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Abstract. — Let K be a finite extension of Q,. We use the theory of (¢, I')-modules
in the Lubin-Tate setting to construct some corestriction-compatible families of classes in
the cohomology of V, for certain representations V of Gal(Q,/K). If in addition V is
crystalline, we describe these classes explicitly using Bloch-Kato’s exponential maps. This
allows us to generalize Perrin-Riou’s period map to the Lubin-Tate setting.
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Introduction

Let K be a finite extension of Q,, and let G = Gal(Q,/K). In this article, we use the
theory of (¢, T')-modules in the Lubin-Tate setting to construct some classes in H* (K, V),
for “ F-analytic” representations V' of G. If in addition V' is crystalline, we describe these
classes explicitly using Bloch and Kato’s exponential maps and generalize Perrin-Riou’s
period map to the Lubin-Tate setting.

We now describe our constructions in more detail, and introduce some notation which
is used throughout this paper. Let F' be a finite Galois extension of Q,, with ring of
integers Op and maximal ideal mpg, let 7 be a uniformizer of O and let kr = Op /7 and
q = Card(kr). Let LT be the Lubin-Tate formal group [LT65] attached to 7. We fix a
coordinate T" on LT, so that for each a € Op the multiplication-by-a map is given by a
power series [a|(T) = aT + O(T?) € Op[T]. Let log;+(T) denote the attached logarithm
and expp(7) its inverse for the composition. Let x. : Gp — O be the attached Lubin-
Tate character. If K is a finite extension of F', let K, = K(LT[r"]) and K., = U,>1 K,
and 'y = Gal(K/K).

Let Ar denote the set of power series ;.7 a;T° with a; € O such that a; — 0 as
i — —oo and let Bp = Ap[l/7], which is a field. It is endowed with a Frobenius map
o, f(T) — f([7](T)) and an action of I'p given by g : f(T') — f([xx(¢)](T)). If K is a
finite extension of F', the theory of the field of norms ([FW79a, FW79b| and [Win83))
provides us with a finite unramified extension Bx of Br. Recall [Fon90] that a (¢, I')-
module over By is a finite dimensional Bg-vector space endowed with a compatible
Frobenius map ¢, and action of I',. We say that a (¢,I')-module over B is étale if it
has a basis in which Mat(¢,) € GL4(A k). The relevance of these objects is explained by
the result below (see [Fon90], [KR09]).

Theorem. — There is an equivalence of categories between the category of F-linear rep-

resentations of Gk and the category of étale (¢, 1")-modules over By.

Let B} denote the set of power series f(T') € Bp that have a non-empty domain of
convergence. The theory of the field of norms again provides us [Mat95] with a finite
extension Bl of B,. We say that a (¢, ')-module over By is overconvergent if it has a
basis in which Mat(¢,) € GL4(B) and Mat(g) € GLy(BL) for all g € Tg. If F = Q,,
every étale (¢, I')-module over Bk is overconvergent [CC98]. If F' # Q,, this is no longer
the case [FX13]. Let us say that an F-linear representation V' of Gk is F-analytic if
for all embeddings 7 : F' — Q,,, with 7 # Id, the representation C, ®F V is trivial (as a

semilinear C,-representation of Gx). The following result is known [Ber16].
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Theorem. — If V is an F-analytic representation of Gk, it is overconvergent.

Another source of overconvergent representations of G is the set of representations
that factor through I'x (see §1.3). Our first result is the following (theorem 1.3.1).

Theorem A. — If V is an overconvergent representation of Gy, there exists an F-
analytic representation X., of Gk, a representation Yr of G that factors through 'k,

and a surjective G g -equivariant map Xa, Qp Yr — V.

We next focus on F-analytic representations. Let Biig r denote the Robba ring, which
is the ring of power series f(T) = Y;cz a;/T" with a; € F such that there exists p < 1

such that f(T') converges for p < |T| < 1. We have B}, C BL& - The theory of the field

of norms again provides us with a finite extension Biig, x of BLg’ p. 1f V is an F-linear

representation of Gk, let D(V') denote the (¢, I")-module over By attached to V. If V' is

overconvergent, there is a well defined (p, T')-module Di(V) over B, attached to V, such

that D(V) = B ®gi DI(V). We call D (V) the (¢, T')-module over B}, , attached to
K

rig rig,
V, given by Dy, (V) = B, x ®g1 DI(V).

The ring BLg,K is a free goq(BIig’K)-module of degree ¢. This allows us to define [FX13]
a map g : Blig K — BLg x that is a I'k-equivariant left inverse of ¢,, and likewise, if
V' is an overconvergent representation of Gk, a map 1, : DLg(V) — DLg(V) that is a
I"k-equivariant left inverse of ¢,.

The main result of this article is the construction, for an F-analytic representation V'

of G, of a collection of maps

h}{n,V : DT (V)quI — Hl(Krw V)7

Trig

having a certain number of properties. For example, these maps are compatible with
corestriction: corg, /K, © h%{,b“,v = hg, v if n > 1. Another property is that if F' = Q,
and ™ = p (the cyclotomic case), these maps coincide with those constructed in [CC99|
(and generalized in [Ber03)).

If now K = F and V is a crystalline F-analytic representation of G, we give explicit
formulas for hj, - using Bloch and Kato’s exponential maps [BK90]. Let V' be as above,
let Deis(V) = (Beris.r @r V)CF (note that because the ® is over F, this is the identity

component of the usual Dgys) and let t, = logip(7). Let {u,}ns0 be a compatible

+

sequence of primitive 7"-torsion points of LT. Let B/}, r

denote the positive part of the
Robba ring, namely the ring of power series f(T) = ;50 a; 1" with a; € F such that
f(T') converges for 0 < |T'| < 1. If n > 0, we have a map ¢," : Bjj, p = Fy[ts] given

by f(T) — f(u, ® exppr(t:/7")). Using the results of [KRO09], we prove that there is a
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natural (¢, I')-equivariant inclusion DLg(V)qul — B, r[1/tx] ®p Dexis(V). This provides
us, by composition, with maps ¢, " : DLg(V)wq:1 — Fo((tx)) ®F Denis(V) and Oy 0 ™
DLg(V)%:1 — F, @p Deis (V) where 9y is the “coefficient of t2” map. Recall finally that
we have two maps, Bloch and Kato’s exponential expp, 1 : Fj, @ Deris(V) — HY(F,,V)
and its dual expy, () HY(F,,V) — F,®pDeuis(V) (the subscript V*(1) denotes the dual
of V twisted by the cyclotomic character, but is merely a notation here). The first result

is as follows (theorem 3.3.1).

Theorem B. — IfV is as above and y € DY (V)%=", then

rig

q "Ov(e,"(v)) ifn>1
(I—q ' ov(y) ifn=0.

Let V =t,-d/dt,,let V; =V —iif i € Z and let h > 1 be such that Fﬂ_thris(V) =
Duis(V). We prove that if y € (Bjig,F ®p Dais(V))¥e=L, then V)1 0 --- 0 Vy(y) €

DLg(V)%:l, and we have the following result (theorem 3.3.2).

eXp*Fn,V*(l) (h}wn,v(y)) = {

Theorem C. — IfV is as above and y € (B, p ®p Dexis(V))¥=", then

! 0eeeo (1Y expr, v(¢7"0v (e, " (y))) ifn>1
th,V(Vh—l VO(y)) ( 1) (h 1)! {eXpr((l . q_lw(;l)a‘/(y)) an —0.

Using theorems B and C, we give in §3.5 a Lubin-Tate analogue of Perrin-Riou’s “big
exponential map” [PR94] using the same method as that of [Ber03] which treats the
cyclotomic case. It will be interesting to compare this big exponential map with the “big
logarithms” constructed in [Fou05] and [Fou08|.

It is also instructive to specialize theorem C to the case V = F(x,), which corresponds
to “Lubin-Tate” Kummer theory. Recall that if L is a finite extension of F, Kummer
theory gives us a map § : LT(mz) — HY(L, F(xx)). When L varies among the F},, these

maps are compatible: the diagram
LT(mp,,,) —— HY(F,.,,V)
T n | [orrsare
LT(mp,) —— HY{(F,, V)
commutes. Let S denote the set of sequences {z,},>1 with z, € mp, and such that
TrIj;IH/Fn(an) = [¢/7](x,) for n > 1. We prove that S is big, in the sense that (if
F # Q,) the projection on the n-th coordinate map S ®op, F' — F, is onto (this would

not be the case if we did not have the factor ¢/ in the definition of S). Furthermore,
we prove that if x € S, there exists a power series f(7) € (B;ﬁg,F)%:l/” such that
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f(u,) = logr(x,) for n > 1. We have d/dt,.(f(T)) € (B

rig, )%s=! and the following holds

(theorem 3.4.5), where u is the basis of F'(x,) corresponding to the choice of {uy}n>o-
Theorem D. — We have hy, -, (d/dt(f(T)) -u) = (g¢/m)"" - () for alln > 1.

In the cyclotomic case, there is [Col79] a power series Col,(7T') such that Col,(u,) = z,
for n > 1. We then have f(T') = logCol,(T), and theorem D is proved in [CC99]. In
the general Lubin-Tate case, we do not know whether there is a “Coleman power series”
of which f(T") would be the log; . This seems like a non-trivial question.

It would be interesting to compare our results with those of [SV17]. The authors
of [SV17] also construct some classes in H'(K, V'), but start from the space D(V (x, -
Xc_ylc))wq:“/ 9, In another direction, is it possible to extend our constructions to represen-
tations of the form V ®p Yr with V' F-analytic and Yr factoring through I'x, and in

particular recover the explicit reciprocity law of [Tsu04]?

1. Lubin-Tate (¢, [')-modules

In this chapter, we recall the theory of Lubin-Tate (¢, I')-modules and classify over-

convergent representations.

1.1. Notation. — Let F' be a finite Galois extension of Q, with ring of integers Op,
and residue field kp. Let 7 be a uniformizer of Op. Let d = [F : Q,] and e be the
ramification index of F/Q,,. Let ¢ = p/ be the cardinality of kr and let Fy = W (kz)[1/p]
be the maximal unramified extension of Q, inside F'. Let o denote the absolute Frobenius
map on Fj.

Let LT be the Lubin-Tate formal Op-module attached to m and choose a coordinate T’
for the formal group law, such that the action of w on LT is given by [x](T) = T9+=T. If
a € O, let [a](T') denote the power series that gives the action of a on LT. Let log; (7))
denote the attached logarithm and exp; (7)) its inverse. If K is a finite extension of F', let
K, = K(LT[7"]) and let Koo = Up21 K. Let Hg = Gal(Q,/Ky) and T'x = Gal(K/K).
By Lubin-Tate theory (see [LT65]), I is isomorphic to an open subgroup of Oy via the
Lubin-Tate character x, : I'x — OF.

Let n(K) > 1 be such that if n > n(K), then x, : 'k, — 1+ 7"Op is an isomorphism,
and logp 1+ 7"Op — 7"OF is also an isomorphism.

+
rig, F'

and we denote it by t,. Recall that ¢(t:) = xx(9)-tz if ¢ € Gk and that ¢,(t;) = 7-t,. Let

Since log; (T converges on the open unit disk, it can be seen as an element of B
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0 = d/dt, so that Of(T) = a(T)-df (T)/dT, where a(T) = (dlog(T)/dT)~' € Op[T]*.
We have 0o g = xx(9)-go0dif g€ 'y and Do, =m-,00.

Recall that Biig, » denotes the Robba ring, the ring of power series f(T) = Yz a;T"
with a; € F such that there exists p < 1 such that f(7") converges for p < |T| < 1. We
have B, C BLg’ r and by writing a power series as the sum of its plus part and its minus
part, we get BL&F =B, r+ Bl

Each ring R € {BL&F, B, r, Bl By} is equipped with a Frobenius map ¢, : f(T) —
f([7)(T)) and an action of I'r given by ¢ : f(T') — f([xx(9)](T)). Moreover, the ring R
is a free p,(R)-module of rank ¢, and we define v, : R — R by the formula ¢,(¢,(f)) =
1/q-Trgyp,r)(f)- The map 1), has the following properties (see for instance §2A of [FX13]
and §1.2.3 of [Col16]): ¢,(z-¢,(y)) = 1,(z) -y, the map 1), commutes with the action of
Dp, Doty = 7 14,00 and if £(T) € Bl - then ¢, 00,(f) = 1/q-Sacray f(T2). Tt M
is a free R-module with a semilinear Frobenius map ¢, such that Mat(yp,) is invertible,
then any m € M can be written as m = >, 1; - ¢,(m;) with r; € R and m; € M and the
map ¢, : m — >, ,(r;) - m; is then well-defined. This applies in particular to the rings

Bl . Bt

tig 10> Brig k05 Bi., Bx and to the (¢, I')-modules over them.

1.2. Construction of Lubin-Tate (¢, I')-modules. — A (¢, ')-module over Bx (or
over B} or over BLg ) is a finite dimensional B g-vector space D (or a finite dimensional
Bk—vector space or a free BLg’ -module of finite rank respectively), along with a semi-
linear Frobenius map ¢, whose matrix (in some basis) is invertible, and a continuous,
semilinear action of I'x that commutes with ¢,.

We say that a (¢, ')-module D over By is étale if D has a basis in which Mat(y,) €
GL4(Ak). Let B be the p-adic completion of Uy, pBys where M runs through the finite
extensions of F. By specializing the constructions of [Fon90], Kisin and Ren prove the
following theorem (theorem 1.6 of [KRO09]).

Theorem 1.2.1. — The functors V +— D(V) = (B®r V)5 and D — (B ®g, D)?=!
give rise to mutually inverse equivalences of categories between the category of F-linear

representations of Gg and the category of étale (p,1")-modules over By

We say that a (¢, ')-module D is overconvergent if there exists a basis of D in which
the matrices of ¢, and of all g € I'x have entries in B}. This basis then generates a
Bk—vector space DT which is canonically attached to D. If V is a p-adic representation,
we say that it is overconvergent if D(V) is overconvergent, and then Df(V') denotes the
corresponding (¢, T')-module over Bl.. The main result of [CC98] states that if F' = Q,,

then every étale (¢, I")-module over Bk is overconvergent (the proof is given for 7 = p,



IWASAWA THEORY AND F-ANALYTIC LUBIN-TATE (¢,I')-MODULES 7

but it is easy to see that it works for any uniformizer). If F' # Q,,, some simple examples
(see [FX13]) show that this is no longer the case.

Recall that an F-linear representation of Gk is F-analytic if C, ®% V' is the trivial C,-
semilinear representation of Gk for all embeddings 7 # Id € Gal(F'/Q,). This definition
is the natural generalization of Kisin and Ren’s notion of F-crystalline representation.
Kisin and Ren then show that if K C F,, and if V' is a crystalline F-analytic representa-
tion of G, the (¢, ')-module attached to V' is overconvergent (see §3.3 of [KRO9]; they
actually prove a stronger result, namely that the (p,I')-module attached to such a V' is
of finite height).

If DLg is a (¢, ')-module over BIig,K? and if g € 'k is close enough to 1, then by

standard arguments (see §2.1 of [KR09] or §1C of [FX13]), the series log(g) = log(1 +

T T

rig rig*
is defined on a neighborhood of 0 in Liel'x; the map Lie'x — End(DIig) arising from
Lg is F-analytic if this map is F-linear (see

(g — 1)) gives rise to a differential operator V, : D;, — Dj;,. The map v — exp(v)
v+ Vexp(o) 18 Qp-linear, and we say that D
§2.1 of [KR09] and §1.3 of [FX13]).

If V is an overconvergent representation of Gy, we let DY (V) = BLg, K ®pi_ Df(V).

rig
The following is theorem D of [Ber16].

Theorem 1.2.2. — The functor V Diig(V) gives rise to an equivalence of categories
between the category of F'-analytic representations of G and the category of étale F'-

analytic Lubin-Tate (¢, I")-modules over BL&K.

In general, representations of Gk that are not F-analytic are not overconvergent (see
§1.3), and the analogue of theorem 1.2.2 without the F-analyticity condition on both
sides does not hold.

1.3. Overconvergent Lubin-Tate (p,I')-modules. — By theorem 1.2.2, there is an
equivalence of categories between the category of F-analytic representations of G and
the category of étale F-analytic Lubin-Tate (¢, I')-modules over Bii& - The purpose of
this section is to prove a conjecture of Colmez that describes all overconvergent repre-
sentations of G .

Any representation V' of G that factors through I'x is overconvergent, since Hg
acts trivially on V' so that D(V) = Bx ®F V' and therefore D(V') has a basis in which
Mat(p,) = Id and Mat(g) € GL4(OF) if g € I'. If X is F-analytic and Y factors
through ', X ®p Y is therefore overconvergent. We prove that any overconvergent
representation of G is a quotient (and therefore also a subobject, by dualizing) of some

representation of the form X ®r Y as above.
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Theorem 1.3.1. — If V is an overconvergent representation of Gk, there exists an F-
analytic representation X of Gk, a representation' Y of G that factors through Uk, and

a surjective G -equivariant map X QY — V.

Proof. — Recall (see §3 of [Ber16]) that if » > 0, then inside BL&K we have the subring

BL’; i of elements defined on a fixed annulus whose inner radius depends on r and whose
T7r

outer raidus is 1, and that (¢, I')-modules over BL& Y.
T7r

1ig(V). We also have rings B of elements defined

on a closed annulus whose radii depend on 7 < s. One can think of an element of BL’; K

x can be defined over B, ;- if r is

large enough, giving us a module D

as a compatible family of elements of {B% }; where I runs over a set of closed intervals
whose union is [r; +oo[. In the rest of the proof, we use this principle of glueing objects
defined on closed annuli to get an object on the annulus corresponding to BL’; K-

Choose 7 > 0 large enough such that DL’g(V) is defined, and s > qr. Let DI"l(V) =
B[;;;s} ®BI{;,K DL’g(V). If a € Op, and if val,(a) > n for n = n(r,s) large enough, the
series exp(a - V) converges in the operator norm to an operator on the Banach space
DIsl(V)). This way, we can define a twisted action of ', on DI"*/(V), by the formula
hx x = exp(log,(x(h)) - V)(x). This action is now F-analytic by construction.

Since s > ¢r, the modules D"77"s/(V) for m > 0 are glued together (using the idea
explained above) by ¢, and we get a new action of I, on DL’Q(V) = DlsFl(V) and
Iig(V). Since ¢, is unchanged, this new (¢, I')-module is étale, and therefore

corresponds to a representation W of Gg,. The representation W is F-analytic by

hence on D

theorem 1.2.2) and its restriction to Hy is isomorphic to V.

Let X = indgﬁnW. By Mackey’s formula, X|g, contains Wy, ~ Vg, as a direct
summand. The space ¥ = Hom(indginVV, V)Hx is therefore a nonzero representation of
'k, and there is an element y € Y whose image is V. The natural map X ®p Y — V is

therefore surjective. Finally, X is F-analytic since W is F-analytic. O]

By dualizing, we get the following variant of theorem 1.3.1.

Corollary 1.3.2. — If V is an overconvergent representation of G, there exists an
F-analytic representation X of Gk, a representation Y of G that factors through Tk,

and an injective G g -equivariant map V — X Qp Y.

1.4. Extensions of (¢,[')-modules. — In this section, we prove that there are no
non-trivial extensions between an F-analytic (¢, I')-module and the twist of an F-analytic
(p,I')-module by a character that is not F-analytic. This is not used in the rest of the

paper, but is of independent interest.
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If 0: T'x — O is a continuous character, and g € 'k, let ws(g) = logd(g)/log x=(g)-
Note that § is F-analytic if and only if ws(g) is independent of g € I'k.

We define the first cohomology group H!'(D) of a (¢, T')-module D as in §4 of [FX13].
Let D be a (¢, I')-module over BLgvK. Let G denote the semigroup 90390 x g and let Z'(D)
denote the set of continuous functions f: G — D such that (h —1)f(g) = (g — 1) f(h)
for all g,h € G. Let BY(D) be the subset of Z'(D) consisting of functions of the form
g+ (g—1)y, y € D and let HY(D) = Z'(D)/BY(D). If g € G and f € Z', then
[h— (g —1)f(R)] = [h— (h—1)f(g)] € B'. The natural actions of 'y and ¢, on H
are therefore trivial.

If Dy and Dy are two (¢, I')-modules, then Hom(D1, D) = Homeig Dy, Dy) is a

free Biig’K-module of rank rk(Dg) rk(D;) which is easily seen to be itself a (¢, I')-module.

K—mod(

The space H!(Hom (D1, Dy)) classifies the extensions of D; by Dg. More precisely, if D
is such an extension and if s: D; — D is a Biig r-linear map that is a section of the
projection D — Dy, then g — s — g(s) is a cocycle on G with values in Hom(Dq, Dy) (the
element g(s) € Hom(Dy, D) being defined by ¢(s)(g(x)) = g(s(x)) for all g € G and all
x € Dy). The class of this cocycle in the quotient H!(Hom(D1, Dy)) does not depend on
the choice of the section s, and every such class defines a unique extension of D; by D

up to isomorphism.

Theorem 1.4.1. — If D is an F-analytic (p,I')-module, and if §: 'y — O is not
locally F-analytic, then H'(D(d)) = {0}.

Proof. — If g € Tk and x(d) € D(0) with € D, we have
Vy(2(0)) = V(x)(6) + ws(g) - x(9).

If g, h € Tk, this implies that V,(z(8)) =V (x(8)) = (ws(g)—ws(h))-x(8). If f € HY(D(S))
and g € T'g, then g(f) = f and therefore V,(f) = 0. The formula above shows that if

k € Ik, then Vy(f(k)) = Vi (f(k)) = (ws(g) —ws(h)) - f(k), so that 0 = (Vg — Vi)(f) =
(ws(g) —ws(h)) - f, and therefore f = 0 if ¢ is not locally analytic. O

2. Analytic cohomology and Iwasawa theory
In this chapter, we explain how to construct classes in the cohomology groups of F-

analytic (o, I")-modules. This allows us to define our maps h}(mv.

2.1. Analytic cohomology. — Let G be an F-analytic semigroup and let M be a
Fréchet or LF space with a pro-F-analytic (§2 of [Ber16]) action of G. Recall that this
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means that we can write M = hgz @j M;; where M;; is a Banach space with a locally
analytic action of G. A function f: G — M is said to be pro-F-analytic if its image lies
in T&lj M;; for some 7 and if the corresponding function f : G — M,; is locally F-analytic
for all j.

The analytic cohomology groups H! (G, M) are defined and studied in §4 of [FX13|
and §5 of [Col16]. In particular, we have H? (G, M) = MY and H. (G,M) =
Z (G, M)/BL (G, M) where Z!_ (G, M) is the set of pro-F-analytic functions f : G — M
such that (g —1)f(h) = (h—1)f(g) for all g,h € G and B} (G, M) is the set of functions
of the form g — (g — 1)m.

Let M be a Fréchet space, and write M = @n M,, with M, a Banach space such that
the image of M, ; in M, is dense for all j > 0.

Proposition 2.1.1. — We have H,(G, M) = lim H; (G, M,).

Proof. — By definition, we have an exact sequence
0 — BL.(G, M,) —Z! (G, M,) — H. (G, M,) — 0.

It is clear that By, (G, M) = lim B, (G, M,) and that Z;,(G, M) = lim 7; (G, M,),
since these spaces are spaces of functions on G satisfying certain compatible condi-
tions. The Banach spaces B! (G, M,,) satisfy the Mittag-Leffler condition: Bl (G, M,,) =
M, /Z\/[E and the image of M, ; in M, is dense for all j > 0. This implies that the

sequence

0 — Lim By, (G, M,) — lim Z,, (G, M,,) — lim H,,(G, M) — 0
is exact, and the proposition follows. O

In this paper, we mainly use the semigroups I'x, I'x x ® where ® = {¢}, n € Z>¢}
and 'y x U where ¥ = {47, n € Z>o}. The semigroups ® and ¥ are discrete and the

F-analytic structure comes from the one on I'g.

Definition 2.1.2. — Let G be a compact group and let H be an open subgroup of
G. We have the corestriction map cor : H} (H, M) — H. (G, M), which satisfies cor o
res = [G : H]. This map has the following equivalent explicit descriptions (see §2.5 of
[Ser94] and §II.2 of [CC99]). Let X C G be a set of representatives of G/H and let
f €ZL (H, M) be a cocycle.

1. By Shapiro’s lemma, H (H, M) = H} (G,ind% M) and cor is the map induced by

i Y pex w-i(zTh);
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2. if M C N where N is a G-module and if there exists n € N such that f(h) =

(h —1)(n), then cor(f)(g) = (9 — 1)(Xsex zn);
3. if g € G, let 7, : X — X be the permutation defined by 7,(z)H = gxH. We have

cor(£)(9) = Soex () - flryla) " ga).

If g € I'k, let £(g) = log, xx(g). If M is a Fréchet space with a pro-F-analytic action
of T and if g € T is such that x,(g9) € 1 + 2pOp, then lim, ,..(¢*" — 1)/(p"¢(g))
converges to an operator V on M, which is independent of g thanks to the F-analyticity
assumption. If ¢ : 'y — M is an F-analytic map, let ¢/(1) denote its derivative at the

identity.

Proposition 2.1.3. — If M is a Fréchet space with a pro-F-analytic action of I'k, the
map ¢ — (1) induces an isomorphism H., (L, M) = (M/VM)'%, under which coryk

corresponds to Try k.

Proof. — Assume for the time being that M is a Banach space. We first show that the
map induced by ¢+ /(1) is well-defined and lands in (M/VM)'%. The map ¢+~ /(1)
from Z! (Tx, M) — M is well-defined, and if ¢(g) = (g — 1)m, then ¢(1) = Vm so
that there is a well-defined map H. (T'x, M) — M/V M. If h € T'k then (h — 1)d(1) =
limg_1(h —1)e(g)/€(g) = limy_1 (g — 1)c(h)/l(g) = Ve(h) so that the image of ¢ — /(1)
lies in (M/VM)"'x.

The formula for the corestriction follows from the explicit descriptions above: if h € 'y,
then 7,(x) = x so that cor(c)(h) = > ,ex x - ¢(h) and

cor(c)' (1) = lim cor(c)(h)/E(h) = g(x (1) = Trp k(' (1)).

We now show that the map is injective. If ¢(1) = Vm, then the derivative of g —
c(g) — (g — 1)m at g = 1 is zero and hence ¢(g) = (¢ — 1)m on some open subgroup I'r,
of 'k and ¢ = [L : K] 'coryk oresg/r(c) = 0.

We finally show that the map is surjective. Suppose now that y € (M/VM)'x. The
formula g — (exp(¢(g)V)—1)/V -y defines an analytic cocycle ¢z, on some open subgroup
I's of I'x. The image of [L : K| !¢y under cory/k gives a cocyle ¢ € H} (I'x, M) such
that ¢(1) = y.

We now let M = lim M, be a Fréchet space. The map H;,(I'x, M) — (M/VM)"x
induced by ¢ — /(1) is well-defined, and in the other direction we have the map y — ¢;:

(M/VM)'x — @(MH/VMR)FK — @H;H(FK, M,) — HL (Tg, M).

These two maps are inverses of each other. O
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Remark 2.1.4. — Compare with the following theorem (see [Tam15]|, corollary 21): if
(G is a compact p-adic Lie group and if M is a locally analytic representation of G, then

(G, M) = Hi(Lie(G), M)C.

2.2. Cohomology of F-analytic (¢,I')-modules. — If V' is an F-analytic represen-
tation, let H! (K,V) C HY(K,V) classify the F-analytic extensions of F' by V. Let D

denote an F-analytic (¢, ')-module over BL& 5, such as DLg(V).

Proposition 2.2.1. — IfV is F-analytic, then H. (K, V) =H. (Tx x @, DIig(V)).

Proof. — The group H, (T'x x @, DLg(V)) classifies the F-analytic extensions of BL&K

by DLg(V), which correspond to F-analytic extensions of F' by V by theorem 1.2.2. [

Theorem 2.2.2. — If D is an F-analytic (o,T)-module over B!

rigx ond @ = 0,1, then
H: ([, D¥=%) = 0.

Proof. — Since B, » C B, 1, the B, ,~module D is a free Bf;, ;-module of finite rank.
Let R denote Biig r and let Rc, denote C,® FBL& r the Robba ring with coefficients in
C,. There is an action of G on the coefficients of R¢, and Rgg =Rr.

Theorem 5.5 of [Col16] says that H. (I'x, (Rc, ®r, D)**=") = 0. For i = 0, this
implies our claim. For i = 1, it says that if ¢ : [x — D¥%=C is an F-analytic cocycle,
there exists m € (R¢, ®r, D)¥=" such that ¢(g) = (9 — 1)m for all g € I'k. If & € Gp,
then ¢(g) = (¢ — 1)a(m) as well, so that a(m) —m € ((Rc, ®r, D)¥=°)'x = 0. This
shows that m € ((Rg, @r, D)%e=0)%F = D¥a=0, O

Corollary 2.2.3. — The groups H' (I'x x ®,D) and H (T'x x ¥,D) are isomorphic
fori=0,1.

Proof. — If i = 0, then we have an inclusion D#e=bI'sx C D¥«=LIx If x € D¥=LI% | then
T — py(z) € D¥=0I'x = {0} by theorem 2.2.2, so that = ¢,(z) and the above inclusion
is an equality.

Now let i =1. If f € ZL (T x ®,D), let Tf € ZL (T'x X ¥, D) be the function defined
by Tf(g) = f(g) if g € I and T'f(0y) = —1y(f(04))-

If f e Z Tk x¥,D) and g € Tk, then (g0, — 1)f(g) € D¥=° and the map
g+ (g — 1) f(g) is an element of Z! (g, D¥=0). By theorem 2.2.2, applied once for
existence and once for unicity, there is a unique m; € D¥=Y such that (¢,¢, — 1)f(g) =

(g—1)my. Let Uf € ZL (T'x x ®,D) be the function defined by Uf(g) = f(g) if g € 'k
and Uf(@q) = _Spq(f(q/}q)) +my.
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It is straightforward to check that U and T are inverses of each other (even at the level
of the Z! ) and that they descend to the H} . ]

Theorem 2.2.4. — The map [ — f(,) from ZL (Tx x U,D) to D gives rise to an

exact sequence:

1%
D
0 — H. (Tg,D¥=Y) — H! (I'x x ¥,D) — ( )

% —1
Proof. — If f € ZL (Px x ¥, D) and g € Tk, then (g—1) f(¢,) = (¥,—1)f(g) € (,—1)D
so that the image of f is in (D/(¢, — 1))"%. The other verifications are similar. O
2.3. The space D/(¢, —1). — By theorem 2.2.4 in the previous section, the cokernel

of the map H} (T'gx,D%=') — H. (I'x x ¥,D) injects into (D/(¢), — 1))'%. It can be
useful to know that this cokernel is not too large. In this section, we bound D/(v, — 1)

when D = B!

N, With the action of ¢, twisted by a~!, for some a € F*.

Theorem 2.3.1. — Ifa € F*, then ¥, —a: BL&F — BL&F is onto unless a = ¢~ ‘7™

for some m € Zy, in which case BIig,F/(wq —a) is of dimension 1.

.I.

In order to prove this theorem, we need some results about the action of ¢, on By, p.

Recall that the map 0 = d/dt, was defined in §1.1.

Lemma 2.3.2. — Ifa € F*, then ap, — 1 : B,

+ . .
rig,F 7 Brigf s an isomorphism, unless

a=m7"" for some m € Zq, in which case

— Bt

ker(a(pq —1: Br+ig,F rig,F) = Ft:rn

im(a@q -1 B?i_g,F — B?i_g,F) - {f(T) S Bji_g,F | am(f)(o) - 0}
Proof. — This is lemma 5.1 of [FX13]. O

Lemma 2.3.3. — If m € Zy, there is an h(T) € (B, r

)%4=0 such that ™ (h)(0) # 0.

Proof. — We have ¢,(T") = 0 by (the proof of) proposition 2.2 of [FX13]. If there was
some mg such that 0™(T')(0) = 0 for all m > my, then T would be a polynomial in %,

which it is not. This implies that there is a sequence {m;}; of integers with m; — +o0,
such that 0™ (T)(0) # 0, and we can take h(T) = 0™~ (T) for any m; > m. O

Corollary 2.3.4. — Ifa € F*, then ¢y — a: B, p — B, ¢ is onto.

Proof. — If f(T) € B, ; and if we can write f = (1 — ap,)g, then f = (¢, — a)(p,(9))-

rig, F’
If this is not possible, then by lemma 2.3.2 there exists m > 0 such that a = 7#=™

and 0™(f)(0) # 0. Let h be the function provided by lemma 2.3.3. The function f —
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(0™(£)(0)/0™(h)(0))-h is in the image of 1 —ap, by lemma 2.3.2, and h = (¢,—a)(—a"*h)
since 9,(h) = 0. This implies that f is in the image of ¢, — a. ]

Lemma 2.3.5. — Ifa™ € q-Op, then ¢, —a: BL&F — BL&F is onto.

Proof. — We have BLg,F = B;Eg’F + B} (by writing a power series as the sum of its
plus part and of its minus part) and by corollary 2.3.4, ¢, —a : B, p — Bj, p is

onto. Take f(T) € B, choose some r > 0 and let B%O’T] be the set of f(T) € B, that
converge and are bounded on the annulus 0 < val,(z) < r. It follows from proposition
1.4 of [Col16] that if n > 0, then ¥}(f) € ng’r] and by proposition 2.4(d) of [FX13],
the sequence (q/7 - ¢,)"(f) is bounded in BE;Q’T]. The series 3,50 a™' "¢ (f) therefore

converges in B"" and we can write f = (Y, — a)g where g = a™ (1 —a ') f =
Snso ¢ TUR(f). -
Let Res : BLg,F — F be defined by Res(f) = a_; where f(T)dt, = > ,cz a,T"dT. The

following lemma combines propositions 2.12 and 2.13 of [FX13].

Lemma 2.3.6. — The sequence 0 — F — BI&F S BL 2% F 50 exact, and

Res(¢y(f)) = 7/q - Res(f). |

Proof of theorem 2.3.1. — Since 0 o ¢, = 7 '), 0 9, the map 9 induces a map:
BIig,F 1o} Biig,F

Der .
(Der) Vg —a Vg — am
Take = € BLg’F such that Res(z) = 1. We have Res((¢, — am)x) = 7/q — am. If
a # ¢!, this is non-zero and if f € BiigﬁF, proposition 2.3.6 allows us to write f =

dg + Res(f)/(r/q — ar) - (¢, — am)z. This implies that (Der) is onto if a # ¢~
Combined with lemma 2.3.5, this implies that BLg,F/(% —a) = 0 if a is not of the

-1

form ¢~ 7™ for some m € Z;.

When a = ¢!, we have an exact sequence

T T
Brig,F 0 Brig,F Res
7
—1
wq —q T

which now implies that BL& /Wy — g 'm) = F, generated by the class of z.

>y ' — 0,

T
rig, F'

is such that 0f = (¢, — am)g, then Resdf = Res(¢), — am)g = (7/q — am) Res(g), so
that Res(g) = 0 and we can write ¢ = dh. We have O(f — (¢, — a)h) = 0, so that
f = (g — a)h + ¢, with ¢ € F. By corollary 2.3.4, there exists b € B, » such that
(g —a)(b) = ¢, so that f = (¢, — a)(h + b) and (Der) is bijective. We then have, by

induction on m > 1, that Biigjp/(@bq — g '7™) = F, generated by the class of 0™ (z). O

We now assume again that a # ¢~ and compute the kernel of (Der). If f € B
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Remark 2.3.7. — More generally, we expect that the following holds: if D is a (¢, I')-

module over B!

tig 1¢» the F-vector space D /(g — 1) is finite dimensional.

2.4. The operator ©,. — The power series F'(X) = X/(exp(X)—1) belongs to Q,[X]
and has a nonzero radius of convergence. If M is a Banach space with a locally F-analytic

action of ' and h € 'k is close enough to 1, then
\Y \Y

h—1 exp(l(W)V)—1

converges to a continuous operator on M. If g € 'k, we then define

v V ‘ 1—g"

l—g 1—g® 1—g

0(R)LF(£(h)V)

This operator is independent of the choice of n such that ¢” is close enough to 1, and can

be seen as an element of the locally F-analytic distribution algebra acting on M.

YA
1-g

above. These operators commute with the maps M; — M, (because n can be taken large
enough for both M; and Mj;). This defines an operator % on M itself. The definition
of % extends to an LF space with a pro-F-analytic action of I'k.

Assume that K contains Fy and let r(K) = f+val,([K : F}]). For example, p"/») = ¢"
if n > 1. Assume further that K contains F,(k), so that x. : ['x — OF is injective and

If M is a Fréchet space, write M = 1&11 M; and define operators on each M; as

its image is a free Z,-module of rank d. If b = (by,...,bs) is a basis of I'x (that is,
T = bi” - 5%), then let €*(b) = €(b1) - - £(bg) /p"™) and
d
0, = *(b) - v

R =
Lemma 2.4.1. — If K =F, and m >0 and x € F,,,, then

Op(x) =q¢ " " Trp,,,. /5 (7).
Proof. — Since V = limy_,.. (5" — 1) /pFe(b), we have

1T @ -1 -1
6= fim LD 1)
k—oo q™p (bl_l)...(bd_l)
The set {b{'--- b5} with 0 < a; < p* — 1 runs through a set of representatives of
T, /T =T, /Ty ek so that

A VIR A VI

: = T - —.T :
g (b 1) (b 1) gk e B T e T P e/

The lemma follows from taking k large enough so that ek > m. O]

Forie€Z,let V, =V —1.
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Lemma 2.4.2. — If b is a basis of Ty, and if f(T) € (Bf, p)"=", then ©,(f(T)) €
(t=/5(T)) - BIgF, and if h > 2 then Vj_10---0V100,(f(T)) € (tw/gp’ql( )k B;tgF

Proof. — If m > 1, then by lemma 2.4.1 and using repeatedly the fact (see §1.1) that
¥Pq © wQ(f) = 1/(] ’ ZzELT[ﬂ] f(T ©® