MULTIVARIABLE LUBIN-TATE (φ, Γ) -MODULES AND FILTERED φ -MODULES

by

Laurent Berger

Abstract. — We define some rings of power series in several variables, that are attached to a Lubin-Tate formal module. We then give some examples of (φ, Γ) -modules over those rings. They are the global sections of some reflexive sheaves on the *p*-adic open unit polydisk, that are constructed from a filtered φ -module using a modification process. We prove that we obtain every crystalline (φ, Γ) -module over those rings in this way.

Contents

Introduction	1
1. Periods of Lubin-Tate formal groups	4
2. Rings of multivariable power series	5
3. Embeddings in \mathbf{B}_{dR}	7
4. (φ_q, Γ_F) -modules in one variable	9
5. Construction of $\mathcal{R}^+(Y)$ -modules	12
6. Properties of $M^+(D)$	16
7. Crystalline (φ_q, Γ_F) -modules	19
Acknowledgements	22
References	22

Introduction

Let F be the unramified extension of \mathbf{Q}_p of degree h and let $q = p^h$ so that the residue field of \mathcal{O}_F is \mathbf{F}_q . We fix an embedding $F \subset \overline{\mathbf{Q}}_p$ so that if $\sigma : F \to F$ denotes the absolute Frobenius map, which lifts $x \mapsto x^p$ on \mathbf{F}_q , then the h embeddings of F into $\overline{\mathbf{Q}}_p$

²⁰⁰⁰ Mathematics Subject Classification. — 11F; 11S; 14G.

Key words and phrases. — (φ, Γ) -module; Lubin-Tate group; filtered φ -module; crystalline representation; p-adic period; Fontaine theory; reflexive sheaf.

This research is partially supported by the ANR grant ThéHopaD (Théorie de Hodge *p*-adique et Développements) ANR-11-BS01-005.

are given by Id, $\sigma, \ldots, \sigma^{h-1}$. The symbol φ_q denotes a σ^h -semilinear Frobenius map. If K is a subfield of $\overline{\mathbf{Q}}_p$, then let $G_K = \operatorname{Gal}(\overline{\mathbf{Q}}_p/K)$.

The goal of this article is to present a first attempt at constructing some "multivariable Lubin-Tate (φ, Γ) -modules", that is some (φ_q, Γ_F) -modules over rings of power series in h variables, on which $\Gamma_F = \mathcal{O}_F^{\times}$ acts by a formula arising from a Lubin-Tate formal \mathcal{O}_F -module. A construction of such (φ_q, Γ_F) -modules, but "in one variable", was carried out by Kisin and Ren in [**KR09**]: they prove that in certain cases, the (φ_q, Γ_F) -modules arising from Fontaine's standard construction of [**Fon90**] are overconvergent. In order to do so, Kisin and Ren adapt the construction of (φ, Γ) -modules attached to filtered (φ, N) modules given in [**Ber08b**] to their setting, which allows them to attach a (φ_q, Γ_F) -module in one variable to a filtered φ_q -module. They then point out in the introduction of [**KR09**] that "it seems likely that in order to obtain a classification valid for any crystalline G_K representation one needs to consider higher dimensional subrings of W(Fr R), constructed using the periods of all the conjugates of [the Lubin-Tate group]".

The motivation for these computations is the hope that we can construct some representations of the Borel subgroup of $\operatorname{GL}_2(F)$, for example using the recipe given by Colmez in [Col10], that would shed some light on the *p*-adic local Langlands correspondence for $\operatorname{GL}_2(F)$ (see [Bre10]). Theorems A, B and C below are a very first step in this direction, but remain insufficient. In particular, the "*p*-adic Fourier theory" of Schneider and Teitelbaum (see [ST01]) will very likely play an important role in the sequel.

We now describe our results in more detail. Let LT_h be the Lubin-Tate formal \mathcal{O}_F module for which multiplication by p is given by $[p](T) = pT + T^q$. We denote by [a](T)the element of $\mathcal{O}_F[T]$ that gives the action of $a \in \mathcal{O}_F$ on LT_h . We consider two rings $\mathcal{R}^+(Y)$ and $\mathcal{R}(Y)$ of power series in the h variables Y_0, \ldots, Y_{h-1} , with coefficients in F. The ring $\mathcal{R}^+(Y)$ is the ring of power series that converge on the open unit polydisk, and $\mathcal{R}(Y)$ is the Robba ring that corresponds to it, by adapting Schneider's construction given in the appendix of [**Záb12**]. The action of the group \mathcal{O}_F^{\times} on those rings is given by the formula $a(Y_j) = [\sigma^j(a)](Y_j)$, and the Frobenius map φ_q is given by $\varphi_q(Y_j) = [p](Y_j)$.

The construction of *p*-adic periods for Lubin-Tate groups gives rise to a map $\mathcal{R}^+(Y) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$, where $\widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ is the Fréchet completion of $\widetilde{\mathbf{B}}^+ = W(\widetilde{\mathbf{E}}^+)[1/p]$, and we prove (corollary 3.7) that this map is in fact injective (remark: if $\widetilde{\mathcal{R}}^+(Y)$ denotes the completion of the perfection of $\mathcal{R}^+(Y)$, then the map above extends to a map $\widetilde{\mathcal{R}}^+(Y) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ but note that, by the theory of the field of norms of [**FW79**] and [**Win83**], this latter map is not injective anymore if $h \ge 2$. This has prevented us from studying étale φ_q -modules using Kedlaya's methods, so such considerations are absent from this article).

Let D be a finite dimensional F-vector space, endowed with an F-linear Frobenius map $\varphi_q: D \to D$, and an action of G_F on D that factors through Γ_F and commutes with φ_q . For each $0 \leq j \leq h-1$, let $\operatorname{Fil}_j^{\bullet}$ be a filtration on $F \otimes_F^{\sigma^j} D \simeq D$ that is stable under Γ_F .

For example, if V is an F-linear crystalline representation of G_F of dimension d, then $D_{cris}(V)$ is a free $F \otimes_{\mathbf{Q}_p} F$ -module of rank d, and we have

$$D_{cris}(V) = D \oplus \varphi(D) \oplus \cdots \oplus \varphi^{h-1}(D),$$

according to the decomposition of $F \otimes_{\mathbf{Q}_p} F$ as $\prod_{\sigma^i: F \to F} F$. Each $\varphi^j(D)$ has the filtration induced from $\mathcal{D}_{\mathrm{cris}}(V)$, and we set $\mathrm{Fil}_j^k D = \varphi^{-j}(\mathrm{Fil}^k \mathcal{D}_{\mathrm{cris}}(V) \cap \varphi^j(D))$.

The composite of the map $\mathcal{R}^+(Y) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ with the map $\varphi^{-k} : \widetilde{\mathbf{B}}^+_{\mathrm{rig}} \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ gives rise to a map $\iota_k : \mathcal{R}^+(Y) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$. Let $\log_{\mathrm{LT}}(T)$ be the logarithm of LT_h , and let $\lambda_j = \log_{\mathrm{LT}}(Y_j)/Y_j$ and $\lambda = \lambda_0 \times \cdots \times \lambda_{h-1}$ (note that the image of $\prod_{j=0}^{h-1} \log_{\mathrm{LT}}(Y_j)$ in $\widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ is some \mathbf{Q}_p -multiple of $t = \log(1+X)$, so that λ is an analogue of t/X). Define

$$\mathcal{M}^+(D) = \{ y \in \mathcal{R}^+(Y)[1/\lambda] \otimes_F D, \ \iota_k(y) \in \mathrm{Fil}^0_{-k}(\mathbf{B}_{\mathrm{dR}} \otimes_F^{\sigma^{-k}} D) \text{ for all } k \ge h \}.$$

The ring $\mathcal{R}^+(Y)$ is a Fréchet-Stein algebra in the sense of [**ST03**], and we therefore have the notion of coadmissible $\mathcal{R}^+(Y)$ -modules, which are the global sections of coherent sheaves on the open unit polydisk.

Theorem A. — The module $M^+(D)$ is a reflexive coadmissible $\mathcal{R}^+(Y)$ -module, for all $0 \leq j \leq h-1$, $M^+(D)[\lambda_j/\lambda]$ is a free $\mathcal{R}^+(Y)[\lambda_j/\lambda]$ -module of rank d, and we have $M^+(D) = \bigcap_{j=0}^{h-1} M^+(D)[\lambda_j/\lambda]$.

The definition of $M^+(D)$ is analogous to the one given in [**Ber08b**], [**KR09**] and similar articles. When h = 1, the proof of theorem A relies on the fact that $M^+(D)$ can be seen as a vector bundle on the open unit disk. Our proof of theorem A relies on the one dimensional case, and on the interpretation of $M^+(D)$ as the global sections of a coherent sheaf on the open unit polydisk.

Remark. — If $h \leq 2$, then $\mathcal{R}^+(Y)$ is of dimension ≤ 2 and one can then prove that $M^+(D)$, being reflexive, is actually free of rank d (see remark 5.7). If $h \geq 3$, I do not know whether $M^+(D)$ is free of rank d in general.

Let $M(D) = \mathcal{R}(Y) \otimes_{\mathcal{R}^+(Y)} M^+(D)$, so that M(D) is a (φ_q, Γ_F) -module over the multivariable Robba ring $\mathcal{R}(Y)$ (see definition 6.4).

Theorem B. — If V is an F-linear crystalline representation of G_F , and if D arises from $D_{cris}(V)$ as above, then there is a natural map $\tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_{\mathcal{R}(Y)} M(D) \to \tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_F V$, and this map is an isomorphism.

If M is a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$, then we set $D_{cris}(M) = (\mathcal{R}(Y)[1/t] \otimes_{\mathcal{R}(Y)} M)^{\Gamma_F}$, and we say that M is crystalline if (1) $M[\lambda_j/\lambda]$ is a free $\mathcal{R}(Y)[\lambda_j/\lambda]$ -module of some rank d for all j, (2) $M = \bigcap_{j=0}^{h-1} M[\lambda_j/\lambda]$, and (3) dim $D_{cris}(M) = d$. For example, if D is a filtered φ_q -module with h filtrations Fil⁶ as above, on which the action of Γ_F is trivial, then M(D) is a crystalline (φ_q, Γ_F) -module.

Theorem C. — The functors $M \mapsto D_{cris}(M)$ and $D \mapsto M(D)$, between the category of crystalline (φ_q, Γ_F) -modules over $\mathcal{R}(Y)$ and the category of φ_q -modules with h filtrations, are mutually inverse.

Note that if h = 1, then the (φ, Γ) -modules that we construct are the classical cyclotomic ones, and theorems A, B and C are well-known.

We now give a short description of the contents of this article: in §1, we give some reminders about the *p*-adic periods of Lubin-Tate formal \mathcal{O}_F -modules. In §2, we define the various rings of power series that we use, and establish some of their properties. In §3, we embed those rings in the usual rings of *p*-adic periods. In §4, we briefly survey Kisin and Ren's construction and explain why (φ_q, Γ_F) -modules over rings of power series in several variables are needed. In §5, we attach such objects to filtered φ_q -modules and prove theorem A. In §6, we define (φ_q, Γ_F) -modules and prove theorem B. In §7, we study crystalline (φ_q, Γ_F) -modules and prove theorem C.

1. Periods of Lubin-Tate formal groups

Let LT_h be the Lubin-Tate formal \mathcal{O}_F -module for which multiplication by p is given by $[p](T) = pT + T^q$. We denote by [a](T) the element of $\mathcal{O}_F[T]$ that gives the action of $a \in \mathcal{O}_F$ on LT_h and by $S(T, U) = T \oplus U$ the element of $\mathcal{O}_F[T, U]$ that gives addition.

Let $\pi_0 = 0$ and for each $n \ge 1$, let $\pi_n \in \overline{\mathbf{Q}}_p$ be such that $[p](\pi_n) = \pi_{n-1}$, with $\pi_1 \ne 0$. We have $\operatorname{val}_p(\pi_n) = 1/q^{n-1}(q-1)$ if $n \ge 1$. Let $F_n = F(\pi_n)$ and let $F_{\infty} = \bigcup_{n\ge 1} F_n$. Recall that $\operatorname{Gal}(F_{\infty}/F) \simeq \mathcal{O}_F^{\times}$ and that the maximal abelian extension of F is $F_{\infty} \cdot F^{\operatorname{unr}}$. Denote by H_F the group $\operatorname{Gal}(\overline{\mathbf{Q}}_p/F_{\infty})$, by Γ_F the group $\operatorname{Gal}(F_{\infty}/F)$ and by χ_{LT} the isomorphism $\chi_{\mathrm{LT}} : \Gamma_F \to \mathcal{O}_F^{\times}$. In the sequel, we sometimes directly identify Γ_F with \mathcal{O}_F^{\times} , that is we drop " χ_{LT} " from the notation to make the formulas less cumbersome.

Let $\widetilde{\mathbf{E}}^+ = \varprojlim_{x \mapsto x^q} \mathcal{O}_{\mathbf{C}_p}/p$ and $\widetilde{\mathbf{A}}^+ = W(\widetilde{\mathbf{E}}^+)$ denote Fontaine's rings of periods (see [Fon94]). Note that we take the limit with respect to the maps $x \mapsto x^q$, which does not change the rings. Let $\varphi_q : \widetilde{\mathbf{A}}^+ \to \widetilde{\mathbf{A}}^+$ be given by $\varphi_q = \varphi^h$. Recall that in §9.2 of [Col02], Colmez has constructed a map $\{\cdot\} : \widetilde{\mathbf{E}}^+ \to \widetilde{\mathbf{A}}^+$ having the following property: if $x \in \widetilde{\mathbf{E}}^+$, then $\{x\}$ is the unique element of $\widetilde{\mathbf{A}}^+$ that lifts x and satisfies $\varphi_q(\{x\}) = [p](\{x\})$.

Let $\theta : \widetilde{\mathbf{A}}^+ \to \mathcal{O}_{\mathbf{C}_p}$ denote Fontaine's map (see [Fon94]). If $x = (x_0, x_1, \ldots)$, then $\theta(\{x\}) = \lim_{n \to \infty} [p^n](\widehat{x}_n)$, where $\widehat{x}_n \in \mathcal{O}_{\mathbf{C}_p}$ is any lift of x_n .

Let $u = \{(\overline{\pi}_0, \overline{\pi}_1, \ldots)\} \in \widetilde{\mathbf{A}}^+$, so that $g(u) = [\chi_{\mathrm{LT}}(g)](u)$ if $g \in G_F$.

Let $\log_{\mathrm{LT}}(T) \in F[T]$ denote the Lubin-Tate logarithm map, which converges on the open unit disk and satisfies $\log_{\mathrm{LT}}([a](T)) = a \cdot \log_{\mathrm{LT}}(T)$ if $a \in \mathcal{O}_F$. Recall (see §9.3 of [Col02]) that $\log_{\mathrm{LT}}(u)$ converges in $\widetilde{\mathbf{B}}^+_{\mathrm{rig}}$ to an element t_F which satisfies $g(t_F) = \chi_{\mathrm{LT}}(g) \cdot t_F$.

Let $Q_k(T)$ be the minimal polynomial of π_k over F. We have $Q_0(T) = T$, $Q_1(T) = p + T^{q-1}$ and $Q_{k+1}(T) = Q_k([p](T))$ if $k \ge 1$. Note that $\log_{\mathrm{LT}}(T) = T \cdot \prod_{k\ge 1} Q_k(T)/p$. Indeed, $\log_{\mathrm{LT}}(T) = \lim_{k\to\infty} p^{-k} \cdot [p^k](T)$ (§9.3 of [Col02]) and $[p^k](T) = Q_0(T) \cdots Q_k(T)$. Let $\exp_{\mathrm{LT}}(T)$ denote the inverse of $\log_{\mathrm{LT}}(T)$. We have $\exp_{\mathrm{LT}}(T) = \sum_{k=1}^{\infty} e_k T^k$ with $v_p(e_k) \ge -k/(q-1)$. For example, $\log_{\mathbf{G}_m}(T) = \log(1+T)$ and $\exp_{\mathbf{G}_m}(T) = \exp(T) - 1$.

Remark 1.1. — Our special choice of $[p](T) = pT + T^q$ is the simplest. Since [p](T) belongs to $\mathbf{Z}_p[T]$, the series $Q_k(T)$, $\log_{\mathrm{LT}}(T)$ and $\exp_{\mathrm{LT}}(T)$ all have coefficients in \mathbf{Q}_p . It also implies that $[\sigma(a)](T) = \sigma([a](T))$, since $[a](T) = \exp_{\mathrm{LT}}(a \cdot \log_{\mathrm{LT}}(T))$.

Lemma 1.2. — If $z \in \mathfrak{m}_{\mathbf{C}_p}$, then

$$\frac{[1+a](z)-z}{a} = \log_{\mathrm{LT}}(z) \cdot \frac{dS}{dU}(z,0) + \mathcal{O}(a),$$

as $a \to 0$ in \mathcal{O}_F .

Proof. — We are looking at the limit of (S(z, [a](z)) - z)/a as $a \to 0$. If a is small enough, then $[a](z) = \exp_{\text{LT}}(a \cdot \log_{\text{LT}}(z)) = a \cdot \log_{\text{LT}}(z) + O(a^2)$, which implies the lemma. \Box

2. Rings of multivariable power series

We consider power series in the *h* variables Y_0, \ldots, Y_{h-1} . If $Y^m = Y_0^{m_0} \cdots Y_{h-1}^{m_{h-1}}$ is a monomial, then its weight is $w(m) = m_0 + pm_1 + \cdots + p^{h-1}m_{h-1}$. If *I* is a subinterval of $[0; +\infty]$ and if $J = \{j_1, \ldots, j_k\}$ is a subset of $\{0, \ldots, h-1\}$, then (adapting Appendix A of [**Záb12**] to our situation) we define $\mathcal{R}^I(\{Y_j\}_{j \in J})$ to be the ring of power series

$$f(Y_{j_1},\ldots,Y_{j_k}) = \sum_{m_1,\ldots,m_k \in \mathbf{Z}} a_{m_1\ldots m_k} Y_{j_1}^{m_1} \cdots Y_{j_k}^{m_k},$$

such that $\operatorname{val}_p(a_m) + w(m)/r \to +\infty$ for all $r \in I$. In other words, f(Y) is required to converge on the polyannulus $\{(Y_0, \ldots, Y_{h-1}) \text{ such that } |Y_0| = p^{-1/r}, \ldots, |Y_{h-1}| = p^{-p^{h-1}/r}\}$ for all $r \in I$. We then define $W(f(Y), r) = \inf_{m \in \mathbb{Z}} (\operatorname{val}_p(a_m) + w(m)/r)$ and, if I is closed, $W(f(Y), I) = \inf_{r \in I} W(f(Y), r)$.

We let $\mathcal{R}^+(\{Y_j\}_{j\in J}) = \mathcal{R}^{[0;+\infty[}(\{Y_j\}_{j\in J}))$ be the ring of holomorphic functions on the open unit polydisk corresponding to J. The Robba ring $\mathcal{R}(\{Y_j\}_{j\in J})$ is defined as $\mathcal{R}(\{Y_j\}_{j\in J}) = \bigcup_{r\geq 0} \mathcal{R}^{[r;+\infty[}(\{Y_j\}_{j\in J}))$. In order to lighten the notation, we write $\mathcal{R}^I(Y)$, $\mathcal{R}^+(Y)$ and $\mathcal{R}(Y)$ instead of $\mathcal{R}^I(Y_0,\ldots,Y_{h-1}), \mathcal{R}^+(Y_0,\ldots,Y_{h-1})$ and $\mathcal{R}(Y_0,\ldots,Y_{h-1})$.

The rings $\mathcal{R}^{I}(\{Y_{j}\}_{j\in J})$ are endowed with an *F*-linear action of Γ_{F} , given by the formula $a(Y_{j}) = [\sigma^{j}(a)](Y_{j})$. There is also an *F*-linear Frobenius map :

$$\varphi_q: \mathcal{R}^I(\{Y_j\}_{j\in J}) \to \mathcal{R}^{I'}(\{Y_j\}_{j\in J}),$$

given by $Y_j \mapsto [p](Y_j)$, for appropriate I and I'.

On the ring $\mathcal{R}^{I}(Y)$, we can define in addition an absolute σ -semilinear Frobenius map φ by $Y_{j} \mapsto Y_{j+1}$ for $0 \leq j \leq h-2$ and $Y_{h-1} \mapsto [p](Y_0)$. This map φ has the property that $\varphi^{h} = \varphi_{q}$, and it also commutes with Γ_{F} .

Let $t_i = \log_{\mathrm{LT}}(Y_i)$. Since $a(Y_i) = [\sigma^i(a)](Y_i)$ if $a \in \Gamma_F$, we have $a(t_i) = \sigma^i(a) \cdot t_i$ so that $g(t_0 \cdots t_{h-1}) = \mathrm{N}_{F/\mathbf{Q}_p}(\chi_{\mathrm{LT}}(g)) \cdot t_0 \cdots t_{h-1} = \chi_{\mathrm{cyc}}(g) \cdot t_0 \cdots t_{h-1}$ if $g \in G_F$ as well as $\varphi(t_0 \cdots t_{h-1}) = p \cdot t_0 \cdots t_{h-1}$. The element $t_0 \cdots t_{h-1}$ therefore behaves like a \mathbf{Q}_p -multiple of the "usual" t of p-adic Hodge theory (see proposition 3.4 for a more precise statement).

The following two propositions are variations on the "Weierstrass division theorem".

Proposition 2.1. — Let I = [0; s] or [0; s[and let $P(T) \in \mathcal{O}_F[T]$ be a monic polynomial of degree d whose nonleading coefficients are all divisible by p. If $f \in \mathcal{R}^I(\{Y_j\}_{j \in J})$, then there exists $g \in \mathcal{R}^I(\{Y_j\}_{j \in J})$ and $f_0, \ldots, f_{d-1} \in \mathcal{R}^I(\{Y_j\}_{j \in J \setminus \{i\}})$ such that

$$f = f_0 + f_1 Y_i + \dots + f_{d-1} Y_i^{d-1} + g \cdot P(Y_i).$$

Proof. — If I = [0; s] is closed, then this is a straightforward consequence of the Weierstrass division theorem. Since g and the f_i 's are uniquely determined, the result extends to the case when I = [0; s].

Proposition 2.2. — Let I = [s; s] and let $P(T) \in \mathcal{O}_F[T]$ be a monic polynomial of degree d, all of whose roots are of valuation -1/s. If $f \in \mathcal{R}^I(\{Y_j\}_{j \in J})$, then there exists $g \in \mathcal{R}^I(\{Y_j\}_{j \in J})$ and $f_0, \ldots, f_{d-1} \in \mathcal{R}^I(\{Y_j\}_{j \in J \setminus \{i\}})$ such that

$$f = f_0 + f_1 Y_i + \dots + f_{d-1} Y_i^{d-1} + g \cdot P(Y_i)$$

Proof. — The polynomial $Q(T) = P(1/T)T^d/P(0)$ is monic and all its roots are of valuation 1/s. Write $f = f^+ + f^-$ where f^+ contains positive powers of Y_i and f^- contains negative powers of Y_i . One may Weierstrass divide f^+ by $P(Y_i)$ and f^- by $Q(1/Y_i)$, which implies the proposition.

Lemma 2.3. — If I is a closed interval, then the action of Γ_F on $\mathcal{R}^I(Y)$ is locally \mathbf{Q}_p -analytic, and we have

$$[1+a](f(Y)) = f(Y) + \sum_{j=0}^{h-1} \sigma^j(a) \cdot \log_{\mathrm{LT}}(Y_j) \cdot \frac{dS}{dU}(Y_j, 0) \cdot \frac{df}{dY_j}(Y) + \mathcal{O}(a^2).$$

Proof. — The above formula follows from the fact that $[1 + a](Y_j) = Y_j \oplus [a](Y_j) = Y_j \oplus (\sigma^j(a) \cdot \log_{\mathrm{LT}}(Y_j) + \mathcal{O}(a^2)).$

Proposition 2.4. — Let $\rho = (\rho_1, \ldots, \rho_{h-1})$ and let $\mathcal{R}_{F_k}^{\rho}(T_1, \ldots, T_{h-1})$ denote the ring of Laurent series converging for $|T_i| = \rho_i$, with coefficients in F_k . If the $z_i \in \mathfrak{m}_{\widehat{F}_{\infty}}$ are such that $\log_{\mathrm{LT}}(z_i) \neq 0$, $|z_i| = \rho_i$ and $g(z_i) = [\sigma^i(g)](z_i)$ for $g \in \mathcal{O}_F^{\times}$, then the map $\mathcal{R}_{F_k}^{\rho}(T_1, \ldots, T_{h-1}) \to \mathbf{C}_p$ given by evaluating at (z_1, \ldots, z_{h-1}) is injective.

