
ITERATED EXTENSIONS AND
RELATIVE LUBIN-TATE GROUPS

by

Laurent Berger

To Glenn Stevens, on the occasion of his 60th birthday

Abstract. — Let K be a finite extension of Qp with residue field Fq and let P (T ) =
T d + ad−1T d−1 + · · · + a1T where d is a power of q and ai ∈ mK for all i. Let u0 be a
uniformizer of OK and let {un}n>0 be a sequence of elements of Qp such that P (un+1) = un

for all n > 0. Let K∞ be the field generated over K by all the un. If K∞/K is a Galois
extension, then it is abelian, and our main result is that it is generated by the torsion points
of a relative Lubin-Tate group (a generalization of the usual Lubin-Tate groups). The proof
of this involves generalizing the construction of Coleman power series, constructing some
p-adic periods in Fontaine’s rings, and using local class field theory.
Résumé (Extensions itérées et groupes de Lubin-Tate relatifs). — Soit K une
extension finie de Qp de corps résiduel Fq et P (T ) = T d +ad−1T d−1 + · · ·+a1T où d est une
puissance de q et ai ∈ mK pour tout i. Soit u0 une uniformisante de OK et {un}n>0 une
suite d’éléments de Qp telle que P (un+1) = un pour tout n > 0. Soit K∞ l’extension de K
engendrée par les un. Si K∞/K est Galoisienne, alors elle est abélienne, et notre résultat
principal est qu’elle est engendrée par les points de torsion d’un groupe de Lubin-Tate relatif
(une généralisation des groupes de Lubin-Tate usuels). Pour prouver cela, nous généralisons
la construction des séries de Coleman, construisons des périodes p-adiques dans les anneaux
de Fontaine et utilisons la théorie du corps de classes local.
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Introduction

Let K be a field, let P (T ) ∈ K[T ] be a polynomial of degree d > 1, choose u0 ∈ K
and for n > 0, let un+1 ∈ K be such that P (un+1) = un. The field K∞ generated over
K by all the un is called an iterated extension of K. These iterated extensions and the
resulting Galois groups have been studied in various contexts, see for instance [Odo85],
[Sto92], [AHM05] and [BJ07].

In this article, we focus on a special situation: p 6= 2 is a prime number, K is a finite
extension of Qp, with ring of integers OK , whose maximal ideal is mK and whose residue
field is k. Let d be a power of Card(k), and let P (T ) = T d + ad−1T

d−1 + · · · + a1T be a
monic polynomial of degree d with ai ∈ mK for 1 6 i 6 d − 1. Let u0 be a uniformizer
of OK and define a sequence {un}n>0 by letting un+1 be a root of P (T ) = un. Let
Kn = K(un) and K∞ = ∪n>1Kn. This iterated extension is called a Frobenius-iterate
extension, after [CD14] (whose definition is a bit more general than ours). The question
that we consider in this article is: which Galois extensions K∞/K are Frobenius iterate?

This question is inspired by the observation, made in remark 7.16 of [CD14], that it
follows from the main results of ibid. and [Ber14] that: if K∞/K is Frobenius-iterate
and Galois, then it is necessarily abelian. Here, we prove a much more precise result.

First, let us recall that in [dS85], de Shalit gives a generalization of the construction
of Lubin-Tate formal groups (for which see [LT65]). A relative Lubin-Tate group is a
formal group S that is attached to an unramified extension E/F and to an element α of
F of valuation [E : F ]. The extension ES

∞/F generated over F by the torsion points of
this formal group is the subextension of F ab cut out via local class field theory by the
subgroup of F× generated by α. If E = F , we recover the classical Lubin-Tate groups.

Theorem A. — Let K be a finite Galois extension of Qp, and let K∞/K be a Frobenius-
iterate extension. If K∞/K is Galois, then there exists a subfield F of K, and a relative
Lubin-Tate group S, relative to the extension F unr ∩K of F , such that if KS

∞ denotes the
extension of K generated by the torsion points of S, then K∞ ⊂ KS

∞ and KS
∞/K∞ is a

finite extension.

This is theorem 6.4. Conversely, it is easy to see that the extension coming from a
relative Lubin-Tate group is Frobenius-iterate after the first layer (see example 2.3). The
proof of theorem A is quite indirect. We start with the observation that if K∞/K is
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a Frobenius-iterate extension, that is not necessarily Galois, then we can generalize the
construction of Coleman’s power series (see [Col79]). Let lim←−OKn denote the set of
sequences {xn}n>0 with xn ∈ OKn and such that NKn+1/Kn(xn+1) = xn for all n > 0.

Theorem B. — We have {un}n>0 ∈ lim←−OKn and if {xn}n>0 ∈ lim←−OKn, then there exists
a unique power series Colx(T ) ∈ OK [[T ]] such that xn = Colx(un) for all n > 0.

