5] @giooniryy N7
= ARV )L/ f)] @) N = M(D)n)
This implies that the family {M(D) 2]}, s is a coherent sheaf. It is clear that its global
sections are precisely MT (D). By proposition 5.5, we have M(D) 2] = n,M(D)%»][1/ £}]
where each M(D)%n)[1/f;] is free of rank d over R(Y)I%*][1/f;]. The fact that M(D)[%s»]

is reflexive now follows from proposition 6 of VII.4.2 of [Bou61], and this proves (1).

By combining proposition 5.4 and lemma 5.6, we get item ( ) of the theorem. Suppose

now that = € ﬂjl\/ﬁ( J1/f;]. If k= jmod h with 0 < j < h — 1, then the fact that
z € MY(D)[1/f;] = R*(Y)[1/f;] ®r+,) N, implies that Lk($) Wi ¥(D). This being
true for all k£ > h, we have x € M (D) and this proves item (3) of the theorem. O

Remark 5.7. — If h < 2, then the ring R%*")(Y) is of dimension < 2, and reflexive
Rn](Y)-modules are therefore projective. By Liitkebohmert’s theorem (see [Liit77],
corollary on page 128), the RI%*(Y")-module M (D) is then free of rank d. The system
{M(D)[%s:1} ¢ then forms a vector bundle over the open unit polydisk. By combining

7

proposition 2 on page 87 of [Gru68| (note that “A,,” is defined at the bottom of page
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82 of loc. cit.), and the main theorem of [Bar81], we get that M* (D) is free of rank d
over RY(Y). If h > 3, I do not know whether this still holds.

6. Properties of M*(D)

We now prove that M(D) = R(Y) @g+y) M* (D) is a (¢4, I'r)-module over R(Y), and
that if D arises from a crystalline representation V', then M*(D) and V are naturally
related. It is clear from the definition that M* (D) is stable under the action of I'r. We
also have \» - RT(Y) @ D € M+ (D) for some a > 0, so that

RY(Y)[1/N ®@r+y MT(D) =R (Y)[1/A @F D.

Say that the module D with h filtrations is effective if Filg(D) =Dfor0<j<h—-1
Recall that n = hm + (h — 1) with m > 1.

Lemma 6.1. — If D is effective, then the R*(Y;)-module N;“ is stable under ¢g, and
N} [ @i (NS) is killed by Q1(Y;)™ if a; > 0 is such that Fil“ D = {0}.

Proof. — This concerns the construction in one variable, so the proof is standard. See
for example §2.2 of [KRO09]. O

Proposition 6.2. — If D is effective, then the R™(Y')-module M* (D) is stable under
the Frobenius map g, and M*(D)/ps(M* (D)) is killed by Q1(Yo)™ - - Q1(Ya—1)*.

Proof. — By (2) of theorem 5.3, we have M™(D) = N;M*(D)[1/f;] and by lemma 5.6,
M*(D)[1/f;] = R*(Y)[1/f;] ®r+(v;) N; . Lemma 6.1 implies that N is stable under ¢,
and so the same is true of M*(D)[1/f;] and hence M* (D).

If 2 € M*(D), then x € M*(D)[1/f;] = RT(Y)[1/f;] ®r+(v;) N; . Note however that
at each k =i # j mod h, the coefficients of x can have a pole of order at most a; since
Fil**™ D = {0}. This implies the more precise estimate

M+(D) C H )\i_ai . 'R,Jr(Y) ®R+(Yj) NJ-JF.

i#]
The p,(RT(Y))-module RT(Y) is free of rank ¢", with basis {Y*, ¢ € {0,...,q — 1}"'}.
We therefore have

Q1(Y0)™ -+ Q1(Vi1)™ ' - w € [T(N/Q1(Y) ™ - RY(Y) @r+(ry) Qu(Yy)™ - N
i#]
C B - p(RT(YV)[L/f}] @iy N).

This implies that

Q(Y0)™ -+ Qu(Ya1)™ ' - x € N @Y - 0 (MT(D)[1/ f5]) = 03 (MT(D)),
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which proves the second claim. O

Remark 6.3. — Instead of working with a D where the filtrations are defined on D,
we could have asked for the filtrations to be defined on F,, ® D for some n > 1. The
construction and properties of Mt (D) are then basically unchanged, but the annihilator
of M*(D)/¢:(M*(D)) is possibly more complicated than in proposition 6.2. This applies
in particular to representations of G that become crystalline when restricted to G, for

some n > 1.