Proof. — Suppose that $f(z_1, \ldots, z_{h-1}) = 0$ for some $f \in \mathcal{R}_{F_k}^{\rho}(T_1, \ldots, T_{h-1})$. If $g \in \Gamma_{F_k}$, then $f(g(z_1), \ldots, g(z_{h-1})) = 0$. If g = 1 + a with a small, then lemma 1.2 provides us with h - 1 elements y_1, \ldots, y_{h-1} of \widehat{F}_{∞} such that $g(z_i) = z_i + \sigma^i(a) \cdot y_i + O(a^2)$. Since $y_i = \log_{\mathrm{LT}}(z_i) \cdot dS/dU(z_i, 0)$ and dS/dU is a unit and $\log_{\mathrm{LT}}(z_i) \neq 0$, the elements y_1, \ldots, y_{h-1} are all nonzero.

If $f \neq 0$ and m is the smallest index for which f has a nonzero partial derivative of order m at (z_1, \ldots, z_{h-1}) and if we expand $f(g(z_1), \ldots, g(z_{h-1}))$ around (z_1, \ldots, z_{h-1}) (which generalizes lemma 2.3), then we get

$$\sum_{j_1+\dots+j_{h-1}=m} (\sigma^1(a)y_1)^{j_1} \cdots (\sigma^{h-1}(a)y_{h-1})^{j_{h-1}} \frac{d^m f}{dT_1^{j_1} \cdots dT_{h-1}^{j_{h-1}}} (z_1,\dots,z_{h-1}) + \mathcal{O}(a^{m+1}).$$

Since $f(g(z_1), \ldots, g(z_{h-1})) = 0$, the above linear combination is a homogeneous polynomial, of degree m in h-1 variables and coefficients in \hat{F}_{∞} , that is identically zero on $(\sigma^1(a), \ldots, \sigma^{h-1}(a))$. The shortest nonzero polynomial that is identically zero on $(\sigma^1(a), \ldots, \sigma^{h-1}(a))$ can be taken to have coefficients in F and Artin's theorem on the algebraic independence of characters implies that it is equal to zero. Since all the y_i 's are nonzero, all the partial derivatives of order m of f are zero, so that finally f = 0. \Box

3. Embeddings in B_{dR}

We now explain how to embed the rings of power series of the previous section in the usual rings of *p*-adic periods. Let $\widetilde{\mathbf{B}}^I$ be the ring defined in §2.1 of [**Ber02**]. This ring is complete with respect to the valuation $V(\cdot, I)$ (an equivalent valuation is denoted by $V_I(\cdot)$ in §2.1 of ibid.). Recall that if $x = \sum_{k \ge 0} p^k[x_k] \in \widetilde{\mathbf{A}}^+$, then $V(x, r) = \inf_k(\operatorname{val}_{\mathbf{E}}(x_k) + \sum_{k \ge 0} p^k[x_k])$

krp/(p-1)). Set $r_F = p^{h-1} \cdot q/(q-1) \cdot (p-1)/p$ (for example, $r_{\mathbf{Q}_p} = 1$ and if h > 1, then $r_F < p^{h-1}$).

Proposition 3.1. — If $r \ge r_F$ and $m \in \mathbb{Z}$, then $V(\varphi^j(u)^m, r) = m \cdot p^j \cdot q/(q-1)$ for $0 \le j \le h-1$.

Proof. — Recall that $u = \{\pi\}$ where $\pi = (\pi_0, \pi_1, \ldots)$ with $\operatorname{val}_p(\pi_n) = 1/q^{n-1}(q-1)$ for $n \ge 1$, so that $\operatorname{val}_{\mathbf{E}}(\pi) = q/(q-1)$. We have $\varphi^j(u) = [\pi^{p^j}] + \sum_{k\ge 1} p^k[u_{k,j}]$ where $\operatorname{val}_{\mathbf{E}}(u_{k,j}) > 0$, so that if $r \ge r_F$, then $\varphi^j(u)/[\pi^{p^j}]$ is a unit of $\widetilde{\mathbf{A}}^{\dagger,r}$ and the proposition follows.

Note that a better estimate on the val_{**E**} $(u_{k,j})$ would allow us to take a smaller value for r_F . Let $s_n = p^{n-h}(q-1)$ and let $r_n = p^{n-1}(p-1)$ (so that $s_n \cdot q/(q-1) = r_n \cdot p/(p-1)$).

Proposition 3.2. If $n \ge h$, and if $f(Y) \in \mathcal{R}^{[s_n;s_n]}(Y)$, then $f(u, \ldots, \varphi^{h-1}(u))$ converges in $\widetilde{\mathbf{B}}^{[r_n;r_n]}$.

Proof. — If $f(Y) = \sum_{m \in \mathbb{Z}^h} a_m Y^m \in \mathcal{R}^{[s_n;s_n]}(Y)$, then $\operatorname{val}_p(a_m) + w(m)/(p^{n-h}(q-1)) \to +\infty$. If $n \ge h$, then $r_n > r_F$ so that $V(\varphi^j(u)^{m_j}, r) = m_j \cdot p^j \cdot q/(q-1)$ for $0 \le j \le h-1$ by proposition 3.1, and then

$$V(a_{m_0,\dots,m_{h-1}}u^{m_0}\cdots\varphi^{h-1}(u)^{m_{h-1}},r_n)\to+\infty$$

The series $f(u, \ldots, \varphi^{h-1}(u))$ therefore converges in $\widetilde{\mathbf{B}}^{[r_n;r_n]}$.

Corollary 3.3. — If $n \ge h$, and if $f(Y) \in \mathcal{R}^{[0;s_n]}(Y)$, then $f(u, \ldots, \varphi^{h-1}(u))$ converges in $\tilde{\mathbf{B}}^{[0;r_n]}$. If $f(Y) \in \mathcal{R}^+(Y)$, then $f(u, \ldots, \varphi^{h-1}(u))$ converges in $\tilde{\mathbf{B}}^+_{rig}$.

Proof. — If $f \in \mathcal{R}^{[0;s_n]}(Y)$, then each term of the series $f(u, \ldots, \varphi^{h-1}(u))$ belongs to $\tilde{\mathbf{B}}^+$ so that it converges in $\tilde{\mathbf{B}}^{[0;r_n]}$ by the maximum modulus principle (corollary 2.20 of [**Ber02**]). The second assertion follows by passing to the limit.

The image of $\log_{\mathrm{LT}}(Y_0) \cdots \log_{\mathrm{LT}}(Y_{h-1})$ in $\tilde{\mathbf{B}}_{\mathrm{rig}}^+ \subset \mathbf{B}_{\mathrm{dR}}^+$ is $a \cdot t$ with $a \in \mathbf{Q}_p$, as we have seen above. We henceforth denote by t the element of $\mathcal{R}^+(Y)$ whose image in $\tilde{\mathbf{B}}_{\mathrm{rig}}^+$ is t, that is $t = \log_{\mathrm{LT}}(Y_0) \cdots \log_{\mathrm{LT}}(Y_{h-1})/a$. In the following proposition, we determine the valuation of a (this is not used in the rest of this article).

Proposition 3.4. — In the ring \mathbf{B}_{dR}^+ , the product $\log_{LT}(u) \cdots \log_{LT}(\varphi^{h-1}(u))$ belongs to $p^{h-1} \cdot \mathbf{Z}_p^{\times} \cdot t$, where t is the usual t of p-adic Hodge theory.

Proof. — We have seen that $\log_{\mathrm{LT}}(u) \cdots \log_{\mathrm{LT}}(\varphi^{h-1}(u)) = a \cdot t$ with $a \in \mathbf{Q}_p$, and we now compute $\mathrm{val}_p(a)$. We have $\log_{\mathrm{LT}}(u) = u \cdot \prod_{k \ge 1} Q_k(u)/p$ and likewise, if $\pi = [\varepsilon] - 1$, then $t = \pi \cdot \prod_{k \ge 1} Q_k^{\mathrm{cyc}}(\pi)/p$. This implies that $\theta(t/\log_{\mathrm{LT}}(u)) = \theta(\pi/u)$. Since both $\pi/\varphi^{-1}(\pi)$

and $u/\varphi_q^{-1}(u)$ are generators of ker(θ) in $\widetilde{\mathbf{A}}^+$, we have $\operatorname{val}_p(\theta(t/\log_{\operatorname{LT}}(u))) = 1/(p-1) - 1/(q-1)$. On the other hand, $\operatorname{val}_p(\theta \circ \varphi^j(u)) = \operatorname{val}_p(\lim_{n \to \infty} [p^n](\pi_n^{p^j})) = 1 + p^j/(q-1)$ if $1 \leq j \leq h-1$, so that $\operatorname{val}_p(\theta(\log_{\operatorname{LT}}(\varphi^j(u)))) = 1 + p^j/(q-1)$. This implies that $\operatorname{val}_p(a) = \operatorname{val}_p(\theta(a)) = h-1$, and hence the proposition.

Definition 3.5. — Let $\iota_n : \mathcal{R}^{[s_n;s_n]}(Y) \to \mathbf{B}_{dR}^+$ be the compositum of the map defined above, with the map $\varphi^{-n} : \widetilde{\mathbf{B}}^{[r_n;r_n]} \to \widetilde{\mathbf{B}}^{[r_0;r_0]}$ and the map $\widetilde{\mathbf{B}}^{[r_0;r_0]} \subset \mathbf{B}_{dR}^+$ defined in §2.2 of [**Ber02**].

It follows from the definition as well as the formulas for φ and the action of Γ_F on $\mathcal{R}^I(Y)$ that $\iota_{n+1}(\varphi(f)) = \iota_n(f)$ when applicable, and that $g(\iota_n(f)) = \iota_n(g(f))$ if $g \in G_F$. Since $\iota_n(t) = p^{-n}t$, we can extend ι_n to $\iota_n : \mathcal{R}^{[s_n;s_n]}(Y)[1/t] \to \mathbf{B}_{dR}$.

Theorem 3.6. If $n \ge h$, if $f \in \mathcal{R}^{[s_n;s_n]}(Y)$, and if n = hk + i with $0 \le i \le h - 1$, then we have $\iota_n(f) \in \operatorname{Fil}^1 \mathbf{B}_{\mathrm{dR}}^+$ if and only if $f \in Q_k(Y_i) \cdot \mathcal{R}^{[s_n;s_n]}(Y)$.

Proof. — Recall that $u = \{(\pi_0, \pi_1, \ldots)\} \in \widetilde{\mathbf{A}}^+$. If $m \ge 1$ and $u_m = \theta(\varphi^{-m}(u)) \in \widehat{F}_{\infty}$, then $g(u_m) = [\sigma^{-m}(g)](u_m)$. Note that if $m = h\ell$, then $u_m = \theta(\varphi_q^{-\ell}(u)) = \pi_\ell$. The theorem is equivalent to the assertion that $f^{\sigma^{-n}}(u_n, \ldots, u_{n-h+1}) = 0$ in \mathbf{C}_p if and only if $f \in Q_k(Y_i) \cdot \mathcal{R}^{[s_n;s_n]}(Y)$. We have $u_{n-i} = \pi_k$ so that if f belongs to $Q_k(Y_i) \cdot \mathcal{R}^{[s_n;s_n]}(Y)$, then $f^{\sigma^{-n}}(u_n, \ldots, u_{n-h+1}) = 0$.

Since $Q_k(T)$ is a monic polynomial of degree $d = q^{k-1}(q-1)$, whose nonleading coefficients are divisible by p, we can use proposition 2.2 to write $f^{\sigma^{-n}} = f_0 + Y_i f_1 + \cdots + Y_i^{d-1} f_{d-1} + Q_k(Y_i)r$ with f_i a power series in the Y_j 's with $j \neq i$. Proposition 2.4 applied to $f_0 + \pi_k f_1 + \cdots + \pi_k^{d-1} f_{d-1}$, with the T_j 's a suitable permutation of the Y_j 's, shows that $f_0 + \pi_k f_1 + \cdots + \pi_k^{d-1} f_{d-1} = 0$. Therefore, $f = Q_k(Y_i)r^{\sigma^n}$, which proves the theorem. \Box

Corollary 3.7. — If $n \ge h$, then the map $\iota_n : \mathcal{R}^{[s_n;s_n]}(Y) \to \mathbf{B}^+_{\mathrm{dR}}$ is injective. If $n \in \mathbf{Z}$, then the map $\iota_n : \mathcal{R}^+(Y) \to \mathbf{B}^+_{\mathrm{dR}}$ is injective.