Suppose now that K∞/K is Galois, and let Γ = Gal(K∞/K). The results of [CD14]
and [Ber14] imply that K∞/K is abelian, so that Kn/K is Galois for all n > 1. If g ∈ Γ,
then {g(un)}n>0 ∈ lim←−OKn , so that by theorem B, we get a power series Colg(T ) ∈ OK [[T ]]
such that g(un) = Colg(un) for all n > 0. Let Ẽ+ = lim←−x 7→xd OCp/p, let K0 = Qunr

p ∩K
and let Ã+ = OK⊗OK0

W (Ẽ+) be Fontaine’s rings of periods (see [Fon94]). The element
{un}n>0 gives rise to an element u ∈ Ẽ+.

Theorem C. — There exists u ∈ Ã+ whose image in Ẽ+ is u, and such that ϕd(u) =
P (u). We have g(u) = Colg(u) if g ∈ Γ.

The power series Colg(T ) satisfies the functional equation Colg ◦ P (T ) = P ◦ Colg(T ).
The study of p-adic power series that commute under composition was taken up by Lubin
in [Lub94]. In §6 of ibid., Lubin writes that “experimental evidence seems to suggest
that for an invertible series to commute with a noninvertible series, there must be a formal
group somehow in the background”. There are a number of results in this direction, see for
instance [LMS02], [SS13] and [JS14]. In our setting, the series {Colg(T )}g∈Γ commute
with P (T ) and theorem A says that indeed, there is a formal group that accounts for this.
Let us now return to the proof of theorem A. We first show that P ′(T ) 6= 0. It is then
proved in §1 of [Lub94] that given such a P (T ), a power series Colg(T ) that commutes
with P (T ) is determined by Col′g(0). If we let η(g) = Col′g(0), we get the following: the
map η : Γ→ O×K is an injective character.

In order to finish the proof of theorem A, we use some p-adic Hodge theory. Let LP (T ) ∈
K[[T ]] be the logarithm attached to P (T ) and constructed in [Lub94]; it converges on the
open unit disk, and satisfies LP ◦P (T ) = P ′(0)·LP (T ) as well as LP ◦Colg(T ) = η(g)·LP (T )
for g ∈ Γ. In particular, we can consider LP (u) as an element of the ring B+

cris (see [Fon94]
for the rings of periods B+

cris and BdR), which satisfies g(LP (u)) = η(g) · LP (u). More
generally, if τ ∈ Gal(K/Qp), then we can twist u by τ to get some elements uτ ∈ Ã+

and LτP (uτ ) ∈ B+
cris, satisfying g(LτP (uτ )) = τ(η(g)) · LτP (uτ ). The elements {LτP (uτ )}τ

are crystalline periods for the representation arising from η. Our main technical result
concerning these periods is that the set of τ ∈ Gal(K/Qp) such that LτP (uτ ) ∈ Fil1BdR



4 LAURENT BERGER

is a subgroup of Gal(K/Qp), and therefore cuts out a subfield F of K. This allows us to
prove the following.

Theorem D. — There exists a subfield F of K, a Lubin-Tate character χλ attached to
a uniformizer λ of K, and an integer r > 1, such that η = NK/F (χλ)r.

Theorem A follows from theorem D by local class field theory: the extensions of K
corresponding to NK/F (χλ) are precisely those that come from relative Lubin-Tate groups.
At the end of §6, we give an example for which r = 2. In this example, the Coleman
power series p-adically interpolate Chebyshev polynomials.

1. Relative Lubin-Tate groups

We recall de Shalit’s construction (see [dS85]) of a family of formal groups that gen-
eralize Lubin-Tate groups. Let F be a finite extension of Qp, with ring of integers OF
and residue field kF of cardinality q. Take h > 1 and let E be the unramified extension
of F of degree h. Let ϕq : E → E denote the Frobenius map that lifts [x 7→ xq]. If
f(T ) = ∑

i>0 fiT
i ∈ E[[T ]], let fϕq(T ) = ∑

i>0 ϕq(fi)T i.
If α ∈ OF is such that valF (α) = h, let Fα be the set of power series f(T ) ∈ OE[[T ]]

such that f(T ) = πT + O(T 2) with NE/F (π) = α and such that f(T ) ≡ T q mod mE[[T ]].
The set Fα is nonempty, since NE/F (E×) is the set of elements of F× whose valuation is in
h ·Z. If NE/F (π) = α, one can take f(T ) = πT + T q. The following theorem summarizes
some of the results of [dS85] (see also §IV of [Iwa86]).

Theorem 1.1. — If f(T ) ∈ Fα, then

1. there is a unique formal group law S(X, Y ) ∈ OE[[X, Y ]] such that Sϕq ◦ f = f ◦ S,
and the isomorphism class of S depends only on α;

2. for all a ∈ OF , there exists a unique power series [a](T ) ∈ OE[[T ]] such that [a](T ) =
aT + O(T 2) and [a](T ) ∈ End(S).

Let x0 = 0 and for m > 0, let xm ∈ Qp be such that fϕmq (xm+1) = xm (with x1 6= 0). Let
Em = E(xm) and let ES

∞ = ∪m>1Em.

