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Abstract. — Let E be a finite extension of Fp. Using Fontaine’s theory of (ϕ,Γ)-modules,
Colmez has shown how to attach to any irreducible E-linear representation of Gal(Qp/Qp)
an infinite dimensional smooth irreducible E-linear representation of B2(Qp) that has a
central character. We prove that every such representation of B2(Qp) arises in this way.

Our proof extends to algebraically closed fields E of characteristic p. In this case, in-
finite dimensional smooth irreducible E-linear representations of B2(Qp) having a central
character arise in a similar way from irreducible E-linear representations of the Weil group
of Qp.
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Introduction

This article is inspired by the p-adic local Langlands correpondence for GL2(Qp), which
is a bijection between some 2-dimensional representations of Gal(Qp/Qp) and some rep-
resentations of GL2(Qp). Colmez observed that this bijection, whose existence had been
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conjectured by Breuil, can be constructed using Fontaine’s theory of (ϕ,Γ)-modules, in or-
der to obtain representations of B2(Qp), the upper triangular Borel subgroup of GL2(Qp),
from 2-dimensional representations of Gal(Qp/Qp). In this article, we determine com-
pletely which class of representations of B2(Qp) can be constructed by applying Colmez’s
method to irreducible mod p representations of Gal(Qp/Qp) of any dimension.

Let E be a finite extension of Fp. If V is a finite dimensional E-linear representation
of Gal(Qp/Qp) and if χ is a smooth character of Q×p , then Colmez’s functor “lim←−ψD

\(·)”
allows us to construct a smooth representation Ωχ(V ) = (lim←−ψD

\(V ))∗ of the group
B2(Qp), having χ as central character. Our first result is the following (see theorem 4.2
and remark 4.3 of [Vie12b]).

Theorem A. — If E is a finite field, and if Π is an infinite dimensional smooth irre-
ducible E-linear representation of B2(Qp) having a central character χ, then there exists
an irreducible E-linear representation V of Gal(Qp/Qp) such that Π = Ωχ(V ).

Our proof extends to representations with coefficients in an algebraically closed field
E of characteristic p. The theory of (ϕ,Γ)-modules is then less satisfactory, but one can
still carry out Colmez’s construction and prove an analogue of theorem A.

Theorem A’. — If E is an algebraically closed field of characteristic p, and if Π is an
infinite dimensional smooth irreducible E-linear representation of B2(Qp) having a central
character χ, then there exists an irreducible E-linear representation V of the Weil group
of Qp such that Π = Ωχ(V ).

This extension of theorem A depends on the following result, which (following a sug-
gestion of Colmez) extends Fontaine’s theory of (ϕ,Γ)-modules to algebraically closed
coefficient fields of characteristic p.

Theorem B. — If E is an algebraically closed field of characteristic p, then there is a
natural bijection between the set of irreducible E-linear representations of the Weil group
of Qp and the set of irreducible (ϕ,Γ)-modules over E((X)).

This bijection, which is compatible with the usual theory of (ϕ,Γ)-modules, does not
seem to extend to reducible objects if E is not an algebraic extension of Fp.

In order to prove theorems A and A’, we need to “invert” Colmez’s construction V 7→
(lim←−ψD

\(V ))∗. This was done in some cases by Colmez (see §IV of [Col10b] as well as §4
of Emerton’s [Eme08]) and in much greater generality by Schneider and Vignéras (see
[SV11]). Our method is similar. The finiteness result that we need in order to conclude
is provided by Emerton (see [Eme08]).
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Note that if E is a field of characteristic different from p, then determining the smooth
irreducible representations of B2(Qp) is a much easier problem (see for instance §8 of
[BH06] for the case E = C). Likewise, it is a simple exercise to determine the finite
dimensional smooth irreducible E-linear representations of B2(Qp).

Notation. — The letter E stands for a field of characteristic p. Throughout this article,
E is given the discrete topology. We let B = B2(Qp) and write GQp for Gal(Qp/Qp). We
define a map n : GQp → Ẑ as follows: if g ∈ GQp , then the image of g in Gal(Fp/Fp) is
Frobn(g)

p where Frobp = [x 7→ xp]. The Weil group of Qp is WQp = {g ∈ GQp such that
n(g) ∈ Z} and IQp denotes the inertia subgroup of GQp .

In order to retain the spirit of the lectures given at the LMS Durham Symposium, we
explain the idea of the proofs of some of the technical results that are taken from other
papers, in order for this article to be more easily readable by newcomers to the subject.

1. (ϕ,Γ)-modules and (ψ,Γ)-modules

In this section, we recall the definition of (ϕ,Γ)-modules and (ψ,Γ)-modules and we
explain how these objects are related to each other.

The ring E[[X]] is given the X-adic topology, for which it is complete, and the field
E((X)) = ∪n>0X

−nE[[X]] is given the inductive limit topology when necessary.
The rings E[[X]] and E((X)) are equipped with a continuous Frobenius map ϕ given

by (ϕf)(X) = f(Xp). Let Γ stand for the group Z×p , the element of Γ corresponding
to a ∈ Z×p being denoted by [a]. The rings E[[X]] and E((X)) are also equipped with
an action of Γ, given by ([a]f)(X) = f((1 + X)a − 1). This action is continuous and
commutes with ϕ.

Definition 1.1. — A (ϕ,Γ)-module is an E((X))-vector space D of dimension d,
equipped with a semilinear Frobenius map ϕ : D → D whose matrix in some basis
belongs to GLd(E((X))), and a continuous semilinear action of Γ that commutes with ϕ.

Example 1.2. — If δ : Q×p → E× is a continuous character, then we define E((X))(δ)
as the (ϕ,Γ)-module of dimension 1 having eδ as a basis, where ϕ(eδ) = δ(p)eδ and
[a]eδ = δ(a)eδ. Every (ϕ,Γ)-module of dimension 1 is then isomorphic to E((X))(δ) for a
well-defined character δ : Q×p → E×.