Proof. — The first assertion follows from theorem 3.6. The second follows from that, and from the fact that $\iota_{n+1}(\varphi(f)) = \iota_n(f)$ for the other n.

Corollary 3.8. — If $I \subset [s_h; +\infty[$, and if $f(Y) \in \mathcal{R}^I(Y)[1/t]$, then $f(Y) \in \mathcal{R}^I(Y)$ if and only if $\iota_n(f) \in \mathbf{B}_{dR}^+$ for all n such that $s_n \in I$.

4. (φ_q, Γ_F) -modules in one variable

Before constructing (φ_q, Γ_F) -modules over $\mathcal{R}(Y)$, we review Kisin and Ren's construction of (φ_q, Γ_F) -modules in one variable and explain why we need rings in several variables.

Let Y_0 be the variable of §2, and let $\mathcal{E}(Y_0)$ be Fontaine's field of [**Fon90**] with coefficients in F, that is $\mathcal{E}(Y_0) = \mathcal{O}_{\mathcal{E}}(Y_0)[1/p]$ where $\mathcal{O}_{\mathcal{E}}(Y_0)$ is the *p*-adic completion of $\mathcal{O}_F[\![Y_0]\!][1/Y_0]$. We let $\mathcal{E}^{\dagger}(Y_0)$ and $\mathcal{R}(Y_0)$ denote the corresponding overconvergent and Robba rings. If I is a subinterval of $[0; +\infty]$, then we denote as above by $\mathcal{R}^I(Y_0)$ the set of power series $f(Y_0) = \sum_{m \in \mathbf{Z}} a_m Y_0^m$ that belong to $\mathcal{R}^I(Y_0, \ldots, Y_{h-1})$ via the natural inclusion.

If K/F is a finite extension, then by the theory of the field of norms (see [**FW79**] and [**Win83**]), there corresponds to it a finite extension $\mathcal{E}_K(Y_0)$ of $\mathcal{E}(Y_0)$, of degree $[K_{\infty} : F_{\infty}]$. A (φ_q, Γ_K) -module over $\mathcal{E}_K(Y_0)$ is a finite dimensional $\mathcal{E}_K(Y_0)$ -vector space D, along with a semilinear φ_q and a compatible action of Γ_K . We say that D is étale if $D = \mathcal{E}_K(Y_0) \otimes_{\mathcal{O}_{\mathcal{E}_K}(Y_0)} D_0$ where D_0 is a (φ_q, Γ_K) -module over $\mathcal{O}_{\mathcal{E}_K}(Y_0)$. By specializing the constructions of [**Fon90**], Kisin and Ren prove the following theorem in their paper (theorem 1.6 of [**KR09**]).

Theorem 4.1. — The functors

$$V \mapsto (\widehat{\mathcal{E}}(Y_0)^{\mathrm{unr}} \otimes_F V)^{H_K} \text{ and } \mathrm{D} \mapsto (\widehat{\mathcal{E}}(Y_0)^{\mathrm{unr}} \otimes_{\mathcal{E}_K(Y_0)} \mathrm{D})^{\varphi_q = 1}$$

give rise to mutually inverse equivalences of categories between the category of F-linear representations of G_K and the category of étale (φ_q, Γ_K) -modules over $\mathcal{E}_K(Y_0)$.

We say that an *F*-linear representation of G_K is *F*-analytic if it is Hodge-Tate with weights 0 (i.e. \mathbb{C}_p -admissible) at all embeddings $\tau \neq \mathrm{Id}$. Kisin and Ren then go on to show that if $K \subset F_{\infty}$, and if *V* is a crystalline representation of G_K , that is *F*-analytic, then the (φ_q, Γ_K) -module attached to *V* is overconvergent (see §3.3 of ibid.).

Assume from now on that $K \subset F_{\infty}$, so that $\mathcal{E}_K(Y_0) = \mathcal{E}(Y_0)$. If D is a (φ_q, Γ_K) -module over $\mathcal{R}(Y_0)$, and if $g \in \Gamma_K$ is close enough to 1, then by standard arguments (see §4.1 of [**Ber02**] or §2.1 of [**KR09**]), the series $\log(g) = \log(1 + (g - 1))$ gives rise to a differential operator $\nabla_g : D \to D$. The map Lie $\Gamma_F \to \text{End}(D)$ arising from $v \mapsto \nabla_{\exp(v)}$ is \mathbf{Q}_p -linear, and we say that D is *F*-analytic if this map is *F*-linear (see §2.1 of [**KR09**] and §1.3 of [**FXar**]). This is equivalent to the requirement that $\nabla_j = 0$ on D for $1 \leq j \leq h - 1$, where ∇_j is the partial derivative in the direction σ^j .

Theorem 4.2. — If V is an overconvergent F-linear representation of G_K , and if $D(V) = \mathcal{R}(Y_0) \otimes_{\mathcal{E}^{\dagger}(Y_0)} D^{\dagger}(V)$, then D(V) is F-analytic if and only if V is F-analytic.

Proof. — Choose $1 \leq j \leq h-1$, and take $n \gg 0$ such that $n = -j \mod h$. By proposition 3.2, we have a map $\theta \circ \varphi^{-n} : \mathcal{R}^{[s_n;s_n]}(Y_0) \to \mathbf{B}^+_{\mathrm{dR}} \to \mathbf{C}_p$, giving rise to an isomorphism

$$\mathbf{C}_p \otimes_{\mathcal{R}^{[s_n;s_n]}(Y_0)}^{\theta \circ \varphi^{-n}} \mathbf{D}^{[s_n;s_n]}(V) \to \mathbf{C}_p \otimes_F^{\sigma^j} V.$$

We first prove that if D(V) is *F*-analytic, then *V* is \mathbb{C}_p -admissible at the embedding σ^j . Let $\widehat{F}_{\infty}^{(j)}$ denote the field of locally σ^j -analytic vectors of \widehat{F}_{∞} for the action of Γ_K . Note that $\theta \circ \varphi^{-n}(\mathcal{R}^{[s_n;s_n]}(Y_0)) \subset \widehat{F}_{\infty}^{(j)}$. Let $\mathbb{D}_{\text{Sen}}^{(j)}(V)$ be the $\widehat{F}_{\infty}^{(j)}$ -vector space

$$\mathcal{D}_{\mathrm{Sen}}^{(j)}(V) = \widehat{F}_{\infty}^{(j)} \otimes_{\theta \circ \varphi^{-n}(\mathcal{R}^{[s_n;s_n]}(Y_0))} \theta \circ \varphi^{-n}(\mathcal{D}^{[s_n;s_n]}(V)).$$

It is of dimension d, its image in $(\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F}$ generates $\mathbf{C}_p \otimes_F^{\sigma^j} V$, and its elements are all locally σ^j -analytic vectors of $(\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F}$ because $\mathrm{D}(V)$ is F-analytic and $\varphi^{-n} \circ \nabla_j =$ $\nabla_0 \circ \varphi^{-n}$. If $y \in \mathrm{D}^{(j)}_{\mathrm{Sen}}(V)$, then $(g(y) - y)/(\sigma^j \circ \chi_{\mathrm{LT}}(g) - 1)$ has a limit as $g \to 1$, and we call $\nabla_j(y)$ this limit. We then have $g(y) = \exp(\log_p(\sigma^j \circ \chi_{\mathrm{LT}}(g)) \cdot \nabla_j)(y)$ if $g \in \Gamma_K$ is close to 1.

Recall that there exists $a_j \in \mathbf{C}_p$ such that $\log_p(\sigma^j \circ \chi_{\mathrm{LT}}(g)) = g(a_j) - a_j$. For example, one can take $a_j = \log_p(\theta \circ \iota_0(t_j))$. The element a_j then belongs to $\widehat{F}_{\infty}^{(j)}$ for obvious reasons and satisfies $\nabla_j(a_j) = 1$. Take $y \in \mathrm{D}^{(j)}_{\mathrm{Sen}}(V)$, and choose $a_{j,0} \in F_{\infty}$ such that $|a_j - a_{j,0}|_p$ is small enough. The series

$$C(y) = \sum_{k \ge 0} (-1)^k \frac{(a_j - a_{j,0})^k}{k!} \nabla_j^k(y)$$

then converges for the topology of $\mathcal{D}_{\text{Sen}}^{(j)}(V)$ (the technical details concerning convergence in such spaces of locally analytic vectors can be found in [**BC13**]) and a short computation shows that $\nabla_j(C(y)) = 0$, so that $C(y) \in (\mathbf{C}_p \otimes_F^{\sigma^j} V)^{G_{F_n}}$ for some $n = n(y) \gg 0$. In addition, $n(y) = n(\nabla_j^k(y))$ for $k \ge 0$, the series for $C(\nabla_j^k(y))$ also converges for the topology of $\mathcal{D}_{\text{Sen}}^{(j)}(V)$, and $y = \sum_{k\ge 0} (a_j - a_{j,0})^k / k! \cdot C(\nabla_j^k(y))$.

If y_1, \ldots, y_d is a basis of $\mathcal{D}_{\text{Sen}}^{(j)}(V)$, and if $n \ge \max n(y_i)$, then the above computations show that the elements y_i belong to $\widehat{F}_{\infty}^{(j)} \otimes_{F_n} (\mathbf{C}_p \otimes_F^{\sigma^j} V)^{G_{F_n}}$, so that $(\mathbf{C}_p \otimes_F^{\sigma^j} V)^{G_{F_n}}$ generates $(\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F}$. This implies that V is \mathbf{C}_p -admissible at the embedding σ^j . This is true for all $1 \le j \le h - 1$, and therefore V is F-analytic.

We now prove that if V is \mathbf{C}_p -admissible at the embedding σ^j , then $\nabla_j = 0$ on $\mathbf{D}(V)$. Choose n = hm - j with $m \gg 0$. Since $j \neq 0 \mod h$, the map $\theta \circ \varphi^{-n} : \mathcal{R}^{[s_n;s_n]}(Y_0) \to \mathbf{C}_p$ is injective by theorem 3.6. This implies that the map

$$\mathbf{D}^{[s_n;s_n]}(V) \to \mathbf{C}_p \otimes_{\mathcal{R}^{[s_n;s_n]}(Y_0)}^{\theta \circ \varphi^{-n}} \mathbf{D}^{[s_n;s_n]}(V)$$

is injective, and hence the map $D^{[s_n;s_n]}(V) \to \mathbf{C}_p \otimes_F^{\sigma^j} V$ is also injective. Therefore, we have an injection $D^{[s_n;s_n]}(V) \to ((\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F})^{\mathrm{an}}$ where $((\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F})^{\mathrm{an}}$ denotes the set of locally \mathbf{Q}_p -analytic vectors of $(\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F}$. If V is \mathbf{C}_p -admissible at the embedding σ^j , then $((\mathbf{C}_p \otimes_F^{\sigma^j} V)^{H_F})^{\mathrm{an}} = (\widehat{F}_{\infty}^{\mathrm{an}})^d$. One of the main results of [**BC13**] is that $\nabla_0 = 0$ on $\widehat{F}_{\infty}^{\mathrm{an}}$ (it is shown in [**BC13**] that, in a suitable sense, $\widehat{F}_{\infty}^{\mathrm{an}}$ is generated by F_{∞} and the elements a_1, \ldots, a_{h-1}). This implies that $\nabla_j = 0$ on $D^{[s_n;s_n]}(V)$, since $\varphi^{-n} \circ \nabla_j = \nabla_0 \circ \varphi^{-n}$.

Note that an analogous argument for the proof of the implication "D(V) is *F*-analytic implies *V* is *F*-analytic" was given by Bingyong Xie for those *V* that are trivial on H_F .

Corollary 4.3. — If V is an absolutely irreducible F-linear overconvergent representation of G_K , then there exists a character δ of Γ_K such that $V \otimes \delta$ is F-analytic.