1. The fields Em depend only on α, and not on the choice of f(T ) ∈ Fα;
2. The extension Em/E is Galois, and its Galois group is isomorphic to (OF/mm

F )×;
3. ES

∞ ⊂ F ab and ES
∞ is the subfield of F ab cut out by 〈α〉 ⊂ F× via local class field

theory.

Remark 1.2. — If h = 1, then we recover the usual Lubin-Tate formal groups of [LT65].
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2. Frobenius-iterate extensions

Let p 6= 2 be a prime number, letK be a finite extension of Qp, with ring of integersOK ,
whose maximal ideal is mK and whose residue field is k. Let q = Card(k), and let π denote
a uniformizer of OK . Let d be a power of q, and let P (T ) = T d + ad−1T

d−1 + · · · + a1T

be a monic polynomial of degree d with ai ∈ mK for 1 6 i 6 d− 1.
Let u0 be a uniformizer of OK and define a sequence {un}n>0 by letting un+1 be a root

of P (T ) = un. Let Kn = K(un).

Lemma 2.1. — The extension Kn/K is totally ramified of degree dn, un is a uniformizer
of OKn and NKn+1/Kn(un+1) = un.

Proof. — The first two assertions follow immediately from the theory of Newton poly-
gons, and the last one from the fact that P (T ) − un is the minimal polynomial of un+1

over Kn, as well as the fact that d is odd since p 6= 2.

Let K∞ = ∪n>1Kn. This is a totally ramified infinite and pro-p extension of K.

Definition 2.2. — We say that an extension K∞/K is ϕ-iterate if it is of the form
above.

This definition is inspired by the similar one that is given in definition 1.1 of [CD14].
We require P (T ) to be a monic polynomial, instead of a more general power series as in
ibid., in order to control the norm of un and to ensure the good behavior of Kn+1/Kn.

Example 2.3. — (i) If P (T ) = T q, then K∞/K is a ϕ-iterate extension, which is the
Kummer extension of K corresponding to π.

(ii) Let LT be a Lubin-Tate formal OK-module attached to π, and Kn = K(LT[πn]).
The extension K∞/K1 is ϕ-iterate with P (T ) = [π](T ).

(iii) More generally, let S be a relative Lubin-Tate group, relative to an extension E/F
and α ∈ F as in §1. The extension ES

∞/E1 is ϕ-iterate with P (T ) = [α](T ).

Proof. — Item (ii) follows from applying (iii) with K = E = F , and we now prove
(iii). We use the notation of theorem 1.1. Since the isomorphism class of S and the
extension ES

∞/E only depend on α, we can take f(T ) = πT + T q where NE/F (π) = α.
Let P (T ) = fϕ

h−1
q ◦· · ·◦fϕq ◦f(T ) ∈ OE[T ], so that P (T ) = [α](T ). The extension Ehm+1

is generated by xhm+1 over E1, and we have P (xhm+1) = x(h−1)m+1. The claim therefore
follows from taking um = xhm+1 for m > 0, and observing that since π + uq−1

0 = 0, u0 is
a uniformizer of OE1 .
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3. Coleman power series

Let us write lim←−OKn for the set of sequences {xn}n>0 such that xn ∈ OKn and such
that NKn+1/Kn(xn+1) = xn for n > 0. By lemma 2.1, the sequence {un}n>0 belongs to
lim←−OKn . The goal of this § is to show the following theorem (theorem B).

Theorem 3.1. — If {xn}n>0 ∈ lim←−OKn, then there exists a uniquely determined power
series Colx(T ) ∈ OK [[T ]] such that xn = Colx(un) for all n > 0.

Our proof follows the one that is given in §13 of [Was97]. The unicity is a consequence
of the following well-known general principle.

Proposition 3.2. — If f(T ) ∈ OK [[T ]] is nonzero, then f(T ) has only finitely many
zeroes in the open unit disk.

In order to prove the existence part of theorem 3.1, we start by generalizing Cole-
man’s norm map (see [Col79] for the original construction, and §2.3 of [Fon90] for
the generalization that we use). The ring OK [[T ]] is a free OK [[P (T )]]-module of rank
d. If f(T ) ∈ OK [[T ]], let NP (f)(T ) ∈ OK [[T ]] be defined by the requirement that
NP (f)(P (T )) = NOK [[T ]]/OK [[P (T )]](f(T )). For example, NP (T ) = T since d is odd.

Proposition 3.3. — The map NP has the following properties.

1. If f(T ) ∈ OK [[T ]], then NP (f)(un) = NKn+1/Kn(f(un+1));
2. If k > 1 and f(T ) ∈ 1 + πkOK [[T ]], then NP (f)(T ) ∈ 1 + πk+1OK [[T ]];
3. If f(T ) ∈ OK [[T ]], then NP (f)(T ) ≡ f(T ) mod π;
4. If f(T ) ∈ OK [[T ]]×, and k,m > 0, then Nm+k

P (f) ≡ N k
P (f) mod πk+1.