Definition 6.4. — A (p,,'r)-module over R(Y) is a R(Y)-module M that is of the
form M = R(Y)@giss+oot(yy ML where M+l is a coadmissible R Tl(Y')-module, en-
dowed with a semilinear Frobenius map ¢, : Ml — Mlesitool such that o} (Mlsiteel) =

Mlesitl and a continuous and compatible action of I'p.

Remark 6.5. — In the definition above, it would seem natural to impose some addi-
tional condition on M, such as “torsion-free”. All the (¢4, I'r)-modules over R(Y') that
are constructed in this article are actually reflexive. The definition above should be con-
sidered provisional, until we have a better idea of which objects we want to exclude. Note

that in the absence of flatness, tensor products may behave badly.

If D is a p,-module with an action of I'r and h filtrations and if ¢ € Z, let D(¢) denote
the same (p,-module with an action of I', but with Fﬂf(D(E)) = (Filf_gD)(E). Note that
D(?) is effective if £ > 0.

Lemma 6.6. — We have M(D(()) = A\~*- M(D).
Proof. — The fact that M*(D(¢)) = A% - M*(D) follows from the definition. O

Theorem 6.7. — If D is a ¢,-module with an action of I'r and h filtrations as above,
then R(Y) @r+vy MT(D) is a (g, ['r)-module over R(Y').

Proof. — If D is effective, then this follows from theorem 5.3 and proposition 6.2. If D
is not effective, then D(¢) is effective if £ > 0, and the theorem follows from the effective

case and lemma 6.6. OJ

Remark 6.8. — In [KR09], Kisin and Ren construct some (¢, I'r)-modules M (D)
in one variable, over the ring R*(Yp), from the data of a D like ours for which the
filtration Fil} is trivial for j # 0. For those D, we have M (D) = R*(Y) @+ () Mg (D).
More generally, our construction shows that M* (D) comes by extension of scalars from

a (¢g, I'r)-module in as many variables as there are nontrivial filtrations among the Fil3.
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Proposition 6.9. — Ifn = hk+ j > h, then the map
By 4.y, M*(D) - Fil’ (Bup @5 D)
is an isomorphism.

Proof. — Since 1,,(f;) is a unit of By, we have

Bir ®%+ vy MT(D) = Big @3+ yyp/p, MT(D)[1/ £
= Blr ®%+v,) Nj
= Fil’;(Bar ®% ' D),
where the last equality follows from proposition 5.4. O

Suppose now that D comes from an F-linear crystalline representation V' of G as in
example 5.1. In this case, Filg(BdR ®% D) = Blx ®% V. Moreover, one recovers V from
D by the formula:

V ={ye Bf[1/t]®r D)*", 1;(y) € Fil’ ;(Bar ®% ' D) for all 0 < j < h — 1}.

Recall that we have constructed in §3 an injective map R*(Y) — B . This way we

rig*
get a map
B, ®r+v) MT(D) = B [1/t] @p D — BL[1/t] ®F V.
Let BL; be the rings defined in §2.3 [Ber02]. Recall that n(r) is the smallest n such

that 7 < p"~!(p — 1). We have the following lemma.

Lemma 6.10. — Ify € Bng[l/t] satisfies p~"(y) € Big for alln > n(r), theny € Bilg

Proof. — See lemma 1.1 of [Ber09] and the proof of proposition 3.2 in ibid. [

h—

Theorem 6.11. — If D comes from a crystalline representation V', and if r > p"(p—

1), then the map above gives rise to an isomorphism

BI{; Qr+vy MT(D) — Bl @r V.

rig

Proof. — We first check that the image of the map above belongs to Brlg RFV. Ify e

Brig Qr+v) M* (D), then its image is in BIIg[l/t] ®@rV and satisfies o™ (y) € Bljr ®% "V

for all n > n(r), so the assertion follows from lemma 6.10.

We now prove that EI{g®R+(Y)M+(D) is a free Bilg—module of rank d. By (2) of theorem

5.3, Mt (D)[1/f;] is a free R*(Y)[1/ f;]-module of rank d, and therefore Bilg[l/fj] Qr+(v)
M*(D) is a free Bilg[l/f]] module of rank d for all j. The ring Brlg is a Bézout ring by

theorem 2.9.6 of [Ked05], and the elements fy,..., f,_1 have no common factor. They

and Bl @+ vy MT(D) is projective of rank d

therefore generate the unit ideal of Bng, rig
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by theorem 1 of I1.5.2 of [Bou61]. Since BL’; is a Bézout ring, Bii’g Qr+v)y MT(D) is free
of rank d. By proposition 6.9, the map

Bl ®%:. (Bl @r+(r) M (D)) = Bl @% "V

1 (Brig
is an isomorphism if n > n(r). The two Bii’gr—modules BI{; Qr+y) MT(D) and ]~3L’g QpV
therefore have the same localizations at all n > n(r), and are both stable under G, so
that they are equal by the same argument as in the proof of lemma 2.2.2 of [Ber08a]
(the idea is to take determinants, so that one is reduced to showing that if = € BL’;
generates an ideal stable under G, and has the property that v, () is a unit of By for

all n > n(r), then x is a unit of EL’;). O
Remark 6.12. — If D comes from a crystalline representation V', and if n > 0, then

there is likewise an isomorphism ﬁj{; ®7“{+n(y) M*(D) — EL’; ®% "V for r > 0.

7. Crystalline (p,, ['r)-modules

Let M be a (¢4, I'r)-module over R(Y'). In this section, we define what it means for M
to be crystalline, and we prove that every crystalline (¢4, I'r)-module M is of the form
M = M(D), where D is a ¢,-module with A filtrations, on which the action of G is
trivial. The results are similar to those of [Ber08b|, which deals with the cyclotomic

case.
Lemma 7.1. — We have Frac(R(Y))'r = F.

Proof. — If z € Frac(R(Y))"¥, then we can write x = a/b with a,b € RI*2](Y') for some
n > 0. By proposition 3.2, the series a(u, ..., " 1(u)) and b(u, ..., " 1(u)) converge
in Bl We can therefore see ¢ "(a) and ¢ "(b) as elements of By, which satisfy
¢ "(a)/p™(b) € B§E. The lemma now follows from the fact that B§Y = F. O

If M is a (g4, I'p)-module over R(Y), then let Deys(M) = (R(Y)[1/t] ®rp) M)'E.

Corollary 7.2. — If M is a (¢4, I'r)-module over R(Y'), then we have dim D,;5(M) <

Proof. — By a standard argument, lemma 7.1 implies that the map
FI‘&C(R(Y)) Rp Dcris(v) — Frac(R(Y)) ®R(y) M
is injective. [

Definition 7.3. — We say that a (¢4, I'r)-module M over R(Y) is crystalline if
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1. for some s, ME+F2I[1/ ;] is a free R(Y)E+°([1/ f;]-module of finite rank d;
9. Mlsitool — ﬂ?;&l\/[[s?*m[[l/fj];
3. we have dim D,;s(M) = d.

For example, if D is a p,-module with h filtrations on which the action of G is trivial,
then M(D) is a crystalline (¢,, I'r)-module. Note that a crystalline (¢4, I'p)-module is

reflexive.

Proposition 7.4. — If f € REF2(Y) generates an ideal of RI¥+|(Y) that is stable
under I'p, then f = u- H?;& [Lion(s) (@Qn(Y;)/p)* where u is a unit and an; € Zo.

Proof. — Recall that a power series f € RY(Y) is a unit if and only if it has no zero in
the corresponding domain of convergence (by the nullstellensatz, see §7.1.2 of BGR84)).

Let I = [s;u] be a closed subinterval of [s;+oc[, so that f € RI(Y), and let z =
(20,21, - - -, 2n—1) be a point such that f(z) = 0. Let J be the set of indices j such that z;
is not a torsion point of LT}, and let f; € Rf;k({Y]}]e 7) be the power series that results
from evaluation of the Y, at z,, for all the z,, that are torsion points of LT}, (here k is
large enough so that all those z,, belong to Fy). The ideal of Rf, ({Y;};es) generated by
the power series f; is stable under 1+ p*Op, so that the set of its zeroes is stable under
the action of 14 p*Op. Furthermore, f; has a zero none of whose coordinates are torsion
points of LT;,. The same argument as in the proof of proposition 2.4 shows that f; = 0.

If we denote by Z;(f) the zero set of f € RI(Y), then the preceding argument shows
that Z;(f) is the union of finitely many components of the form Zy x - - - Z,_; where for
each j, either Z; is a torsion point of LT} or Z; = Z;({0}). For reasons of dimension,
each of these components has precisely one Z; which is a torsion point, the remaining
h—1 being Z;({0}). This implies that in R?(Y"), f is the product of finitely many @, (Y;)
by a unit.