Proof. — We give a sketch of the proof. Choose some $g \in \Gamma_K$ such that $\log_p(\chi_{\mathrm{LT}}(g)) \neq 0$, and let $\nabla = \log(g) / \log_p(\chi_{\mathrm{LT}}(g))$. Choose r > 0 large enough and $s \ge qr$. If $a \in \mathcal{O}_F$, and if $\operatorname{val}_p(a) \ge n$ for n = n(r, s) large enough, then the series $\exp(a \cdot \nabla)$ converges to an operator on $\mathrm{D}^{[r;s]}(V)$. This way, we can define a twisted action of Γ_{K_n} on $\mathrm{D}^{[r;s]}(V)$, by the formula $h \star x = \exp(\log_p(\chi_{\mathrm{LT}}(h)) \cdot \nabla)(x)$. This action is now *F*-analytic by construction.

Since $s \ge qr$, the modules $D^{[q^m r;q^m s]}(V)$ for $m \ge 0$ are glued together by φ_q and this way, we get a new action of Γ_{K_n} on D(V). Since φ_q is unchanged, this new $(\varphi_q, \Gamma_{K_n})$ -module is étale, and therefore corresponds to a representation W of G_{K_n} . This representation Wis F-analytic by theorem 4.2, and its restriction to H_F is isomorphic to V.

The space $\operatorname{Hom}(V, \operatorname{ind}_{G_{K_n}}^{G_K} W)^{H_F}$ is nonempty, and is a finite dimensional representation of Γ_K . Since Γ_K is abelian, we find (possibly extending scalars) a character δ of Γ_K and a nonzero $f \in \operatorname{Hom}(V, \operatorname{ind}_{G_{K_n}}^{G_K} W)^{H_F}$ such that $h(f) = \delta(h) \cdot f$ if $h \in G_K$. This f gives rise to a nonzero G_K -equivariant map $V \otimes \delta \to \operatorname{ind}_{G_{K_n}}^{G_K} W$. Since $\operatorname{ind}_{G_{K_n}}^{G_K} W$ is F-analytic and V is absolutely irreducible, the corollary follows. \Box

Corollary 4.3 (as well as theorem 0.6 of $[\mathbf{FXar}]$) suggests that if we want to attach overconvergent (φ_q, Γ_K) -modules to all *F*-linear representations of G_K , then we need to go beyond the objects in only one variable. We finish with a conjecture that seems reasonable enough, since it holds for crystalline representations by the work of Kisin and Ren (see also theorem 0.3 of $[\mathbf{FXar}]$).

Conjecture 4.4. — If V is F-analytic, then it is overconvergent.

5. Construction of $\mathcal{R}^+(Y)$ -modules

We now explain how to construct some $\mathcal{R}^+(Y)$ -modules $M^+(D)$ that are attached to some filtered φ_q -modules D. Let D be a finite dimensional F-vector space, endowed with an F-linear Frobenius map $\varphi_q : D \to D$, and an action of G_F on D that factors through Γ_F and commutes with φ_q .

For each $0 \leq j \leq h-1$, let $\operatorname{Fil}_{j}^{\bullet}$ be a filtration on $F \otimes_{F}^{\sigma^{j}} D \simeq D$ that is stable under Γ_{F} . If $n \in \mathbb{Z}$, let $\mathbb{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{n}} D$ denote the tensor product of \mathbb{B}_{dR} and D above F, where F maps to \mathbb{B}_{dR} via σ^{n} . We then have $b \otimes a \cdot d = \sigma^{n}(a) \cdot b \otimes d$. Note that $\mathbb{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{n}} D$ only

depends on $n \mod h$. Define $W_{dR}^{+,j}(D) = \operatorname{Fil}_{j}^{0}(\mathbf{B}_{dR} \otimes_{F}^{\sigma^{j}} D)$ so that $W_{dR}^{+,j}$ is a G_{F} -stable \mathbf{B}_{dR}^{+} -lattice of $\mathbf{B}_{dR} \otimes_{F}^{\sigma^{j}} D$.

Example 5.1. — If V is an F-linear crystalline representation of G_F of dimension d, then $D_{cris}(V)$ is a free $F \otimes_{\mathbf{Q}_p} F$ -module of rank d and we have

$$D_{cris}(V) = D \oplus \varphi(D) \oplus \cdots \oplus \varphi^{h-1}(D),$$

according to the decomposition of $F \otimes_{\mathbf{Q}_p} F$ as $\prod_{\sigma^i: F \to F} F$. Each $\varphi^j(D)$ comes with the filtration induced from $\mathcal{D}_{\mathrm{cris}}(V)$, and we set $\mathrm{Fil}_j^k D = \varphi^{-j}(\mathrm{Fil}^k \mathcal{D}_{\mathrm{cris}}(V) \cap \varphi^j(D))$.

We now briefly recall some definitions from [ST03]. The ring $\mathcal{R}^+(Y)$ is a Fréchet-Stein algebra; indeed, its topology is defined by the valuations $\{W(\cdot, [0; s_n])\}_{n \in S}$, where S is any unbounded set of integers, and the ring $\mathcal{R}^{[0;s_n]}(Y)$ is noetherian and flat over $\mathcal{R}^{[0;s_m]}(Y)$ if $m \ge n \in S$. Recall that a coherent sheaf is then a family $\{M^{[0;s_n]}\}_{n \in S}$ of finitely generated $\mathcal{R}^{[0;s_n]}(Y)$ -modules, such that $\mathcal{R}^{[0;s_n]}(Y) \otimes_{\mathcal{R}^{[0;s_m]}(Y)} M^{[0;s_m]} = M^{[0;s_n]}$ for all $m \ge n \in S$. A $\mathcal{R}^+(Y)$ -module M is said to be coadmissible if M is the set of global sections of a coherent sheaf $\{M^{[0;s_n]}\}_{n \in S}$. We say that M is a reflexive coadmissible $\mathcal{R}^+(Y)$ -module if each $M^{[0;s_n]}$ is a reflexive $\mathcal{R}^{[0;s_n]}(Y)$ -module. By lemma 8.4 of [ST03], this is the same as requiring that M itself be a reflexive $\mathcal{R}^+(Y)$ -module.

Let $\lambda_j = \log_{\mathrm{LT}}(Y_j)/Y_j$ and $\lambda = \lambda_0 \cdots \lambda_{h-1}$, so that for any $n \in \mathbf{Z}$, t is a \mathbf{Q}_p -multiple of $\iota_n(\lambda \cdot Y_0 \cdots Y_{h-1})$. Let $f_j = \lambda/\lambda_j$, so that if $k = j \mod h$, then $\iota_k(f_j)$ is a unit of $\mathbf{B}_{\mathrm{dR}}^+$. If $y = \sum_i y_i \otimes d_i \in \mathcal{R}^+(Y)[1/\lambda] \otimes_F D$, let $\iota_k(y) = \sum_i \iota_k(y_i) \otimes d_i \in \mathbf{B}_{\mathrm{dR}} \otimes_F^{\sigma^{-k}} D$.

Definition 5.2. — Let $M^+(D)$ be the set of $y \in \mathcal{R}^+(Y)[1/\lambda] \otimes_F D$ that satisfy $\iota_k(y) \in W^{+,-k}_{dR}(D)$ for all $k \ge h$.

Theorem 5.3. — If D is a φ_q -module with an action of Γ_F and h filtrations, then

- 1. $M^+(D)$ is a reflexive coadmissible $\mathcal{R}^+(Y)$ -module;
- 2. the $\mathcal{R}^+(Y)[1/f_j]$ -module $\mathcal{M}^+(D)[1/f_j]$ is free of rank d for $0 \leq j \leq h-1$;
- 3. $\mathcal{M}^+(D) = \bigcap_{j=0}^{h-1} \mathcal{M}^+(D)[1/f_j].$

In the remainder of this section, we prove theorem 5.3. We now establish some preliminary results. Let $S = \{hm + (h - 1) \text{ where } m \ge 1\}$, and take $n \in S$. Recall that on the ring $\mathcal{R}^{[0;s_n]}(Y)$, the map ι_k is defined for $h \le k \le n$. Let

$$\mathcal{M}(D)^{[0;s_n]} = \{ y \in \mathcal{R}^{[0;s_n]}(Y)[1/\lambda] \otimes_F D, \ \iota_k(y) \in W^{+,-k}_{\mathrm{dR}}(D) \text{ for all } h \leqslant k \leqslant n \}.$$

For $0 \leq j \leq h-1$, recall that $\mathcal{R}^{I}(Y_{j})$ is a ring of power series in one variable. Let

$$N_j^{[0;s_n]} = \{ y \in \mathcal{R}^{[0;s_n]}(Y_j)[1/\lambda_j] \otimes_F D, \ \iota_{kh+j}(y) \in W_{\mathrm{dR}}^{+,-j}(D) \text{ for all } 1 \leqslant k \leqslant m \},\$$
$$N_j^+ = \{ y \in \mathcal{R}^+(Y_j)[1/\lambda_j] \otimes_F D, \ \iota_{kh+j}(y) \in W_{\mathrm{dR}}^{+,-j}(D) \text{ for all } k \geqslant 1 \}.$$

Since $\mathcal{R}^+(Y_j) = \varphi^j(\mathcal{R}^+(Y_0))$ if $0 \leq j \leq h-1$, the construction of N_j^+ is completely analogous to that of $\mathcal{M}(F \otimes_F^{\sigma^{-j}} D)$, given for example in §2.2 of [**KR09**].

Proposition 5.4. — The $\mathcal{R}^+(Y_j)$ -module N_j^+ is free of rank d, for all n we have $N_j^{[0;s_n]} = \mathcal{R}^{[0;s_n]}(Y_j) \otimes_{\mathcal{R}^+(Y_j)} N_j^+$, and the map $\mathbf{B}_{\mathrm{dR}}^+ \otimes_{\mathcal{R}^+(Y_j)}^{\iota_{kh+j}} N_j^+ \to W_{\mathrm{dR}}^{+,-j}(D)$ is an isomorphism for all $k \ge 1$.

Proof. — Since there is only one variable, the proof is a standard argument, analogous to the one which one can find in §II.1 of [**Ber08b**] or §2.2 of [**KR09**]. \Box

Let
$$M_j^{[0;s_n]} = \mathcal{R}^{[0;s_n]}(Y)[1/f_j] \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)} N_j^{[0;s_n]}$$
, where $f_j = \lambda/\lambda_j$.

Proposition 5.5. — We have $M(D)^{[0;s_n]}[1/f_j] = M_j^{[0;s_n]}$ and $M(D)^{[0;s_n]} = \bigcap_j M_j^{[0;s_n]}$.

Proof. — In the sequel, we use the fact that $Q_1(Y_j) \cdots Q_m(Y_j)$ and λ_j generate the same ideal of $\mathcal{R}^{[0;s_n]}(Y_j)$ (recall that n = hm + (h-1)). Let a and b be two integers such that

$$t^a \cdot \mathbf{B}^+_{\mathrm{dR}} \otimes_F^{\sigma^j} D \subset W^{+,j}_{\mathrm{dR}}(D) \subset t^{-b} \cdot \mathbf{B}^+_{\mathrm{dR}} \otimes_F^{\sigma^j} D$$

for all j. We then have $\mathcal{M}(D)^{[0;s_n]} \subset \lambda^{-b} \cdot \mathcal{R}^{[0;s_n]}(Y) \otimes_F D$ by theorem 3.6.

We have $\varphi^{-(hk+j)}(\mathcal{R}^{[0;s_n]}(Y)[1/f_j]) \subset \mathbf{B}_{\mathrm{dR}}^+$ for all $1 \leq k \leq m$ so that if $y \in M_j^{[0;s_n]}$, then $\varphi^{-(hk+j)}(y) \in W_{\mathrm{dR}}^{+,-j}(D)$ for all $1 \leq k \leq m$. On the other hand, if $y \in M_j^{[0;s_n]}$, then $y \in \lambda^{-c} \cdot \mathcal{R}^{[0;s_n]}(Y) \otimes_F D$ for some $c \geq 0$, so that $f_j^{a+c}y \in \mathrm{M}(D)^{[0;s_n]}$. This implies that $M_j^{[0;s_n]} \subset \mathrm{M}(D)^{[0;s_n]}[1/f_j]$.