Proof. — The determinant of the multiplication-by-f(T ) map on the OK [[P (T )]]-module
OK [[T ]] is NP (f)(P (T )). By evaluating at T = un+1, we find that the determinant
of the multiplication-by-f(un+1) map on the OKn-module OKn+1 is NP (f)(un), so that
NP (f)(un) = NKn+1/Kn(f(un+1)).

We now prove (2). If f(T ) ∈ OK [[T ]], let TP (f)(T ) ∈ OK [[T ]] be the trace map defined
by TP (f)(P (T )) = TrOK [[T ]]/OK [[P (T )]](f(T )). A straightforward calculation shows that if
h(T ) ∈ OK [[T ]], then TP (h)(T ) ∈ π · OK [[T ]]. If f(T ) = 1 + πkh(T ), then NP (f)(T ) ≡
1 + πkTP (h)(T ) mod πk+1, so that NP (f)(T ) ∈ 1 + πk+1OK [[T ]].

Item (3) follows from a straightfoward calculation in k[[T ]] using the fact that P (T ) =
T d in k[[T ]]. Finally, let us prove (4). If f(T ) ∈ OK [[T ]]×, then NP (f)/f ≡ 1 mod π
by (3), so that Nm

P (f)/f ≡ 1 mod π as well. Item (2) now implies that Nm+k
P (f) ≡

N k
P (f) mod πk+1.
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of theorem 3.1. — The power series Colx(T ) is unique by lemma 3.2, and we now show
its existence. If xn is not a unit of OKn , then there exists e > 1 such that xn = uenx

∗
n

where x∗n ∈ O×Kn for all n, and then Colx(T ) = T e · Colx∗(T ). We can therefore assume
that xn is a unit of OKn . For all j > 1, we have OKj = OK [uj], so that there exists
gj(T ) ∈ OK [T ] such that xj = gj(uj). Let fj(T ) = N j

P (g2j). By proposition 3.3, we
have xn ≡ fj(un) mod πj+1 for all n 6 j. The space OK [[T ]] is compact; let f(T ) be a
limit point of {fj}j>1. We have xn = f(un) for all n by continuity, so that we can take
Colx(T ) = f(T ).

Remark 3.4. — We have NP (Colx)(T ) = Colx(T ).

Proof. — The power series NP (Colx)(T ) − Colx(T ) is zero at T = un for all n > 0 by
proposition 3.3, so that NP (Colx)(T ) = Colx(T ) by lemma 3.2.

4. Lifting the field of norms

In this §, we assume that K∞/K is a Galois extension, and let Γ = Gal(K∞/K). We
recall some results of [CD14] and [Ber14], and give a more precise formulation of some
of them in our specific situation.

Proposition 4.1. — If K∞/K is Galois, then Kn/K is Galois for all n > 1.

Proof. — It follows from the main results of [CD14] and of [Ber14] (see remark 7.16 of
[CD14]) that if K∞/K is a ϕ-iterate extension that is Galois, then it is abelian. This
implies the proposition (it would be more satisfying to find a direct proof).

If g ∈ Γ, proposition 4.1 and theorem 3.1 imply that there is a unique power series
Colg(T ) ∈ OK [[T ]] such that g(un) = Colg(un) for all n > 0. In the sequel, we need some
ramification-theoretic properties of K∞/K. They are summarized in the theorem below.

Theorem 4.2. — There exists a constant c = c(K∞/K) > 0 such that for any E ⊂ F ,
finite extensions of K contained in K∞, and x ∈ OF , we have

valK
(

NF/E(x)
x[F :E] − 1

)
> c.

Proof. — By the main result of [CDL14], the extension K∞/K is strictly APF, so that
if we denote by c(K∞/K) the constant defined in 1.2.1 of [Win83], then c(K∞/K) > 0.
By 4.2.2.1 of ibid., we have

valE
(

NF/E(x)
x[F :E] − 1

)
> c(F/E),
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By 1.2.3 of ibid., c(F/E) > c(K∞/E) and (see for instance the proof of 4.5 of [CD14] or
page 83 of [Win83]) c(K∞/E) > c(K∞/K) · [E : K]. This proves the theorem.

Let c be the constant afforded by theorem 4.2. We can always assume that c 6

valK(p)/(p − 1). If E is some subfield of Cp, let acE denote the set of elements x of E
such that valK(x) > c. Let Ẽ+ = lim←−x 7→xd OCp/a

c
Cp

. The sequence {un}n>0 gives rise to
an element u ∈ Ẽ+. Recall that by §2.1 and §4.2 of [Win83], there is an embedding ι :
lim←−OKn → Ẽ+, which is an isomorphism onto lim←−x7→xd OKn/a

c
Kn , which is also isomorphic

to k[[u]]. Let K0 = Qunr
p ∩K and Ã+ = OK ⊗OK0

W (Ẽ+). Recall (see [Fon94]) that we
have a map θ : Ã+ → OCp . If x ∈ Ã+ and x = (xn)n>0 in Ẽ+, then θ ◦ ϕ−nd (x) = xn in
OCp/a

c
Cp

.