If α(X) ∈ E((X)), then we can write α(X) = ∑p−1
j=0(1 + X)jαj(Xp) in a unique way,

and we define a map ψ : E((X)) → E((X)) by the formula ψ(α)(X) = α0(X). A direct
computation shows that if 0 6 r 6 p− 1 then ψ(Xpm+r) = (−1)rXm.
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If D is a (ϕ,Γ)-module over E((X)) and if y ∈ D, then we can write as above y =∑p−1
j=0(1 + X)jϕ(yj), and we set ψ(y) = y0. The operator ψ thus defined commutes with

the action of Γ and satisfies ψ(α(X)ϕ(y)) = ψ(α)(X)y and ψ(α(Xp)y) = α(X)ψ(y) (in
particular, it is a left inverse of ϕ).

Definition 1.3. — A (ψ,Γ)-module is an E[[X]]-module M of finite type, equipped with
an E-linear map ψ : M → M such that ψ(f(Xp)y) = f(X)ψ(y), and a continuous
semilinear action of Γ that commutes with ψ. We say that

1. M is surjective if ψ : M→ M is surjective;
2. M is non-degenerate if ker(ψ : M → M) does not contain an E[[X]]-submodule (in

other words: if y ∈ M satisfies ψ(f(X)y) = 0 for all f(X) ∈ E[[X]], then y = 0);
3. M is irreducible if it has no non-trivial sub-(ψ,Γ)-module.

Note that an irreducible (ψ,Γ)-module is surjective and non-degenerate. It is also
torsion-free unless it is finite-dimensional over E.

Theorem 1.4. — If D is a (ϕ,Γ)-module, then D contains a surjective sub-(ψ,Γ)-
module M such that D = E((X))⊗E[[X]] M. In addition,

1. if D is irreducible of dimension > 2, then M is uniquely determined;
2. if D is of dimension 1, and we write D = E((X))(δ), then either M = E[[X]] · eδ or

M = X−1E[[X]] · eδ.

Proof. — This is proved in §II.4 and §II.5 of [Col10a] if E is a finite field, and more
generally in §4.3 of [Vie12a]. Note that if D is of dimension 1, then the existence of M
and the fact that either M = E[[X]] ·eδ or M = X−1E[[X]] ·eδ are both simple exercises. In
general, Colmez constructs both a smallest and a largest such sub-(ψ,Γ)-module, denoted
by D\ and D] respectively. He then proves (see corollary II.5.21 of [Col10a] and theorem
4.3.50 of [Vie12a]) that if D is irreducible of dimension > 2, then D\ = D].

Definition 1.5. — We denote by M(D) the surjective (ψ,Γ)-module attached to an
irreducible (ϕ,Γ)-module D (if D is of dimension 1, then we take M(D) = E[[X]] · eδ), so
that our M(D) is Colmez’s D\.

Theorem 1.6. — IfM is a surjective (ψ,Γ)-module that is non-degenerate and free over
E[[X]], then there exists a compatible (ϕ,Γ)-module structure on D = E((X))⊗E[[X]] M.

Proof. — Let D = E((X)) ⊗E[[X]] M and let D̃ be D but with the E((X))-vector space
structure given by f(X) · y = f(Xp)y so that D̃ is an E((X))-vector space of dimension
pd. Let ψj : D → D be the map y 7→ ψ((1 + X)−jy), so that ψj : D̃ → D is a surjective
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linear map. Its kernel is therefore of dimension pd− d and N = ∩p−1
i=1 kerψj is an E((X))-

vector space of dimension at least pd − (p − 1)d = d. The non-degeneracy of M implies
that ψ : N→ D is injective, so that dim N = d and ψ : N→ D is bijective.

Let ϕ : D→ N ⊂ D denote its inverse. It is easily checked that ϕ and Γ give rise to a
(ϕ,Γ)-module structure on D, compatible with the (ψ,Γ)-module structure on M.

We finish this section with a technical result on regularization by Frobenius. Let R be
a ring equipped with an automorphism ϕ, which is extended to R[[X]] by ϕ(X) = Xp.

Lemma 1.7. — If P ∈ GLd(R[[X]]), then there exists a matrix M ∈ GLd(R[[X]]) such
that M−1Pϕ(M) = P (0) ∈ GLd(R).

Proof. — This is a standard result, which is proved by successive approximation: if there
exists a matrix Mi ∈ GLd(R[[X]]) such that M−1

i Pϕ(Mi) = P (0) + PiX
i + O(X i+1) with

Pi ∈ Md(R) and if Qi = PiP (0)−1, then

(1 +X iQi)−1M−1
i · P · ϕ(Mi(1 +X iQi)) = P (0) + O(X i+1),

so that one can set Mi+1 = Mi · (1 +X iQi) and take M = limi→+∞Mi.

2. Construction of Galois representations

In this section, we recall Fontaine’s equivalence between (ϕ,Γ)-modules and represen-
tations of GQp over finite fields. After that, we explain how to extend this equivalence to
irreducible representations of WQp over algebraically closed fields.

Let EQp = Fp((X)) and recall that if K is a finite Galois extension of Qp, then there
exists a finite extension EK of EQp attached to it by the theory of the field of norms (see
[Win83] and A3 of [Fon90]), and that GQp acts on EK . For example, GQp acts on EQp

by g(f(X)) = f([χcycl(g)](X)). We have Esep
Qp

= ∪K/QpEK and if HQp denotes the kernel
of χcycl : GQp → Z×p , then the map HQp → Gal(Esep

Qp
/EQp) is an isomorphism.

If E is a finite field and if D is a (ϕ,Γ)-module over E((X)), then V (D) = (Esep
Qp
⊗Fp((X))

D)ϕ=1 is an E-vector space and the group GQp acts on V (D) by the formula g(α ⊗ y) =
g(α) ⊗ [χcycl(g)](y). This way, we get a functor from the category of (ϕ,Γ)-modules
over E((X)) to the category of E-linear representations of GQp . The following theorem is
proved in §1.2 of [Fon90].
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Theorem 2.1. — If D is a (ϕ,Γ)-module over E((X)), then V (D) is an E-vector space
of dimension dim(D), and the functor D 7→ V (D) gives rise to an equivalence of cate-
gories between the category of (ϕ,Γ)-modules over E((X)) and the category of E-linear
representations of GQp.