We now prove that $\mathcal{M}(D)^{[0;s_n]} \subset M_i^{[0;s_n]}$. Choose $y \in \mathcal{M}(D)^{[0;s_n]}$. Since

 $\mathcal{M}(D)^{[0;s_n]} \subset \lambda^{-b} \cdot \mathcal{R}^{[0;s_n]}(Y) \otimes_F D,$

we can write $y = \lambda^{-b} \sum_k z_k \otimes d_k$. By Weierstrass dividing (proposition 2.1) the z_k 's by the polynomial $(Q_1(Y_j) \cdots Q_m(Y_j))^{a+b}$, we can write $y = (Q_1(Y_j) \cdots Q_m(Y_j))^{a+b} z + y_0$ with $y_0 \in \mathcal{R}^{[0;s_n]}(Y)[1/\lambda] \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)} N_j^{[0;s_n]}$.

Note that $(Q_1(Y_j)\cdots Q_m(Y_j))^{a+b}z \in M_j^{[0;s_n]}$ because $t^a \mathbf{B}_{\mathrm{dR}}^+ \otimes_F^{\sigma^j} D \subset W_{\mathrm{dR}}^{+,j}(D)$, so that $(Q_1(Y_j)\cdots Q_m(Y_j))^a \cdot D \subset N_j^{[0;s_n]}$.

Write $y_0 = \sum_{k=1}^d a_k \otimes n_k$ where $a_k \in \mathcal{R}^{[0;s_n]}(Y)[1/\lambda]$ and n_1, \ldots, n_d is a basis of $N_j^{[0;s_n]}$. The element y_0 satisfies $\varphi_q^{-\ell} \varphi^{-j}(y_0) \in W_{\mathrm{dR}}^{+,-j}(D)$ for all $1 \leq \ell \leq m$. By proposition 5.4, the map

$$\mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)}^{\iota_{h\ell+j}} N_j^{[0;s_n]} \to W_{\mathrm{dR}}^{+,-j}(D)$$

is an isomorphism; this implies that $\varphi_q^{-\ell}\varphi^{-j}(a_k) \in \mathbf{B}_{\mathrm{dR}}^+$ for all $1 \leq \ell \leq m$. Theorem 3.6 now implies that a_k has no pole at any of the roots of $Q_1(Y_j), \ldots, Q_m(Y_j)$, so that we have $a_k \in \mathcal{R}^{[0;s_n]}(Y)[1/f_j]$. This implies that $y_0 \in M_j^{[0;s_n]}$, and therefore also y. This proves that $\mathcal{M}(D)^{[0;s_n]} \subset M_j^{[0;s_n]}$ and therefore $\mathcal{M}(D)^{[0;s_n]}[1/f_j] = M_j^{[0;s_n]}$.

If $x \in \bigcap_j M_j^{[0;s_n]}$, and if $k = j \mod h$ with $0 \leq j \leq h - 1$, then the fact that $x \in M(D)^{[0;s_n]}[1/f_j] = \mathcal{R}^{[0;s_n]}(Y)[1/f_j] \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)} N_j^{[0;s_n]}$ implies that $\iota_k(x) \in W_{\mathrm{dR}}^{+,-k}(D)$. This is true for all $h \leq k \leq n$, so that $x \in M(D)^{[0;s_n]}$ and this proves the second assertion. \Box

Lemma 5.6. — We have $M^+(D)[1/f_j] = \mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$.

Proof. — By combining propositions 5.4 and 5.5, we find that

$$\mathcal{M}(D)^{[0;s_n]}[1/f_j] = \mathcal{R}^{[0;s_n]}(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$$

Since $\mathcal{M}(D)^+ = \cap_j \mathcal{M}(D)^{[0;s_n]}$, we have $\mathcal{M}(D)^+[1/f_j] \subset \cap_j \mathcal{M}(D)^{[0;s_n]}[1/f_j]$. We also have $\mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+ \subset \mathcal{M}^+(D)[1/f_j]$, and those two inclusions imply that $\mathcal{M}^+(D)[1/f_j] = \mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$.

Proof of theorem 5.3. — We first prove that the family ${M(D)^{[0;s_n]}}_{n\in S}$ is a coherent sheaf. Take $n \ge m \in S$. We have

$$\begin{aligned} \mathcal{R}^{[0;s_m]}(Y) \otimes_{\mathcal{R}^{[0;s_n]}(Y)} \mathcal{M}(D)^{[0;s_n]} \\ &= \mathcal{R}^{[0;s_m]}(Y) \otimes_{\mathcal{R}^{[0;s_n]}(Y)} (\cap_j \mathcal{R}^{[0;s_n]}(Y)[1/f_j] \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)} N_j^{[0;s_n]}) \\ &= \cap_j \mathcal{R}^{[0;s_m]}(Y)[1/f_j] \otimes_{\mathcal{R}^{[0;s_n]}(Y_j)} N_j^{[0;s_n]} = \mathcal{M}(D)^{[0;s_m]}. \end{aligned}$$

This implies that the family $\{M(D)^{[0;s_n]}\}_{n\in S}$ is a coherent sheaf. It is clear that its global sections are precisely $M^+(D)$. By proposition 5.5, we have $M(D)^{[0;s_n]} = \bigcap_j M(D)^{[0;s_n]} [1/f_j]$ where each $M(D)^{[0;s_n]} [1/f_j]$ is free of rank d over $\mathcal{R}(Y)^{[0;s_n]} [1/f_j]$. The fact that $M(D)^{[0;s_n]}$ is reflexive now follows from proposition 6 of VII.4.2 of [**Bou61**], and this proves (1).

By combining proposition 5.4 and lemma 5.6, we get item (2) of the theorem. Suppose now that $x \in \bigcap_j M^+(D)[1/f_j]$. If $k = j \mod h$ with $0 \leq j \leq h - 1$, then the fact that $x \in M^+(D)[1/f_j] = \mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$ implies that $\iota_k(x) \in W_{dR}^{+,-k}(D)$. This being true for all $k \geq h$, we have $x \in M^+(D)$ and this proves item (3) of the theorem. \Box

Remark 5.7. — If $h \leq 2$, then the ring $\mathcal{R}^{[0;s_n]}(Y)$ is of dimension ≤ 2 , and reflexive $\mathcal{R}^{[0;s_n]}(Y)$ -modules are therefore projective. By Lütkebohmert's theorem (see [Lüt77], corollary on page 128), the $\mathcal{R}^{[0;s_n]}(Y)$ -module $\mathcal{M}(D)^{[0;s_n]}$ is then free of rank d. The system $\{\mathcal{M}(D)^{[0;s_n]}\}_{n\in S}$ then forms a vector bundle over the open unit polydisk. By combining proposition 2 on page 87 of [**Gru68**] (note that " A_m " is defined at the bottom of page

82 of loc. cit.), and the main theorem of [**Bar81**], we get that $M^+(D)$ is free of rank d over $\mathcal{R}^+(Y)$. If $h \ge 3$, I do not know whether this still holds.

6. Properties of $M^+(D)$

We now prove that $M(D) = \mathcal{R}(Y) \otimes_{\mathcal{R}^+(Y)} M^+(D)$ is a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$, and that if D arises from a crystalline representation V, then $M^+(D)$ and V are naturally related. It is clear from the definition that $M^+(D)$ is stable under the action of Γ_F . We also have $\lambda^a \cdot \mathcal{R}^+(Y) \otimes_F D \subset M^+(D)$ for some $a \ge 0$, so that

$$\mathcal{R}^+(Y)[1/\lambda] \otimes_{\mathcal{R}^+(Y)} \mathcal{M}^+(D) = \mathcal{R}^+(Y)[1/\lambda] \otimes_F D.$$

Say that the module D with h filtrations is effective if $\operatorname{Fil}_j^0(D) = D$ for $0 \leq j \leq h-1$. Recall that n = hm + (h-1) with $m \geq 1$.

Lemma 6.1. — If D is effective, then the $\mathcal{R}^+(Y_j)$ -module N_j^+ is stable under φ_q , and $N_j^+/\varphi_q^*(N_j^+)$ is killed by $Q_1(Y_j)^{a_j}$ if $a_j \ge 0$ is such that $\operatorname{Fil}^{a_j+1}D = \{0\}$.

Proof. — This concerns the construction in one variable, so the proof is standard. See for example 2.2 of [**KR09**].

Proposition 6.2. — If D is effective, then the $\mathcal{R}^+(Y)$ -module $M^+(D)$ is stable under the Frobenius map φ_q , and $M^+(D)/\varphi_q^*(M^+(D))$ is killed by $Q_1(Y_0)^{a_0}\cdots Q_1(Y_{h-1})^{a_{h-1}}$.

Proof. — By (2) of theorem 5.3, we have $M^+(D) = \bigcap_j M^+(D)[1/f_j]$ and by lemma 5.6, $M^+(D)[1/f_j] = \mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$. Lemma 6.1 implies that N_j^+ is stable under φ_q , and so the same is true of $M^+(D)[1/f_j]$ and hence $M^+(D)$.

If $x \in M^+(D)$, then $x \in M^+(D)[1/f_j] = \mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+$. Note however that at each $k = i \neq j \mod h$, the coefficients of x can have a pole of order at most a_i since $\operatorname{Fil}^{a_i+1}D = \{0\}$. This implies the more precise estimate

$$\mathcal{M}^+(D) \subset \prod_{i \neq j} \lambda_i^{-a_i} \cdot \mathcal{R}^+(Y) \otimes_{\mathcal{R}^+(Y_j)} N_j^+.$$

The $\varphi_q(\mathcal{R}^+(Y))$ -module $\mathcal{R}^+(Y)$ is free of rank q^h , with basis $\{Y^\ell, \ell \in \{0, \ldots, q-1\}^h\}$. We therefore have

$$Q_1(Y_0)^{a_0} \cdots Q_1(Y_{h-1})^{a_{h-1}} \cdot x \in \prod_{i \neq j} (\lambda_i/Q_1(Y_i))^{-a_i} \cdot \mathcal{R}^+(Y) \otimes_{\mathcal{R}^+(Y_j)} Q_1(Y_j)^{a_j} \cdot N_j^+$$
$$\subset \bigoplus_{\ell} Y^{\ell} \cdot \varphi_q(\mathcal{R}^+(Y)[1/f_j] \otimes_{\mathcal{R}^+(Y_j)} N_j^+).$$

This implies that

$$Q_1(Y_0)^{a_0} \cdots Q_1(Y_{h-1})^{a_{h-1}} \cdot x \in \bigcap_j \oplus_{\ell} Y^{\ell} \cdot \varphi_q(\mathcal{M}^+(D)[1/f_j]) = \varphi_q^*(\mathcal{M}^+(D)),$$

which proves the second claim.

Remark 6.3. — Instead of working with a D where the filtrations are defined on D, we could have asked for the filtrations to be defined on $F_n \otimes_F D$ for some $n \ge 1$. The construction and properties of $M^+(D)$ are then basically unchanged, but the annihilator of $M^+(D)/\varphi_q^*(M^+(D))$ is possibly more complicated than in proposition 6.2. This applies in particular to representations of G_F that become crystalline when restricted to G_{F_n} for some $n \ge 1$.

Definition 6.4. — A (φ_q, Γ_F) -module over $\mathcal{R}(Y)$ is a $\mathcal{R}(Y)$ -module M that is of the form $M = \mathcal{R}(Y) \otimes_{\mathcal{R}^{[s;+\infty[}(Y)} M^{[s;+\infty[}$ where $M^{[s;+\infty[}$ is a coadmissible $\mathcal{R}^{[s;+\infty[}(Y)$ -module, endowed with a semilinear Frobenius map $\varphi_q : M^{[s;+\infty[} \to M^{[qs;+\infty[}$, such that $\varphi_q^*(M^{[s;+\infty[})) =$ $M^{[qs;+\infty[}$, and a continuous and compatible action of Γ_F .

Remark 6.5. — In the definition above, it would seem natural to impose some additional condition on M, such as "torsion-free". All the (φ_q, Γ_F) -modules over $\mathcal{R}(Y)$ that are constructed in this article are actually reflexive. The definition above should be considered provisional, until we have a better idea of which objects we want to exclude. Note that in the absence of flatness, tensor products may behave badly.

If D is a φ_q -module with an action of Γ_F and h filtrations and if $\ell \in \mathbb{Z}$, let $D(\ell)$ denote the same φ_q -module with an action of Γ_F , but with $\operatorname{Fil}_j^k(D(\ell)) = (\operatorname{Fil}_j^{k-\ell}D)(\ell)$. Note that $D(\ell)$ is effective if $\ell \gg 0$.