Theorem 4.3. — There exists a unique u ∈ Ã+ whose image in Ẽ+ is u, and such that
ϕd(u) = P (u). Moreover:

(i) If n > 0, then θ ◦ ϕ−nd (u) = un;
(ii) OK [[u]] = {x ∈ Ã+, θ ◦ ϕ−nd (x) ∈ OKn for all n > 1};
(iii) g(u) = Colg(u) if g ∈ Γ.

Proof. — The existence of u and item (i) are proved in lemma 9.3 of [Col02], where it
is shown that u = limn→+∞ P

◦n(ϕ−nd ([u])).
Let R = {x ∈ Ã+ such that θ ◦ ϕ−nd (x) ∈ OKn for all n > 1}. If x ∈ R, then its image

in Ẽ+ lies in lim←−x 7→xd OKn/a
c
Kn = k[[u]]. We have u ∈ R by proposition 4.3, so that the

map R/πR → k[[u]] is surjective. We then have R = OK [[u]], since R is separated and
complete for the π-adic topology, which proves (ii).

The ring OK [[u]] is stable under the action of GK by (ii). If g ∈ Γ, there exists Fg(T ) ∈
OK [[T ]] such that g(u) = Fg(u). We have g(un) = g(θ◦ϕ−nd (u)) = θ◦ϕ−nd (Fg(u)) = Fg(un)
by (i), so that g(un) = Fg(un) for all n. This implies that Fg(T ) = Colg(T ).

Remark 4.4. — In the terminology of [Win83], lim←−OKn is the ring of integers of the
field of norms X(K∞) of the extension K∞/K, and theorem 4.3 shows that we can lift
X(K∞) to characteristic zero, along with the Frobenius map ϕd and the action of Γ.

If g ∈ Γ, then Colg ◦ P (T ) = P ◦ Colg(T ) since the two series have the same value at
un for all n > 1. Let η(g) = Col′g(0), so that g 7→ η(g) is a character η : Γ→ O×K

Proposition 4.5. — If F (T ) ∈ T · OK [[T ]] is such that F ′(0) ∈ 1 + pOK, and if A(T ) ∈
T ·OK [[T ]] vanishes at order k > 2 at 0, and satisifes A◦F (T ) = F ◦A(T ), then F (T ) = T .
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Proof. — Write F (T ) = f1T + O(T 2), and A(T ) = akT
k + O(T k+1) with ak 6= 0. The

equation F ◦ A(T ) = A ◦ F (T ) implies that f1ak = akf
k
1 so that if k 6= 1, then fk−1

1 = 1.
Since f1 ∈ 1+pOK and p 6= 2, this implies that f1 = 1. If F (T ) 6= T , we can write F (T ) =
T + T ih(T ) for some i > 2 with h(0) 6= 0. The equation F ◦ A(T ) = A ◦ F (T ) and the
equality A(T + T ih(T )) = ∑

j>0(T ih(T ))jA(j)(T )/j! imply that A(T ) +A(T )ih(A(T )) =
A(T ) + T ih(T )A′(T ) + O(T 2i+k−2), so that A(T )ih(A(T )) = T ih(T )A′(T ) + O(T 2i+k−2).
The term of lowest degree of the LHS is of degree ki, while on the RHS it is of degree
i+k−1. We therefore have ki = i+k−1, so that (k−1)(i−1) = 0 and hence k = 1.

Corollary 4.6. — We have P ′(0) 6= 0.

Proof. — This follows from proposition 4.5, since Col′g(0) ∈ 1 + pOK if g is close enough
to 1, and Colg(T ) = T if and only if g = 1 (compare with lemma 4.5 of [Ber14]).

Corollary 4.7. — The character η : Γ→ O×K is injective.

Proof. — This follows from proposition 1.1 of [Lub94], which says that if P ′(0) ∈ mK \
{0}, then a power series F (T ) ∈ T · OK [[T ]] that commutes with P (T ) is determined by
F ′(0). This implies that Colg(T ) is determined by η(g), and then g itself is determined
by Colg(T ), since g(un) = Colg(un) for all n.

We therefore have a character η : Gal(Qp/K)→ O×K , such that K∞ = Qker η
p .

5. p-adic Hodge theory

We now assume thatK/Qp is Galois (for simplicity), and we keep assuming thatK∞/K
is Galois. We use the element u above, and Lubin’s logarithm (proposition 5.1 below),
to construct crystalline periods for η.

Proposition 5.1. — There exists a power series LP (T ) ∈ K[[T ]] that is holomorphic on
the open unit disk, and satisfies

1. LP (T ) = T + O(T 2);
2. LP ◦ P (T ) = P ′(0) · LP (T );
3. LP ◦ Colg(T ) = η(g) · LP (T ) if g ∈ Γ.

If we write P (T ) = T ·Q(T ), then

LP (T ) = lim
n→+∞

P ◦n(T )
P ′(0)n = T ·

∏
n>0

Q(P ◦n(T ))
Q(0) .

Proof. — See propositions 1.2, 2.2 and 1.3 of [Lub94].