Proof. — We give a sketch of Fontaine’s proof. Assume first that E = Fp and let D be
a (ϕ,Γ)-module over Fp((X)). If we choose a basis of D and if Mat(ϕ) = (pij)16i,j6dim(D)

in that basis, then the algebra A = Fp((X))[X1, . . . , Xdim(D)]/(Xp
j −

∑
i pijXi)16j6dim(D) is

an étale Fp((X))-algebra of rank pdim(D) and V (D) = HomFp((X))−algebra(A,Fp((X))sep) so
that V (D) is an Fp-vector space of dimension dim(D).

Given the isomorphism HQp ' Gal(Fp((X))sep/Fp((X))), Hilbert’s theorem 90 tells us
that H1

discrete(HQp ,GLd(Fp((X))sep)) = {1} if d > 1. If V is an Fp-linear representation
of HQp then Fp((X))sep ⊗Fp V ' (Fp((X))sep)dim(V ) as representations of HQp so that
the Fp((X))-vector space D(V ) = (Fp((X))sep ⊗Fp V )HQp is of dimension dim(V ) and
V = (Fp((X))sep ⊗Fp((X)) D(V ))ϕ=1.

It is then easy to check that the functors V 7→ D(V ) and D 7→ V (D) are inverse of
each other. Finally, if E 6= Fp then one can consider an E-linear representation as an
Fp-linear representation with an E-linear structure and likewise for (ϕ,Γ)-modules, so
that the equivalence carries over.

For example, if δ is a character of Q×p , then the representation arising from E((X))(δ)
is the character of GQp corresponding to δ by local class field theory.

If E is not a finite extension of Fp, then theorem 2.1 above may well fail. Suppose for
instance that E = Fp(t) and that D = E((X))(δ) where δ(p) = t and δ|Z×p = 1. This
(ϕ,Γ)-module “should” correspond to the unramified character of GQp sending Frobp to
t−1, but there is no such character because the map n 7→ t−n does not extend to Ẑ. There
is however such a character of the Weil group WQp of Qp and in the rest of this section,
we construct a bijection between the set of irreducible representations of WQp and the
set of irreducible (ϕ,Γ)-modules over E((X)), for any algebraically closed field E.

Assume for the rest of this section that E is an algebraically closed field of character-
istic p. We first explain how to attach an irreducible (ϕ,Γ)-module over E((X)) to an
irreducible E-linear representation of WQp . If λ ∈ E×, let µλ : WQp → E× denote the
character defined by g 7→ λ−n(g). Take n > 1 and let ωn : IQp → F×p be one of Serre’s
fundamental characters of level n (see [Ser72]). If h ∈ Z is not divisible by any of the
(pn − 1)/(pd − 1) for d < n dividing n (we then say that h is primitive), then let ind(ωhn)
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be the unique irreducible representation of GQp whose restriction to IQp is ⊕n−1
i=0 ω

pih
n and

whose determinant is ωh.
The representation ind(ωhn) is actually defined over Fp, as we now show. LetW = {α ∈

Fp such that αpn = (−1)n−1α} so that W is a Fpn-vector space of dimension 1 and hence
a Fp-vector space of dimension n. Choose πn ∈ Qp such that πpn−1

n = −p. By composing
the map Gal(Qnr

p (πn)/Qp) ∼−→ F×pn o Ẑ with the map F×pn o Ẑ → EndFp(W ) given by
(x, 0) 7→ mh

x (where mx is the multiplication by x map) and by (1, 1) 7→ (α 7→ αp), we
makeW into an n-dimensional Fp-linear representation of GQp . We leave it as an exercise
to check that W = ind(ωhn).

Proposition 2.2. — If V is an irreducible n-dimensional E-linear representation of
WQp, then there exists h ∈ Z and λ ∈ E× such that V = (E ⊗Fp ind(ωhn))⊗ µλ.

Proof. — The proof is the same as in §2.1 of [Ber10a]: by §1.6 of [Ser72], V |IQp
splits

as a direct sum of n tame characters and since V is irreducible, these characters are
transitively permuted by Frobenius, so that they are of level n. Therefore, there exists
a primitive h such that V = ⊕n−1

i=0 Vi where IQp acts on Vi by ωp
ih
n . Since ωn extends to

Gal(Qp/Qpn), each Vi is stable under the Weil group of Gal(Qp/Qpn), which then acts on
Vi by ωp

ih
n χi where χi is an unramified character. The lemma then follows from Frobenius

reciprocity.

Definition 2.3. — To V = (E ⊗Fp ind(ωhn)) ⊗ µλ, we then attach the (ϕ,Γ)-module
D(V ) having a basis e0, . . . , en−1 in which [a](ej) = (aX/[a](X))hpj(p−1)/(pn−1)ej if a ∈ Z×p
and ϕ(ej) = ej+1 for 0 6 j 6 n− 2 and ϕ(en−1) = (−1)n−1λnX−h(p−1)e0.

Different choices of h and λ can give rise to the same representation V , but we can
check that the (ϕ,Γ)-module D(V ) thus defined depends only on V . Indeed, if λ ∈ Fp,
then (E ⊗Fp ind(ωhn))⊗ µλ extends to GQp and the (ϕ,Γ)-module above is the extension
of scalars of the one given by Fontaine’s construction, by the results of §2.1 of [Ber10a].

We now explain how to attach an irreducible representation of WQp to an irreducible
(ϕ,Γ)-module over E((X)). Let F be a field that is complete for a discrete valuation val(·)
and endowed with an automorphism ϕ, such that val(ϕ(y)) = p·val(y) (in the sequel, we’ll
have F = E((Y )) where Y n = X and val = valX). Let F{ϕ} denote the non-commutative
ring of polynomials in ϕ with coefficients in F . If P (ϕ) = a0 + a1ϕ+ · · ·+ anϕ

n ∈ F{ϕ},
then the Newton polygon NP(P ) of P is the convex polygon whose support consists of the
points ([k], val(ak)) where [k] = (pk − 1)/(p− 1). The slopes of NP(P ) are the opposites
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of the slopes of the segments of the polygon. If P (ϕ) = a0 + a1ϕ + · · · + anϕ
n ∈ F{ϕ},

and if y ∈ F , then P (ϕ)y = a0y + a1ϕ(y)ϕ+ · · ·+ anϕ
n(y)ϕn.