Lemma 6.6. — We have $M(D(\ell)) = \lambda^{-\ell} \cdot M(D)$.

Proof. — The fact that $M^+(D(\ell)) = \lambda^{-\ell} \cdot M^+(D)$ follows from the definition.

Theorem 6.7. — If D is a φ_q -module with an action of Γ_F and h filtrations as above, then $\mathcal{R}(Y) \otimes_{\mathcal{R}^+(Y)} M^+(D)$ is a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$.

Proof. — If D is effective, then this follows from theorem 5.3 and proposition 6.2. If D is not effective, then $D(\ell)$ is effective if $\ell \gg 0$, and the theorem follows from the effective case and lemma 6.6.

Remark 6.8. — In [**KR09**], Kisin and Ren construct some (φ_q, Γ_F) -modules $M_{KR}^+(D)$ in one variable, over the ring $\mathcal{R}^+(Y_0)$, from the data of a D like ours for which the filtration Fil[•]_j is trivial for $j \neq 0$. For those D, we have $M^+(D) = \mathcal{R}^+(Y) \otimes_{\mathcal{R}^+(Y_0)} M_{KR}^+(D)$. More generally, our construction shows that $M^+(D)$ comes by extension of scalars from a (φ_q, Γ_F) -module in as many variables as there are nontrivial filtrations among the Fil[•]_j.

Proposition 6.9. — If $n = hk + j \ge h$, then the map

 $\mathbf{B}^+_{\mathrm{dR}} \otimes_{\mathcal{R}^+(Y)}^{\iota_n} \mathrm{M}^+(D) \to \mathrm{Fil}^0_{-j}(\mathbf{B}_{\mathrm{dR}} \otimes_F^{\sigma^{-j}} D)$

is an isomorphism.

Proof. — Since $\iota_n(f_j)$ is a unit of \mathbf{B}_{dR}^+ , we have

$$\mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{+}(Y)}^{\iota_{n}} \mathrm{M}^{+}(D) = \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{+}(Y)[1/f_{j}]}^{\iota_{n}} \mathrm{M}^{+}(D)[1/f_{j}]$$
$$= \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{+}(Y_{j})}^{\iota_{n}} N_{j}^{+}$$
$$= \mathrm{Fil}_{-j}^{0} (\mathbf{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{-j}} D),$$

where the last equality follows from proposition 5.4.

Suppose now that D comes from an F-linear crystalline representation V of G_F as in example 5.1. In this case, $\operatorname{Fil}_{j}^{0}(\mathbf{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{j}} D) = \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F}^{\sigma^{j}} V$. Moreover, one recovers V from D by the formula:

$$V = \{ y \in (\widetilde{\mathbf{B}}_{\mathrm{rig}}^+[1/t] \otimes_F D)^{\varphi_q=1}, \ \iota_j(y) \in \mathrm{Fil}_{-j}^0(\mathbf{B}_{\mathrm{dR}} \otimes_F^{\sigma^{-j}} D) \text{ for all } 0 \leqslant j \leqslant h-1 \}.$$

Recall that we have constructed in §3 an injective map $\mathcal{R}^+(Y) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}$. This way we get a map

$$\widetilde{\mathbf{B}}^+_{\mathrm{rig}} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D) \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}[1/t] \otimes_F D \to \widetilde{\mathbf{B}}^+_{\mathrm{rig}}[1/t] \otimes_F V.$$

Let $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}$ be the rings defined in §2.3 [**Ber02**]. Recall that n(r) is the smallest n such that $r \leq p^{n-1}(p-1)$. We have the following lemma.

Lemma 6.10. — If $y \in \widetilde{\mathbf{B}}_{rig}^{\dagger,r}[1/t]$ satisfies $\varphi^{-n}(y) \in \mathbf{B}_{dR}^{+}$ for all $n \ge n(r)$, then $y \in \widetilde{\mathbf{B}}_{rig}^{\dagger,r}$. *Proof.* — See lemma 1.1 of [**Ber09**] and the proof of proposition 3.2 in ibid.

Theorem 6.11. — If D comes from a crystalline representation V, and if $r \ge p^{h-1}(p-1)$, then the map above gives rise to an isomorphism

$$\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D) \to \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_F V.$$

Proof. — We first check that the image of the map above belongs to $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_F V$. If $y \in \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)$, then its image is in $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[1/t] \otimes_F V$ and satisfies $\varphi^{-n}(y) \in \mathbf{B}_{\mathrm{dR}}^+ \otimes_F^{\sigma^{-n}} V$ for all $n \ge n(r)$, so the assertion follows from lemma 6.10.

We now prove that $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)$ is a free $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}$ -module of rank d. By (2) of theorem 5.3, $\mathrm{M}^+(D)[1/f_j]$ is a free $\mathcal{R}^+(Y)[1/f_j]$ -module of rank d, and therefore $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[1/f_j] \otimes_{\mathcal{R}^+(Y)}$ $\mathrm{M}^+(D)$ is a free $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}[1/f_j]$ -module of rank d for all j. The ring $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}$ is a Bézout ring by theorem 2.9.6 of [**Ked05**], and the elements f_0, \ldots, f_{h-1} have no common factor. They therefore generate the unit ideal of $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}$, and $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)$ is projective of rank d

by theorem 1 of II.5.2 of [**Bou61**]. Since $\widetilde{\mathbf{B}}_{rig}^{\dagger,r}$ is a Bézout ring, $\widetilde{\mathbf{B}}_{rig}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)$ is free of rank d. By proposition 6.9, the map

$$\mathbf{B}_{\mathrm{dR}}^+ \otimes_{\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r}}^{\iota_n} (\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)) \to \mathbf{B}_{\mathrm{dR}}^+ \otimes_F^{\sigma^{-n}} V$$

is an isomorphism if $n \ge n(r)$. The two $\widetilde{\mathbf{B}}_{rig}^{\dagger,r}$ -modules $\widetilde{\mathbf{B}}_{rig}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)} \mathrm{M}^+(D)$ and $\widetilde{\mathbf{B}}_{rig}^{\dagger,r} \otimes_F V$ therefore have the same localizations at all $n \ge n(r)$, and are both stable under G_F , so that they are equal by the same argument as in the proof of lemma 2.2.2 of [**Ber08a**] (the idea is to take determinants, so that one is reduced to showing that if $x \in \widetilde{\mathbf{B}}_{rig}^{\dagger,r}$ generates an ideal stable under G_F , and has the property that $\iota_n(x)$ is a unit of \mathbf{B}_{dR}^+ for all $n \ge n(r)$, then x is a unit of $\widetilde{\mathbf{B}}_{rig}^{\dagger,r}$).

Remark 6.12. — If D comes from a crystalline representation V, and if $n \ge 0$, then there is likewise an isomorphism $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_{\mathcal{R}^+(Y)}^{\varphi^{-n}} \mathrm{M}^+(D) \to \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger,r} \otimes_F^{\sigma^{-n}} V$ for $r \gg 0$.

7. Crystalline (φ_a, Γ_F) -modules

Let M be a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$. In this section, we define what it means for M to be crystalline, and we prove that every crystalline (φ_q, Γ_F) -module M is of the form M = M(D), where D is a φ_q -module with h filtrations, on which the action of G_F is trivial. The results are similar to those of [**Ber08b**], which deals with the cyclotomic case.

Lemma 7.1. — We have $\operatorname{Frac}(\mathcal{R}(Y))^{\Gamma_F} = F$.

Proof. — If $x \in \operatorname{Frac}(\mathcal{R}(Y))^{\Gamma_F}$, then we can write x = a/b with $a, b \in \mathcal{R}^{[s_n;s_n]}(Y)$ for some $n \gg 0$. By proposition 3.2, the series $a(u, \ldots, \varphi^{h-1}(u))$ and $b(u, \ldots, \varphi^{h-1}(u))$ converge in $\widetilde{\mathbf{B}}^{[r_n;r_n]}$. We can therefore see $\varphi^{-n}(a)$ and $\varphi^{-n}(b)$ as elements of $\mathbf{B}_{\mathrm{dR}}^+$, which satisfy $\varphi^{-n}(a)/\varphi^{-n}(b) \in \mathbf{B}_{\mathrm{dR}}^{G_F}$. The lemma now follows from the fact that $\mathbf{B}_{\mathrm{dR}}^{G_F} = F$.

If M is a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$, then let $D_{cris}(M) = (\mathcal{R}(Y)[1/t] \otimes_{\mathcal{R}(Y)} M)^{\Gamma_F}$.

Corollary 7.2. If M is a (φ_q, Γ_F) -module over $\mathcal{R}(Y)$, then we have dim $D_{cris}(M) \leq \dim Frac(\mathcal{R}(Y)) \otimes_{\mathcal{R}(Y)} M$.

Proof. — By a standard argument, lemma 7.1 implies that the map

$$\operatorname{Frac}(\mathcal{R}(Y)) \otimes_F \operatorname{D}_{\operatorname{cris}}(V) \to \operatorname{Frac}(\mathcal{R}(Y)) \otimes_{\mathcal{R}(Y)} \operatorname{M}$$

is injective.

Definition 7.3. — We say that a (φ_q, Γ_F) -module M over $\mathcal{R}(Y)$ is crystalline if

- 1. for some s, $M^{[s;+\infty[1/f_j]}$ is a free $\mathcal{R}(Y)^{[s;+\infty[1/f_j]}$ -module of finite rank d;
- 2. $\mathbf{M}^{[s;+\infty[} = \bigcap_{j=0}^{h-1} \mathbf{M}^{[s;+\infty[} [1/f_j];$
- 3. we have dim $D_{cris}(M) = d$.

For example, if D is a φ_q -module with h filtrations on which the action of G_F is trivial, then $\mathcal{M}(D)$ is a crystalline (φ_q, Γ_F) -module. Note that a crystalline (φ_q, Γ_F) -module is reflexive.

Proposition 7.4. — If $f \in \mathcal{R}^{[s;+\infty[}(Y)$ generates an ideal of $\mathcal{R}^{[s;+\infty[}(Y)$ that is stable under Γ_F , then $f = u \cdot \prod_{j=0}^{h-1} \prod_{n \ge n(s)} (Q_n(Y_j)/p)^{a_{n,j}}$ where u is a unit and $a_{n,j} \in \mathbb{Z}_{\ge 0}$.

Proof. — Recall that a power series $f \in \mathcal{R}^{I}(Y)$ is a unit if and only if it has no zero in the corresponding domain of convergence (by the nullstellensatz, see §7.1.2 of [**BGR84**]).

Let I = [s; u] be a closed subinterval of $[s; +\infty[$, so that $f \in \mathcal{R}^{I}(Y)$, and let $z = (z_{0}, z_{1}, \ldots, z_{h-1})$ be a point such that f(z) = 0. Let J be the set of indices j such that z_{j} is not a torsion point of LT_{h} and let $f_{J} \in \mathcal{R}_{F_{k}}^{I}(\{Y_{j}\}_{j \in J})$ be the power series that results from evaluation of the Y_{m} at z_{m} for all the z_{m} that are torsion points of LT_{h} (here k is large enough so that all those z_{m} belong to F_{k}). The ideal of $\mathcal{R}_{F_{k}}^{I}(\{Y_{j}\}_{j \in J})$ generated by the power series f_{J} is stable under $1 + p^{k}\mathcal{O}_{F}$, so that the set of its zeroes is stable under the action of $1 + p^{k}\mathcal{O}_{F}$. Furthermore, f_{J} has a zero none of whose coordinates are torsion points of LT_{h} . The same argument as in the proof of proposition 2.4 shows that $f_{J} = 0$.

If we denote by $Z_I(f)$ the zero set of $f \in \mathcal{R}^I(Y)$, then the preceding argument shows that $Z_I(f)$ is the union of finitely many components of the form $Z_0 \times \cdots \times Z_{h-1}$ where for each j, either Z_j is a torsion point of LT_h or $Z_j = Z_I(\{0\})$. For reasons of dimension, each of these components has precisely one Z_j which is a torsion point, the remaining h-1 being $Z_I(\{0\})$. This implies that in $\mathcal{R}^I(Y)$, f is the product of finitely many $Q_n(Y_j)$ by a unit.