10 LAURENT BERGER

Let B̃+
rig denote the Fréchet completion of Ã+[1/π], so that our B̃+

rig is K⊗K0 the
“usual” B̃+

rig (for which see [Ber02]). If u ∈ Ã+ is the element afforded by proposition
4.3, then LP (u) converges in B̃+

rig. We have g(LP (u)) = η(g) · LP (u) by proposition 5.1.
If τ ∈ Gal(K/Qp), then let n(τ) be some n ∈ Z such that τ = ϕn on kK , and let
uτ = (τ ⊗ ϕn(τ))(u) ∈ Ã+.

If F (T ) = ∑
i>0 fiT

i ∈ K[[T ]], let F τ (T ) = ∑
i>0 τ(fi)T i. We have g(LτP (uτ )) = τ(η(g)) ·

LτP (uτ ) in B̃+
rig. This implies the following result, which is a slight improvement of theorem

4.1 of [Ber14].

Proposition 5.2. — The character η : Γ→ O×K is crystalline, with weights in Z>0.

Proof. — The fact that g(LτP (uτ )) = τ(η(g)) ·LτP (uτ ) for all τ ∈ Gal(K/Qp) implies that
η gives rise to a K ⊗K0 Bcris-admissible representation. If V is any p-adic representation
of GK , then (

(K ⊗K0 Bcris)⊗Qp V
)GK = K ⊗K0 (Bcris ⊗Qp V )GK .

This implies that a K ⊗K0 Bcris-admissible representation is crystalline. The weights of
η are > 0 because LτP (uτ ) ∈ B+

dR for all τ .

Lemma 5.3. — We have θ ◦ ϕ−nd (uτ ) = limk→+∞(P τ )◦k(up
n(τ)

n+k ).

Proof. — The element uτ ∈ Ã+ has the property that its image in Ẽ+ is ϕn(τ)(u) = up
n(τ) ,

and that ϕd(uτ ) = P τ (uτ ). The lemma then follows from lemma 9.3 of [Col02].

For simplicity, write unτ = θ ◦ ϕ−nd (uτ ) and un,kτ = (P τ )◦k(up
n(τ)

n+k ).

Lemma 5.4. — If M > 0, there exists j > 0 such that valK(unτ − un,jτ ) >M for n > 1.

Proof. — If c is the constant coming from theorem 4.2, then valK(unτ − un,0τ ) > c for all
n > 1. We prove the lemma by inductively constructing a sequence {cj}j>0 such that
valK(unτ − un,jτ ) > cj for all n > 1, and such that cj > M for j � 0. Let c0 = c and
suppose that for some j, we have valK(unτ − un,jτ ) > cj for all n > 1. We then have

valK(unτ − un,j+1
τ ) = valK

(
P τ (un+1

τ )− P τ (un+1,j
τ )

)
.

If R(T ) ∈ OK [T ] and x, y ∈ OQp
, then R(x) − R(y) = (x − y)R′(y) + (x − y)2S(x, y)

with S(T, U) ∈ OK [T, U ]. This, and the fact that P ′(T ) ∈ mK [T ], implies that we can
take cj+1 = min(cj + 1, 2cj). The lemma follows.

We now recall a result from [Lub94]. If f(T ) ∈ T ·OK [[T ]] is such that f ′(0) ∈ mK \{0},
let Λ(f) be the set of the roots of all iterates of f . If u(T ) ∈ T · OK [[T ]] is such that
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u′(0) ∈ O×K and u′(0) is not a root of 1, let Λ(u) be the set of the fixed points of all
iterates of u.

Lemma 5.5. — If f and u are as above, and if u ◦ f = f ◦ u, then Λ(f) = Λ(u).

Proof. — This is proposition 3.2 of [Lub94].

For each τ ∈ Gal(K/Qp), let rτ be the weight of η at τ .

Proposition 5.6. — If τ ∈ Gal(K/Qp), then the following are equivalent.

(i) rτ > 1;
(ii) LτP (uτ ) ∈ Fil1BdR;
(iii) θ(uτ ) ∈ Qp;
(iv) θ(uτ ) ∈ Λ(P τ );
(v) uτ ∈ ∪j>0 ϕ

−j
d (OK [[u]]).

Proof. — The equivalence between (i) and (ii) is immediate. We now prove that (ii)
implies (iii). If LτP (uτ ) ∈ Fil1BdR, then LτP (θ(uτ )) = 0 so that θ(uτ ) ∈ Qp since it
is a root of a convergent power series with coefficients in K. We next prove that (iii)
implies (iv) (it is clear that (iv) implies (iii)). If x = θ(uτ ) then g(x) = Colτg(x). If
x ∈ Qp and if g is close enough to 1, then g(x) = x so that x ∈ Λ(Colτg), and then
x ∈ Λ(P τ ) by lemma 5.5. Let us prove that (iv) implies (ii). If there exists n > 0 such
that (P τ )◦n(θ(uτ )) = 0, then (P τ )◦n(uτ ) ∈ Fil1BdR so that LτP (uτ ) ∈ Fil1BdR as well by
proposition 5.1. Conditions (i), (ii), (iii) and (iv) are therefore equivalent. Condition (v)
implies (iii) by using theorem 4.3 as well as the fact that ϕd(uτ ) = P τ (uτ ).