Lemma 2.4. — If P (ϕ) ∈ F{ϕ} is isoclinic of slope s, and if y ∈ F satisfies val(y) = r,
then P (ϕ)y is isoclinic of slope s− (p− 1)r.

Proof. — We have val(ϕk(y)ak) = pkval(y) + val(ak) so that
val(ϕk(y)ak)− val(ϕj(y)aj)

[k]− [j] = val(ak)− val(aj)
[k]− [j] + (p− 1)r.

Proposition 2.5. — If P (ϕ) ∈ F{ϕ} is irreducible, then it is isoclinic.

Proof. — See §2.4 of [Ked08] as well as §3.2 of [Vie12a]. We give a sketch of the proof.
Let F{ϕ±1} be the space of polynomials in ϕ and ϕ−1. Since ϕ : F → F is not necessarily
invertible, F{ϕ±1} is not a ring, but it is a left F{ϕ}-module. If r ∈ R and P ∈ F{ϕ±1},
let valr(P ) = mini∈Z(val(ai) + r[i]). Using successive approximations, we can show that
if R ∈ F{ϕ±1} and r ∈ R are such that valr(R− 1) > 0, then there exists P ∈ F{ϕ} and
Q ∈ F{ϕ−1} such that R = PQ. Using this factorization result, we can now prove that
if P ∈ F{ϕ} and NP(P ) has a breakpoint, then P can be factored in F{ϕ}.

Note that in general, if P = P1P2, then the set of slopes of NP(P ) is not the union of
the sets of slopes of NP(P1) and NP(P2).

We denote by valX the X-adic valuation on EK , by E+
K the ring of integers of EK for

valX and by kK the residue field of EK (it is the residue field of K(µp∞)).

Proposition 2.6. — If D is an irreducible (ϕ,Γ)-module over E((X)), then there exists
a finite extension K of Qp, such that EK ⊗EQp

D has a basis in which Mat(ϕ) belongs to
GLd(kK ⊗Fp E).

The kK ⊗Fp E-module generated by this basis depends only on D, and in particular it
is stable under the action of GQp given by g(α⊗ y) = g(α)⊗ [χcycl(g)](y).

Proof. — Let us first show that the kK⊗FpE-module generated by such a basis is unique.
If M ∈ Md(EK ⊗EQp

E((X))), then let valX(M) be the minimum of the valuations of the
entries of M .

If EK ⊗EQp
D admits two bases in which Mat(ϕ) ∈ GLd(kK ⊗Fp E), then let P1 and

P2 be the two matrices of ϕ and let B ∈ GLd(EK ⊗EQp
E((X))) be the change of basis

matrix. We then have P2 = B−1P1ϕ(B) so that ϕ(B) = P−1
1 BP2. This implies that

valX(ϕ(B)) = valX(B) so that valX(B) = 0, and hence B ∈ Md(E+
K ⊗E+

Qp
E[[X]]). The
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same argument applied to B−1 shows that B ∈ GLd(E+
K ⊗E+

Qp
E[[X]]). If we write B =

B0 +C where B0 ∈ GLd(kK ⊗Fp E) and valX(C) > 0, then the formula ϕ(B) = P−1
1 BP2

implies likewise that valX(C) = +∞ so that C = 0. The kK ⊗Fp E-module generated by
these two bases is therefore the same.

We now show the existence of such a basis. We can assume that D is irreducible
as a ϕ-module; indeed, if M is an irreducible sub-ϕ-module of D, then we can write
D = ∑n

i=1 γi(M) with γi ∈ Γ. We can assume that n is minimal, so that the sum is direct
and the existence result for D follows from the result for each of the ϕ-modules γi(M).

Ifm ∈ D is non-zero, then it generates D as an E((X)){ϕ}-module since D is assumed to
be irreducible. Let P (ϕ) be a non-zero polynomial of degree dim D such that P (ϕ)(m) =
0. If P (ϕ) were reducible, then this would correspond to a non-trivial sub-ϕ-module of
D so that P (ϕ) is irreducible and by proposition 2.5, P (ϕ) is isoclinic. If s is the slope of
P (ϕ), then there exists a finite extension K of Qp and an element y ∈ EK of valuation
s/(p− 1). Lemma 2.4 shows that if we replace m by ym, then the resulting polynomial
Q(ϕ) is isoclinic of slope 0. This implies that there exists a basis of EK ⊗EQp

D in which
Mat(ϕ) ∈ GLd((kK ⊗Fp E)[[Y ]]). Lemma 1.7 now implies that there exists a basis of
EK ⊗EQp

D in which Mat(ϕ) ∈ GLd(kK ⊗Fp E), which is the sought-after result.

Let D be an irreducible (ϕ,Γ)-module over E((X)), and let K be as above. Since E
is algebraically closed, we have kK ⊗Fp E = En with n = [kK : Fp]. We denote by
πk : En → E the projection on the k-th factor. Let VK(D) be the En-module generated
by the basis afforded by proposition 2.6. This module is stable under GQp which acts
by kK-semilinear automorphisms. We define an action of WQp on VK(D) by ρ(g)(y) =
ϕ−n(g)(g(y)). This action is now En-linear, and commutes with ϕ. In particular, VK(D) =
π1VK(D)⊕· · ·⊕πnVK(D) and ϕ(πkVK(D)) = πk+1VK(D) (with πn+1 = π1) so that all the
representations πkVK(D) are isomorphic. We let V (D) = π1VK(D).

Proposition 2.7. — The representation V (D) defined above is irreducible.

Proof. — Note that ϕn gives rise to an endomorphism of V (D). Since E is algebraically
closed, ϕn has an eigenvalue λ, and the space V (D)ϕn=λ is stable under WQp , so that it
contains an irreducible sub-representation W of WQp .