The proposition now follows by a standard infinite factorisation argument, by writing $[s; +\infty[= \cup_{u \ge s}[s; u]]$.

Corollary 7.5. — If M is a crystalline (φ_q, Γ_F) -module over $\mathcal{R}(Y)$, then the map

$$\mathcal{R}(Y)[1/t] \otimes_F \mathcal{D}_{\mathrm{cris}}(\mathcal{M}) \to \mathcal{R}(Y)[1/t] \otimes_{\mathcal{R}(Y)} \mathcal{M}$$

is an isomorphism.

Proof. — The map is injective by lemma 7.1, and its determinant generates an ideal of $\mathcal{R}(Y)[1/t]$ that is stable under Γ_F . Proposition 7.4 implies that this ideal is the unit ideal of $\mathcal{R}(Y)[1/t]$, and therefore that the map is an isomorphism.

We now consider filtrations on $D_{cris}(M)$.

Lemma 7.6. — Let D be an F-vector space, and let W be a \mathbf{B}_{dR}^+ -lattice of $\mathbf{B}_{dR} \otimes_F D$ that is stable under G_F , where G_F acts trivially on D. If we set $\operatorname{Fil}^i D = D \cap t^i \cdot W$, then $W = \operatorname{Fil}^0(\mathbf{B}_{dR} \otimes_F D)$.

Proof. — Let e_1, \ldots, e_d be a basis of D adapted to its filtration, with $e_i \in \operatorname{Fil}^{h_i} \setminus \operatorname{Fil}^{h_i+1} D$. We then have $\operatorname{Fil}^0(\mathbf{B}_{\mathrm{dR}} \otimes_F D) = \bigoplus_{i=1}^d \mathbf{B}_{\mathrm{dR}}^+ \cdot t^{-h_i} e_i$. By definition, we have $t^{-h_i} e_i \in W$, so that $\operatorname{Fil}^0(\mathbf{B}_{\mathrm{dR}} \otimes_F D) \subset W$. We now prove the reverse inclusion.

If $w \in W$, then we can write $w = a_1 t^{-h_1} e_1 + \cdots + a_d t^{-h_d} e_d$ with $a_i \in \mathbf{B}_{dR}$ and we need to prove that $a_i \in \mathbf{B}_{dR}^+$ for all *i*. If this is not the case, then there exists $n \ge 1$ such that if we set $b_i = t^n a_i$, then we have $b_1 t^{-h_1} e_1 + \cdots + b_d t^{-h_d} e_d \in t \cdot W$, with $b_i \in (\mathbf{B}_{dR}^+)^{\times}$ for at least one *i*. Consider the shortest such relation; in particular, $b_i \in (\mathbf{B}_{dR}^+)^{\times}$ for all *i* for which $b_i \ne 0$, and we can assume that $b_i = 1$ for at least one *i*. If $g \in G_F$, then applying $1 - \chi_{cyc}(g)^{h_i} g$ to the relation yields a shorter relation. This implies that $(1 - \chi_{cyc}(g)^{h_i - h_j} g)(b_j) \in t \mathbf{B}_{dR}^+$ for all $g \in G_F$ and all $1 \le j \le d$. Since $H^0(G_F, \mathbf{C}_p) = F$ and $H^0(G_F, \mathbf{C}_p(h)) = \{0\}$ if $h \ne 0$, we have $b_j \in F + t \mathbf{B}_{dR}^+$ if $h_i = h_j$ and $b_j \in t \mathbf{B}_{dR}^+$ otherwise. The relation above therefore reduces to an *F*-linear combination of those e_j for which $h_j = h_i$, belonging to $D \cap t^{h_i + 1}W = \mathrm{Fil}^{h_i + 1}D$, and is hence trivial. This proves that $W \subset \mathrm{Fil}^0(\mathbf{B}_{dR} \otimes_F D)$.

Definition 7.7. — Let M be a crystalline (φ_q, Γ_F) -module over $\mathcal{R}(Y)$. For $m \gg 0$ and $j = 0, \ldots, h-1$ and n = hm - j, define

$$\operatorname{Fil}_{j}^{i}(F \otimes_{F}^{\sigma^{j}} \varphi_{q}^{-m}(\operatorname{D}_{\operatorname{cris}}(\operatorname{M}))) = (F \otimes_{F}^{\sigma^{j}} \varphi_{q}^{-m}(\operatorname{D}_{\operatorname{cris}}(\operatorname{M}))) \cap t^{i} \cdot (\operatorname{\mathbf{B}}_{\operatorname{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \operatorname{M}^{[s;+\infty[})))$$

Proposition 7.8. — The definition of $\operatorname{Fil}_{j}^{i}(\operatorname{D}_{\operatorname{cris}}(\operatorname{M}))$ does not depend on $m \gg 0$, and we have $\operatorname{Fil}^{0}(\operatorname{\mathbf{B}_{dR}} \otimes_{F}^{\sigma^{-n}} \operatorname{D}_{\operatorname{cris}}(\operatorname{M})) = \operatorname{\mathbf{B}_{dR}^{+}} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \operatorname{M}^{[s;+\infty[}.$

Proof. — If s is large enough, then $M^{[qs;+\infty[} = \varphi_q^*(M^{[s;+\infty[})$ so that

$$\widehat{\mathbf{E}}\mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[qs;+\infty[}(Y)}^{\varphi^{-n-h}} \mathbf{M}^{[qs;+\infty[} = \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[qs;+\infty[}(Y)}^{\varphi^{-n}\varphi_{q}^{-1}} \varphi_{q}^{*}(\mathbf{M}^{[s;+\infty[}) = \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[}), \mathbf{M}^{[s;+\infty[}) = \mathbf{M}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[})], \mathbf{M}^{[s;+\infty[}) = \mathbf{M}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[}), \mathbf{M}^{[s;+\infty[})], \mathbf{M}^{[s;+\infty[}) = \mathbf{M}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[})], \mathbf{M}^{[s;+\infty[}(Y)^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[})], \mathbf{M}^{[s;+\infty[}(Y)^{\varphi^{-n}} \mathbf{M}^$$

which implies the first statement. The second statement follows from lemma 7.6, applied to $W = \mathbf{B}_{dR}^+ \otimes_{\mathcal{R}^{[s;+\infty[}(Y))}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[}.$

Theorem 7.9. — The functors $M \mapsto D_{cris}(M)$ and $D \mapsto M(D)$, between the category of crystalline (φ_q, Γ_F) -modules over $\mathcal{R}(Y)$ and the category of φ_q -modules with h filtrations, are mutually inverse.

Proof. — If D is a φ_q -module with h filtrations, then it is clear that $D_{cris}(M(D)) = D$ as φ_q -modules. The fact that $\operatorname{Fil}_j^i(D) = D \cap t^i \cdot \operatorname{Fil}_j^0(\mathbf{B}_{\mathrm{dR}} \otimes_F^{\sigma^{-n}} D)$ follows from taking a basis of D adapted to $\operatorname{Fil}_j^{\bullet}$ and

$$\operatorname{Fil}_{j}^{0}(\mathbf{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{-n}} D) = \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} \mathbf{M}^{[s;+\infty[}(D) = \operatorname{Fil}_{j}^{0}(\mathbf{B}_{\mathrm{dR}} \otimes_{F}^{\sigma^{-n}} \mathbf{D}_{\mathrm{cris}}(\mathbf{M}(D)))$$

by propositions 6.9 and 7.8, so that the filtrations on D and $D_{cris}(M)$ are the same.

We now check that if M is a crystalline (φ_q, Γ_F) -module over $\mathcal{R}(Y)$ and $D = D_{cris}(M)$ with the filtration given in definition 7.7, then M = M(D). Corollary 7.5 says that we have $\mathcal{R}(Y)[1/t] \otimes_F D = \mathcal{R}(Y)[1/t] \otimes_{\mathcal{R}(Y)} M$. The theorem now follows from proposition 7.8 and the fact that if $y \in \mathcal{R}^{[s;+\infty[}(Y)[1/t] \otimes_{\mathcal{R}^{[s;+\infty[}(Y)} M^{[s;+\infty[}, \text{ then } y \in M^{[s;+\infty[} \text{ if and}$ only if $y \in \mathbf{B}_{dR}^+ \otimes_{\mathcal{R}^{[s;+\infty[}(Y)}^{\varphi^{-n}} M^{[s;+\infty[}$ for all n such that $s_n \ge s$ by corollary 3.8 and items (1) and (2) of definition 7.3.

Acknowledgements

I am grateful to P. Colmez, J.-M. Fontaine, L. Fourquaux, M. Gros, K. Kedlaya, R. Liu, V. Pilloni, S. Rozensztajn, P. Schneider, B. Stroh, L. Xiao, B. Xie, S. Zerbes and especially C. Breuil for helpful conversations and remarks. Special thanks to P. Schneider and the referee for pointing out several embarassing mistakes in a previous version of this paper and helping me to correct them.

References

- [Bar81] W. BARTENWERFER "k-holomorphe Vektorraumbündel auf offenen Polyzylindern", J. Reine Angew. Math. 326 (1981), p. 214–220.
- [BC13] L. BERGER & P. COLMEZ "Théorie de Sen et vecteurs localement analytiques", preprint, 2013.
- [Ber02] L. BERGER "Représentations p-adiques et équations différentielles", Invent. Math. 148 (2002), no. 2, p. 219–284.
- $[Ber08a] _____, "Construction de (\varphi, \Gamma)-modules: représentations$ *p*-adiques et*B*-paires",*Algebra & Number Theory***2**(2008), no. 1, p. 91–120.
- [Ber08b] _____, "Equations différentielles *p*-adiques et (φ, N) -modules filtrés", Astérisque (2008), no. 319, p. 13–38.
- [Ber09] _____, "Presque \mathbf{C}_p -représentations et (φ, Γ) -modules", J. Inst. Math. Jussieu 8 (2009), no. 4, p. 653–668.
- [BGR84] S. BOSCH, U. GÜNTZER & R. REMMERT Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften, vol. 261, Springer-Verlag, Berlin, 1984.
- [Bou61] N. BOURBAKI Éléments de mathématique. Algèbre commutative., Actualités Scientifiques et Industrielles, Hermann, Paris, 1961.

- [Bre10] C. BREUIL "The emerging p-adic Langlands programme", in Proceedings of the International Congress of Mathematicians. Volume II (New Delhi), Hindustan Book Agency, 2010, p. 203–230.
- [Col02] P. COLMEZ "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331–439.
- [Col10] _____, "(φ, Γ)-modules et représentations du mirabolique de $GL_2(\mathbf{Q}_p)$ ", Astérisque (2010), no. 330, p. 61–153.
- [Fon90] J.-M. FONTAINE "Représentations p-adiques des corps locaux. I", in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.
- [Fon94] _____, "Le corps des périodes *p*-adiques", *Astérisque* (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes *p*-adiques (Bures-sur-Yvette, 1988).
- [FW79] J.-M. FONTAINE & J.-P. WINTENBERGER "Le "corps des normes" de certaines extensions algébriques de corps locaux", C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, p. A367–A370.
- [FXar] L. FOURQUAUX & B. XIE "Triangulable \mathcal{O}_F -analytic (φ_q, Γ)-modules of rank 2", Algebra & Number Theory (to appear).
- [Gru68] L. GRUSON "Fibrés vectoriels sur un polydisque ultramétrique", Ann. Sci. École Norm. Sup. (4) 1 (1968), p. 45–89.
- [Ked05] K. S. KEDLAYA "Slope filtrations revisited", *Doc. Math.* **10** (2005), p. 447–525 (electronic).
- [KR09] M. KISIN & W. REN "Galois representations and Lubin-Tate groups", Doc. Math. 14 (2009), p. 441–461.
- [Lüt77] W. LÜTKEBOHMERT "Vektorraumbündel über nichtarchimedischen holomorphen Räumen", Math. Z. 152 (1977), no. 2, p. 127–143.
- [ST01] P. SCHNEIDER & J. TEITELBAUM "p-adic Fourier theory", Doc. Math. 6 (2001), p. 447–481 (electronic).
- [ST03] _____, "Algebras of *p*-adic distributions and admissible representations", *Invent. Math.* **153** (2003), no. 1, p. 145–196.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.
- [Záb12] G. ZÁBRÁDI "Generalized Robba rings", Israel J. Math. 191 (2012), p. 817–887, With an appendix by Peter Schneider.