It remains to prove that (iii) implies (v). Recall that unτ = θ ◦ ϕ−nd (uτ ). It is enough
to show that there exists j > 0 such that unτ ∈ OKn+j for all n, since by theorem 4.3,
this implies that uτ ∈ ϕ−jd (OK [[u]]). Recall that un,kτ = (P τ )◦k(up

n(τ)

n+k ). Take M > 1 +
valK((P τ )′(unτ )) for all n� 0. By lemma 5.4, there exists j > 0 such that valK(unτ−un,jτ ) >
M for all n > 1. The element unτ is a root of P τ (T ) = un−1

τ , and therefore unτ−un,jτ is a root
of P τ (un,jτ +T )−un−1

τ . If un−1
τ ∈ OKn+j−1 , then the polynomialRn(T ) = P τ (un,jτ +T )−un−1

τ

belongs to OKn+j [T ], and satisfies valK(Rn(0)) > M + valK(R′n(0)). By the theory of
Newton polygons, Rn(T ) has a unique root of slope valK(Rn(0))−valK(R′n(0)) >M , and
this root, which is unτ − un,jτ , therefore belongs to Kn+j. This implies that unτ ∈ OKn+j ,
which finishes the proof by induction on n.

If τ satisfies the equivalent conditions of proposition 5.6, then we can write uτ =
fτ (ϕ−jτq (u)) for some jτ > 0 and fτ (T ) ∈ OK [[T ]].
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Lemma 5.7. — We have fτ (0) = 0, f ′τ (0) 6= 0, P τ◦fτ (T ) = fτ◦P (T ) and Colτg◦fτ (T ) =
fτ ◦ Colg(T ).

Proof. — If uτ = fτ (ϕ−jd (u)), then P τ (uτ ) = P τ ◦ fτ (ϕ−jd (u)) and then ϕd(uτ ) = fτ ◦
P (ϕ−jd (u)) so that P τ ◦ fτ (T ) = fτ ◦P (T ). Likewise, computing g(uτ ) in two ways shows
that Colτg ◦ fτ (T ) = fτ ◦ Colg(T ). Evaluating P τ ◦ fτ (T ) = fτ ◦ P (T ) at T = 0 gives
P τ (fτ (0)) = fτ (0) so that fτ (0) is a root of P τ (T ) = T . The theory of Newton polygons
shows that those roots are 0 and elements of valuation 0. The latter case is excluded
because θ◦ϕ−nd (uτ ) = fτ (un+j) ∈ mK∞ , so that fτ (0) ∈ mK . We now prove that f ′τ (0) 6= 0.
Write f(T ) = fkT

k + O(T k+1) with fk 6= 0. The fact that P τ ◦ fτ (T ) = fτ ◦P (T ) implies
that τ(P ′(0))fk = fkP

′(0)k so that τ(P ′(0)) = P ′(0)k. Since valK(P ′(0)) > 0, this implies
that k = 1.

Corollary 5.8. — The set of those τ ∈ Gal(K/Qp) such that rτ > 1 forms a subgroup
of Gal(K/Qp), and if F is the subfield of K cut out by this subgroup, then η(g) ∈ O×F .
The weight rτ is independent of τ ∈ Gal(K/F ).

Proof. — By proposition 4.3, τ = Id satisfies condition (iii) of proposition 5.6 above, and
therefore condition (i) as well, so that rId > 1. If σ, τ satisfy condition (v) of ibid, then
we can write uσ = fσ(ϕ−jσd (u)) and uτ = fτ (ϕ−jτd (u)) so that uστ = fστ ◦ fσ(ϕ−(jτ+jσ)

d (u))
and therefore στ also satisfies condition (v). Since Gal(K/Qp) is a finite group, these
two facts imply that the set of τ ∈ Gal(K/Qp) such that rτ > 1 is a group.

By lemma 5.7, we have P τ ◦ fτ (T ) = fτ ◦P (T ). This implies that P ′(0) ∈ mF and also
that (P τ )◦n ◦ fτ (T ) = fτ ◦ P ◦n(T ), so that

1
P ′(0)n (P τ )◦n ◦ fτ (T ) = 1

P ′(0)nfτ ◦ P
◦n(T ),

which implies by passing to the limit that LτP ◦fτ (T ) = f ′τ (0)·LP (T ). Since Colτg ◦fτ (T ) =
fτ ◦ Colg(T ), we have g(LτP ◦ fτ (u)) = τ(η(g)) · (LτP ◦ fτ (u)). Moreover, LτP ◦ fτ (u) =
f ′τ (0) ·LP (u), and therefore τ(η(g)) = η(g). This is true for every τ ∈ Gal(K/F ), so that
η(g) ∈ O×F . The fact that η(g) ∈ O×F implies that rτ depends only on τ |F and is therefore
independent of τ ∈ Gal(K/F ).