The proposition now follows by a standard infinite factorisation argument, by writing
[s; +00[= Uyss[s; u). O

Corollary 7.5. — If M is a crystalline (¢4, I'r)-module over R(Y"), then the map
R(Y)[1/t] ©r Derss(M) = R(Y)[1/1] @r(vy) M
is an isomorphism.

Proof. — The map is injective by lemma 7.1, and its determinant generates an ideal of
R(Y)[1/t] that is stable under I'r. Proposition 7.4 implies that this ideal is the unit ideal
of R(Y)[1/t], and therefore that the map is an isomorphism. O
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We now consider filtrations on De,5(M).

Lemma 7.6. — Let D be an F-vector space, and let W be a Bli-lattice of Bqr @ D
that is stable under G, where Gg acts trivially on D. If we set Fil'D = DN t*- W, then
W = Fil’(Bar @ D).

Proof. — Let ey, . .., eq be a basis of D adapted to its filtration, with e; € Fil" \Filhi“D.
We then have Fil’(Bqg ®r D) = ®L Blg -t "e;. By definition, we have t"ie; € W, so
that Fil’(Bqr ® D) C W. We now prove the reverse inclusion.

If w € W, then we can write w = a;t™"e; + - - - + agt ey with a; € Bgg and we need
to prove that a; € BJ; for all 4. If this is not the case, then there exists n > 1 such
that if we set b; = ¢"a;, then we have bit~"1e; + -+ + byt "dey € t - W, with b; € (Blz)*
for at least one i. Consider the shortest such relation; in particular, b; € (Bjg)* for
all ¢ for which b; # 0, and we can assume that b; = 1 for at least one i. If g € Gp,
then applying 1 — Xeye(g)"g to the relation yields a shorter relation. This implies that
(1 = Xeye(g)iig)(b;) € tBfR for all g € Gp and all 1 < j < d. Since H'(Gp,C,) = F
and HY(Gr,C,(h)) = {0} if h # 0, we have b; € F 4+ tBlg if h; = h; and b; € tBly
otherwise. The relation above therefore reduces to an F-linear combination of those e;
for which h; = h;, belonging to D Nt" W = Fil" ™ D, and is hence trivial. This proves
that W C Fil’(Bar ®r D). O

Definition 7.7. — Let M be a crystalline (p,, I'p)-module over R(Y'). For m > 0 and
j=0,....,h—1and n = hm — j, define

Fill (F &5 ;" (Dexis(M))) = (F 5 ¢, ™ (Derss(M))) N - (Bl @511y METH),

Proposition 7.8. — The definition of Fﬂj-(DcriS(M)) does not depend on m > 0, and

we have Fil®(Bag ®% " Deis(M)) = Bl ®;;:+w[(y) Mool

Proof. — If s is large enough, then Mlesitool = ¢Z(M[S?+°°[) so that

N oo —nprl * $:4-00 -n $;+00
EB}; ® Mlositool — B @f : %(M[ teoly = BI, ®£[s;+m[(y) Mool

907n7h
Rlasi+ool (v Rlasi+ool(y

which implies the first statement. The second statement follows from lemma 7.6, applied

to W = BEIFR ®;§5;+m[(y) Mlsstool. ]

Theorem 7.9. — The functors M — Dis(M) and D — M(D), between the category of
crystalline (g, I'p)-modules over R(Y') and the category of w,-modules with h filtrations,

are mutually inverse.
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Proof. — If D is a p,-module with h filtrations, then it is clear that Des(M(D)) = D
as pg-modules. The fact that Fil;-(D) =DnNt - Fﬂ?(BdR ®% " D) follows from taking a
basis of D adapted to Fil} and

—n

IM%BR®?WD%:B%@%MmquH%WD):F@ﬂﬁR®?"Dm@MDD)

by propositions 6.9 and 7.8, so that the filtrations on D and D;s(M) are the same.

We now check that if M is a crystalline (¢,, I'r)-module over R(Y) and D = D,i5(M)
with the filtration given in definition 7.7, then M = M(D). Corollary 7.5 says that we
have R(Y)[1/t] @p D = R(Y)[1/t] ®r(yv) M. The theorem now follows from proposition
7.8 and the fact that if y € RET®UY)[1/1] @pproo(y) ML then y € MEtlif and
only if y € By ®;§:+oo[(y) Ms+20l for all n such that s, > s by corollary 3.8 and items
(1) and (2) of definition 7.3. O
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