The kK ⊗Fp E-module M = W ⊕ ϕ(W )⊕ · · · ⊕ ϕn−1(W ) is then a subspace of VK(D),
which is stable under WQp and ϕ, so that it is also stable under GQp and ϕ. The space
EK ⊗kK M is then a sub-(ϕ,Γ)-module of EK ⊗EQp

D that is stable under ϕ and GQp .
By Galois descent (see for instance proposition 2.2.1 of [BC08]), EK ⊗kK M comes by
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extension of scalars from a sub-(ϕ,Γ)-module of D. If D is irreducible, then M = {0} or
M = VK(D) and hence V (D) is irreducible.

Theorem 2.8. — The two constructions V 7→ D(V ) and D 7→ V (D) defined above are
inverse of each other and give rise to dimension preserving bijections between the set of
irreducible E-linear representations of WQp and the set of irreducible (ϕ,Γ)-modules over
E((X)).

Proof. — The fact that dimensions are preserved is clear from the constructions. The
fact that the two constructions are inverse of each other is a tedious but straightforward
exercise.

3. Topological representations of profinite groups

In this section, we first gather some results about topological E-vector spaces and
duality, which generalize Pontryagin’s theorems to certain E-vector spaces (see §II.6 of
[Lef42]). After that, we look at continous representations of certain topological groups.

Recall that E is a field that is taken with the discrete topology. A topological E-vector
space V is said to be linearly topologized if V is separated (Hausdorff) and if {0} has a
basis of neighborhoods that are all vector spaces. For example, the discrete topology on V
is a linear topology. We denote by Vecdisc(E) the category whose objects are the E-linear
vector spaces with the discrete topology, with continuous linear maps as morphisms.

We say that an affine subspaceW of a linearly topologized E-vector space V is linearly
compact if every family {Wi}i∈I of closed affine subspaces of W having the finite inter-
section property has a non-empty intersection. Linearly compact affine spaces generally
enjoy the same properties as compact topological spaces (see (27) of §II.6 of [Lef42]).
For example, a linearly compact subspace of V is closed in V , its image under a contin-
uous linear map is linearly compact, and a product of linearly compact spaces is linearly
compact. A finite dimensional discrete E-vector space is linearly compact. If V is linearly
compact and if W is a closed subspace of V , then W is open in V if and only if it is of
finite codimension.

We say that an E-vector space is of profinite dimension if it is an inverse limit of finite
dimensional discrete E-vector spaces. For example, E[[X]] with the X-adic topology is of
profinite dimension. Such a space is then linearly compact and conversely, by (32) of §II.6
of [Lef42], linearly compact spaces are profinite dimensional. We denote by Veccomp(E)
the category whose objects are the linearly compact E-vector spaces, with continuous
linear maps as morphisms.
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If V is a topological vector space, we denote by V ∗ its continuous dual. This space
is given a linear topology by choosing as a basis of neighborhoods of {0} the set {E⊥}E
where E runs through all linearly compact subspaces of V , and E⊥ = {f ∈ V ∗ such that
f(v) = 0 for all v ∈ E}.

Theorem 3.1. — The duality functor V 7→ V ∗ gives rise to equivalences of categories
Vecdisc(E)→ Veccomp(E) and Veccomp(E)→ Vecdisc(E).

Moreover, the natural map V → (V ∗)∗ is an isomorphism.

Proof. — See (29) in §II.6 of [Lef42].

We now turn to group representations. Let G be a topological group and let VecGdisc(E)
and VecGcomp(E) denote the categories of continuous E-linear representations of G on
either discrete or linearly compact spaces. If V is a representation of G, then V ∗ is a
representation of G, with the usual action given by (gf)(v) = f(g−1v).

Proposition 3.2. — If V ∈ VecGdisc(E) or V ∈ VecGcomp(E) is topologically irreducible,
then so is its dual V ∗.

Proof. — If W is a closed subspace of V ∗ stable under G, then let W⊥ = {v ∈ V such
that f(v) = 0 for all f ∈ W}. The natural map W⊥ → (V ∗/W )∗ is an isomorphism by
theorem 3.1. Moreover, W⊥ is a closed subspace of V , that is also stable under G, so
that either W⊥ = {0} and W = V ∗ or W⊥ = V and W = {0}.

Assume now that G is a topologically finitely generated profinite group (in this article,
we only need the case G = Zp). Denote by V (G) the sub-E-vector space of V generated
by the elements (g − 1)v where g ∈ G and v ∈ V .

Proposition 3.3. — If V ∈ VecGcomp(E), then V (G) is a closed subspace of V .

Proof. — Let g1, . . . , gn be elements generating a dense subgroup G′ of G. The subspace
(gi − 1)V is the image of a linearly compact subspace by a continuous linear map and
is hence linearly compact. This implies that V (G′) = ∑n

i=1(gi − 1)V is linearly compact
and therefore closed in V .

If v ∈ V , then the image of G′ under the map g 7→ (g− 1)v is contained in V (G′) and,
since G′ is dense in G and V (G′) is closed in V , the image of G is also contained in V (G′)
so that V (G) = V (G′) and V (G) is closed in V .

Note that the same is trivially true if V ∈ VecGdisc(E). We set VG = V/V (G).

Proposition 3.4. — If V ∈ VecGdisc(E) or V ∈ VecGcomp(E), then (V G)∗ = (V ∗)G.
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Proof. — If f ∈ V ∗, then f(gv) = f(v) for all g ∈ G and v ∈ V if and only if f is zero
on V (G). This implies that (V ∗)G = (VG)∗. Replacing V by V ∗ in this formula and
dualizing gives us the proposition.

Let E[[G]] = lim←−N E[G/N ] denote the completed group algebra of G, where N runs
through the set of open normal subgroups of G.

Proposition 3.5. — If V ∈ VecGcomp(E) or V ∈ VecGdisc(E), then V is an E[[G]]-module.

Proof. — If V ∈ VecGdisc(E), then this is immediate, so assume that V ∈ VecGcomp(E). The
space V is a projective limit of finite dimensional E-vector spaces. We first show that if
V ∈ VecGcomp(E), then V is a projective limit of finite dimensional E-linear representations
of G. It is enough to prove that if W is an open subspace of V , then it contains an
open subspace stable under G. By continuity, for each g ∈ G, there exists an open
neighborhood Hg of g in G and an open subspace Wg of V such that Hg ·Wg ⊂ W . By
compacity of G, there exists g1, . . . , gn ∈ G such that G = Hg1 ∪ · · · ∪Hgn and if we set
X = Wg1 ∩ · · · ∩Wgn , then X is an open subspace of W and G · X ⊂ W . The vector
space generated by G ·X is then open in W and stable under G.

Since V is a projective limit of finite dimensional E-linear representations of G by the
above, and since each of them is an E[[G]]-module, then so is V .

We now assume that G = Zp so that a choice of a topological generator of Zp gives
rise to an isomorphism E[[G]] = E[[X]]. The following result is a variant of Nakayama’s
lemma.

Theorem 3.6. — If V ∈ Veccomp(E) is a topological E[[X]]-module, then V is finitely
generated over E[[X]] if and only if V/XV is a finite dimensional E-vector space.

Proof. — The fact that if V is finitely generated over E[[X]], then V/XV is a finite
dimensional E-vector space is immediate, so let us prove the converse.

Let v1, . . . , vn be elements of V that generate V/XV over E, and let W be the E[[X]]-
module generated by v1, . . . , vn. The E-vector spaceW is linearly compact, and therefore
so is V/W . In addition, (V/W )/X = {0}. It is therefore enough to show that if V ∈
Veccomp(E) is a topological E[[X]]-module such that V/XV = {0}, then V = {0}.

Let U be an open subspace of V . By continuity, there exists an open subspace W of
U and k0 > 1 such that XkW ⊂ U if k > k0. Since W is open, it is of finite codimension
in V and there exists v1, . . . , vn ∈ V such that V = W + Ev1 + · · · + Evn. For each i,
there exists ki such that Xkvi ∈ U if k > ki. If k > max(k0, . . . , kn), then XkV ⊂ U .
But XkV = V so that the only open subspace of V is V itself and hence V = {0}.
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4. Colmez’s functor

In this section, we recall Colmez’s construction of representations of B = B2(Qp)
starting from Galois representations (see §III of [Col10a]).

If M is a (ψ,Γ)-module, then we denote by lim←−ψ M the set of sequences {mn}n∈Z where
mn ∈ M and ψ(mn+1) = mn for all n ∈ Z. Let χ : Q×p → E× be a smooth character. We
endow lim←−ψ M with an action of B in the following way

(( z 0
0 z ) · y)i = χ(z)−1yi;((

1 0
0 p

)
· y
)
i

= yi−1 = ψ(yi);

(( 1 0
0 a ) · y)i = [a−1](yi);

(( 1 z
0 1 ) · y)i = ψj((1 +X)pi+jzyi+j), for i+ j > −val(z).

It is straightforward to check that these formulas give rise to an action of B, and make
lim←−ψ M into a profinite dimensional topological representation, M itself being separated
and complete for the X-adic topology (warning: the normalization for the central charac-
ter is the one chosen in §1.2 of [Ber10b] and it differs from the one in §2.2 of [Ber10a]).
Note that if M1 and M2 are two (ψ,Γ)-modules, and there is a map M1 → M2, then there
is a map lim←−ψ M1 → lim←−ψ M2.

Proposition 4.1. — If Σ is a closed subspace of lim←−ψ M stable under B, then there exists
a surjective sub-(ψ,Γ)-module N of M such that Σ = lim←−ψ N.

Proof. — This is lemma III.3.6 of [Col10a]. We recall the idea of the proof: if Nk is the
set of m ∈ M such that there exists x ∈ Σ with m = xk, then Colmez shows that Nk is a
(ψ,Γ)-module that is independent of k and that we can take N = Nk.

Theorem 4.2. — If Σ is an infinite dimensional topologically irreducible subrepresen-
tation of lim←−ψ M for some (ψ,Γ)-module M, then there exists a (ψ,Γ)-module N that is
irreducible and free over E[[X]], such that Σ = lim←−ψ N.

Proof. — Let Mtor denote the torsion submodule of M. We then have an exact sequence
lim←−ψ Mtor → lim←−ψ M→ lim←−ψ M/Mtor. If the image of Σ in lim←−ψ M/Mtor is non-zero, then
we have reduced to the case where M is torsion-free.

Otherwise, Σ injects in lim←−ψ Mtor and Mtor is a finite dimensional E-vector space.
Proposition 4.1 shows that Σ = lim←−ψ N where N is a finite dimensional E-vector space.
Since ψ : N → N is surjective, it is injective, and then lim←−ψ N = N so that Σ itself is a
finite dimensional E-vector space.
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We can therefore assume that M is torsion free. Let M be such that Σ injects in lim←−ψ M,
with M torsion free, surjective and of minimal rank. If N is a sub-(ψ,Γ)-module of M,
then the same argument as above shows that Σ injects in either lim←−ψ N or lim←−ψ M/N.
This implies that the rank of N is equal to the rank of M, so there exists n > 0 such
that XnM ⊂ N. Repeatedly applying ψ shows that XM ⊂ N. Since M/X is a finite
dimensional E-vector space, there is therefore a smallest M such that Σ injects in lim←−ψ M,
and this M is then irreducible.

If V is an irreducible representation of either GQp (when E is a finite field) orWQp (when
E is an algebraically closed field), then by the results of §2, we can attach to it a (ϕ,Γ)-
module D(V ) and then by definition 1.5 an irreducible (ψ,Γ)-module M(V ) = M(D(V )).
Let χ be a smooth character of Q×p . The space lim←−ψ M(V ) is of profinite dimension
and gives rise to a continuous representation of B, which is topologically irreducible
by proposition 4.1. Its dual Ωχ(V ) = (lim←−ψ M(V ))∗ is therefore a smooth irreducible
representation of B, with central character χ. We finish by recalling a result of [Ber10b]
to the effect that Ωχ(V ) determines χ and V .

Proposition 4.3. — If V1 and V2 are irreducible and Ωχ1(V1) is isomorphic to Ωχ2(V2)
as representations of B, then χ1 = χ2 and V1 = V2.

Proof. — This is proposition 1.2.3 of [Ber10b] in the case that E is a finite field, and
the proof is similar if E is algebraically closed. We recall the main ideas: since χ is
the central character of Ωχ(V ), it is immediate that χ1 = χ2 so we need to show that
if there is an equivariant map f : lim←−ψ M(V1) → lim←−ψ M(V2), then V1 = V2. Let prk :
lim←−ψ M→ M denote the map {mn}n∈Z 7→ mk. If n > 0, let Kn be the set of elements m
of lim←−ψ M(V1) such that prk(m) = 0 for k 6 n. The module Kn is a closed sub-E[[X]]-
module of lim←−ψ M(V1) that is stable under ψ and Γ, and ψ(Kn) = Kn+1. This implies that
pr0 ◦ f(Kn) is a sub-(ψ,Γ)-module of M(V2). Since M(V2) is irreducible, we have either
pr0 ◦ f(Kn) = {0} or pr0 ◦ f(Kn) = M(V2). In addition, ψ(pr0 ◦ f(Kn)) = pr0 ◦ f(Kn+1)
and pr0 ◦ f(Kn) = {0} for n� 0 by continuity, so that pr0 ◦ f(Kn) = {0} for all n > 0.
This implies that pr0 ◦ f(m) depends only on m0.

The map m0 7→ pr0 ◦ f(m) from M(V1) to M(V2) is therefore a well-defined map of
(ψ,Γ)-modules, which is non-zero because f is an isomorphism. By proposition II.3.4 of
[Col10a], it extends to a map D(V1)→ D(V2) so that D(V1) ' D(V2) and V1 ' V2.
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5. Representations of B2(Qp)

In this section, we prove that every infinite dimensional smooth irreducible represen-
tation of B having a central character is of the form Ωχ(V ) for some V and χ. We start
by studying representations of B. Let Z = {a · Id, a ∈ Q×p } be the center of B, and let

K = B2(Zp) =
(

Z×p Zp

0 Z×p

)
.

If β ∈ Qp and δ ∈ Z, let

gβ,δ =
(

1 β
0 pδ

)
.

Let A = ∪n>1{αnp−n + · · · + α1p
−1 where 0 6 αj 6 p − 1} so that A is a system of

representatives of Qp/Zp. The following is lemma 1.2.1 of [Ber10a].

Lemma 5.1. — We have B = ∐
β∈A,δ∈Z gβ,δ ·KZ.

If σ1 and σ2 are two smooth characters σi : Q×p → E×, then let σ = σ1 ⊗ σ2 : B→ E×

be the character σ : ( a b0 d ) 7→ σ1(a)σ2(d) and let indB
KZσ be the set of functions f : B→ E

satisfying f(kg) = σ(k)f(g) if k ∈ KZ and such that f has compact support modulo Z.
If g ∈ B, denote by [g] the function [g] : B → E defined by [g](h) = σ(hg) if h ∈ KZg−1

and [g](h) = 0 otherwise. Every element of indB
KZσ is a finite linear combination of some

functions [g]. We make indB
KZσ into a representation of B in the usual way: if g ∈ B,

then (gf)(h) = f(hg). In particular, we have g[h] = [gh] in addition to the formula
[gk] = σ(k)[g] for k ∈ KZ.

Theorem 5.2. — If Π is a smooth irreducible representation of B having a central char-
acter, then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB

KZσ.

Proof. — This is theorem 1.2.3 of [Ber10a]; we recall the proof here. The group I1

defined by

I1 =
(

1 + pZp Zp

0 1 + pZp

)
is a pro-p-group and hence ΠI1 6= 0. Furthermore, I1 is a normal subgroup of K so that
ΠI1 is a representation of K/I1 = F×p × F×p . Since that group is a finite group of order
prime to p, we have ΠI1 = ⊕ηΠK=η where η runs over the characters of F×p ×F×p and since
Z acts through a character by hypothesis, there exists a character σ of KZ and v ∈ Π
such that k · v = σ(k)v for k ∈ KZ. By Frobenius reciprocity, we get a non-trivial map
indB

KZσ → Π and this map is surjective since Π is irreducible.
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Note that if µ is a character of Q×p that is trivial on Z×p , then indB
KZσ1µ ⊗ σ2µ

−1 =
indB

KZσ1 ⊗ σ2. We can therefore assume that σ2(p) = 1, which we now do.
Write σ = σ1 ⊗ σ2. By lemma 5.1, each f ∈ indB

KZσ can be written in the form
f = ∑

β∈A,δ∈Z α(β, δ)[gβ,δ].

Definition 5.3. — Let s : indB
KZσ → E be the map

s :
∑

β∈A,δ∈Z
α(β, δ)[gβ,δ] 7→

∑
β∈A,δ∈Z

α(β, δ).

Note that if σ = 1 ⊗ 1, then indB
KZσ is the set of functions with finite support on the

set of the vertices of the Bruhat-Tits tree, and s is then the “sum of the values” function.
The following lemma results from a straightforward calculation (recall that σ2(p) = 1).

Lemma 5.4. — The map s : indB
KZσ → E(σ) is B-equivariant.

Let B+ and B− denote the monoids

B+ =
{(

pZ>0Z×p Zp

0 Z×p

)}
⊂ B, B− =

{(
Z×p Zp

0 pZ>0Z×p

)}
⊂ B,

and let (indB
KZσ)+ denote the set of elements of indB

KZσ with support in B+. Since(
pna b
0 d

)
=
(

1 p−nbd−1

0 p−n

)(
a 0
0 d

)(
pn 0
0 pn

)
,

(indB
KZσ)+ is the set of f = ∑

α(β, δ)[gβ,δ] with δ 6 0 and β ∈ p−δZp/Zp.

Lemma 5.5. — If y = ∑
β∈A,δ∈Z α(β, δ)[gβ,δ] ∈ (indB

KZσ)+, then y ∈ (( 1 1
0 1 ) − Id) ·

(indB
KZσ)+ if and only if ∑β∈A α(β, δ) = 0 for all δ 6 0.

Proof. — We have ( 1 1
0 1 ) [gβ,δ] = [gβ+p−δ,δ] so that

X ·
∑

β∈A,δ∈Z
α(β, δ)[gβ,δ] =

∑
β∈A,δ∈Z

(α(β − p−δ, δ)− α(β, δ))[gβ,δ].

Since β ∈ p−δZp/Zp, the lemma follows from the fact that the image of the map (xi)i 7→
(xi−1 − xi)i from EZ/pδZ to itself is the set of sequences (xi)i with

∑
i xi = 0.

Write F =
(
p 0
0 1

)
and X = ( 1 1

0 1 )− Id so that A = E[[X]] is the completed group ring of(
1 Zp
0 1

)
and let A{F} be the non-commutative ring of polynomials in F with coefficients

in A, where FX = XpF . If Π = indB
KZσ/R is a quotient of indB

KZσ, let Π+ denote the
image of (indB

KZσ)+ in Π. The space Π+ is then a left A{F}-module, as well as a torsion
A-module (since Π is smooth). Recall (see §3 of [Eme08]) that an admissible A-module
is an A-module M that is torsion and such that MX=0 is finite dimensional.
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Proposition 5.6. — If M is a finitely generated left A{F}-module that is torsion over
A, then M is admissible as an A-module if and only if the quotient M/XM is finite
dimensional over E.

Proof. — This is proposition 3.5 of [Eme08].

Lemma 5.7. — The map (indB
KZσ)+ → E[F ] given by

∑
β∈A,δ60

α(β, δ)[gβ,δ] 7→
∑
n>0

∑
β∈A

α(β,−n)
F n

(which arises from “retracting the building to the appartment”) gives rise to an isomor-
phism of A{F}-modules (indB

KZσ)+/X = E[F ].

Proof. — It is straightforward to check that the given map (indB
KZσ)+ → E[F ] is a

surjective map of A{F}-modules. Its kernel is X · (indB
KZσ)+ by lemma 5.5.

Lemma 5.8. — The A{F}-module (indB
KZσ)+ is generated by [Id].

Proof. — The fact that if n > 0, a, d ∈ Z×p and b ∈ Zp, then [
(
pna b

0 d

)
] belongs to the

A{F}-module generated by [Id] follows from the formula(
pna b
0 d

)
=
(

1 (b− pna)d−1

0 1

)(
pn 0
0 1

)(
a 0
0 d

)
.

Theorem 5.9. — If Π has no quotient isomorphic to E(σ), then the A-module Π+ is
admissible.

Proof. — By proposition 5.6 above (Emerton’s theorem), it is enough to show that Π+ is
finitely generated over A{F} and that Π+/XΠ+ is a finite dimensional E-vector space.
The finite generation follows from the fact that Π+ is a quotient of (indB

KZσ)+, which is
generated by one element over A{F} by lemma 5.8.

Let R+ = (indB
KZσ)+ ∩ R. We have an exact sequence of A{F}-modules R+/X →

(indB
KZσ)+/X → Π+/X → 0. By lemma 5.7, we have an isomorphism of A{F}-modules

(indB
KZσ)+/X = E[F ]. Since any non-trivial quotient of E[F ] is finite dimensional over E,

it is enough to show that R+ has non-trivial image in (indB
KZσ)+/X. If this was not the

case, then we would have R+ ⊂ X · (indB
KZσ)+. Lemma 5.5 shows that X · (indB

KZσ)+ ⊂
ker(s) where s is the map of definition 5.3. If y ∈ R, then F ny ∈ R+ for n � 0 so that
R ⊂ ker(s) and therefore by lemma 5.4, there is a surjective map Π→ E(σ).
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Proof of theorems A and A’. — Let Π be an infinite dimensional smooth irreducible rep-
resentation of B having a central character. By theorem 5.2, we can write Π = indB

KZσ/R

and by theorem 5.9, Π+ is an admissible E[[X]]-module. Its dual M = (Π+)∗ is therefore
a linearly compact topological E-vector space, and an E[[X]]-module by proposition 3.5.
In addition, the space of coinvariants M/XM = MZp is finite dimensional by proposition
3.4. By theorem 3.6 (Nakayama’s lemma), M is finitely generated over E[[X]].

Since Π+ is a representation of B+Z, its dual M is a representation of B−Z. We define
a (ψ,Γ)-module structure on M as follows: we know that it is a finitely generated module
over E[[X]] and we set ψ(m) =

(
1 0
0 p

)
m and [a](m) =

(
1 0
0 a−1

)
m if a ∈ Z×p .

If f : Π → E is an element of Π∗, let fn denote the restriction of
(

1 0
0 pn

)
f to Π+.

The map f 7→ {fn}n∈Z gives rise to an equivariant map Π∗ → lim←−ψ M. Since Π∗ is
irreducible by proposition 3.2, theorem 4.2 applied to Σ = Π∗ gives us a free irreducible
(ψ,Γ)-module N such that Π∗ = lim←−ψ N. Theorem 1.6 now says that N = M(D) for
some irreducible (ϕ,Γ)-module D so that Π∗ = lim←−ψ M(D). Theorem 3.1 finally says that
Π = (lim←−ψ M(D))∗ which proves theorems A and A’ by the bijections constructed in §2
(theorem 2.1 if E is a finite field and theorem 2.8 if E is algebraically closed).

Remark 5.10. — Theorem A’ and proposition 2.2 imply that if E is algebraically
closed, and Π is an infinite dimensional smooth irreducible representation of B having a
central character, then there exists an infinite dimensional smooth irreducible Fp-linear
representation Π0 of B having a central character, and a smooth character µ : B→ E×,
such that Π = (E ⊗Fp Π0)⊗ µ.

In particular, we can apply the same methods as in [Ber12] in order to prove that
in fact, every smooth irreducible representation of B over an algebraically closed field
necessarily has a central character.
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