6. Local class field theory

We now prove theorem D, and show how local class field theory allows us to derive
theorem A from theorem D. We still assume that K/Qp is Galois for simplicity. Let λ be
a uniformizer of OK and let Kλ denote the extension of K attached to λ by local class
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field theory. This extension is generated over K by the torsion points of a Lubin-Tate
formal group defined over K and attached to λ (see for instance [LT65] and [Ser67]).
Let χKλ : Gal(Kλ/K)→ O×K denote the corresponding Lubin-Tate character.

We still assume that the extension K∞/K is Galois, so that it is an abelian totally
ramified extension. This implies that there is a uniformizer λ of OK such that K∞ ⊂ Kλ.
Let η : Γ→ O×K be the character constructed in §5.

Proposition 6.1. — We have η = ∏
τ∈Gal(K/Qp) τ(χKλ )rτ .

Proof. — The character η : Γ→ O×K is crystalline, and its weight at τ is rτ by definition.
The character η0 = η · (∏τ∈Gal(K/Qp) τ(χKλ )rτ )−1 of Gal(Kλ/K) is therefore crystalline
with weights 0 at all embeddings, so that it is an unramified character of Gal(Kλ/K).
Since Kλ/K is totally ramified, we have η0 = 1.

Proposition 6.1 and corollary 5.8 imply the following, which is theorem D.

Theorem 6.2. — There exists F ⊂ K and r ∈ Z>1 such that η = NK/F (χKλ )r.

We now show how this implies theorem A. If u ∈ O×K , let µKu denote the unramified
character of GK that sends the Frobenius map of kK to u. If F is a subfield of K, and
NK/F (λ) = $hu with $ a uniformizer of OF and some u ∈ O×F , then NK/F (χKλ ) = χF$ ·µKu .

Proposition 6.3. — Let S be a relative Lubin-Tate group, attached to an extension
E/F , and an element α = $hu ∈ O×F . The action of Gal(Qp/E) on the torsion points
of S is given by g(x) = [χF$ · µEu (g)](x).

Proof. — See §4 of [Yos08].

Let F be the subfield of K afforded by theorem 6.2, and let E be the maximal unram-
ified extension of F contained in K.

Theorem 6.4. — There exists a relative Lubin-Tate group S, relative to the extension
E/F , such that if KS

∞ denotes the extension of K generated by the torsion points of S,
then K∞ ⊂ KS

∞ and KS
∞/K∞ is a finite extension.

Proof. — Let λ be a uniformizer of K such that K∞ ⊂ Kλ and let π = NK/E(λ) and
α = NK/F (λ), so that π is a uniformizer of E and α = NE/F (π). Let S be a relative
Lubin-Tate group attached to α, and let KS

∞ be the extension of K generated by the
torsion points of S. If g ∈ Gal(Qp/K

S
∞), then NK/F (χK)(g) = 1 by proposition 6.3

and the observation preceding it, so that η(g) = 1 by theorem 6.2. This implies that
K∞ ⊂ KS

∞. By Galois theory and theorem 6.2,
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1. KS
∞ is the field cut out by {g ∈ GK | NK/F (χKλ (g)) = 1};

2. K∞ is the field cut out by {g ∈ GK | NK/F (χKλ (g))r = 1}.

This implies that KS
∞/K∞ is a finite Galois extension, whose Galois group injects into

{x ∈ O×F | xr = 1}.

This proves theorem A. We conclude this § with an example of a ϕ-iterate extension
that is Galois, corresponding to a polynomial P (T ) ∈ Qp[T ] such that r = 2 and such
that the extension KS

∞/K∞ is of degree 2 in the notation of theorems 6.2 and 6.4.

Theorem 6.5. — Let K = Q3, P (T ) = T 3 +6T 2 +9T and u0 = −3. The corresponding
iterated extension K∞ is Q3(µ3∞){±1}⊂Z×3 , and η = χ2

cyc.

Proof. — For k > 1, let Ck(T ) denote the k-th Chebyshev polynomial, which is charac-
terized by the fact that Ck(cos(θ)) = cos(kθ). Let Pk(T ) = 2(Ck(T/2 + 1) − 1), so that
Pk(T ) is a monic polynomial of degree k, and Pk(2(cos(θ) − 1)) = 2(cos(kθ) − 1). Note
that P (T ) = P3(T ) and that u0 = −3 = 2(cos(2π/3)− 1). The element un is therefore a
conjugate of 2(cos(2π/3n+1)− 1). This proves the fact that K∞ = Q3(µ3∞){±1}⊂Z×3

If g ∈ GQ3 , then g(2(cos(2π/3n) − 1) = 2(cos(2πχcyc(g)/3n) − 1). This implies that
Colg(T ) = Pk(T ) if χcyc(g) = k ∈ Z>1. The formula for η now follows from this, and the
well-known fact that C ′k(1) = k2 if k > 1.

We leave to the reader the generalization of this construction to other p and other
Lubin-Tate groups. The results of §2 of [LMS02] should be useful for this.
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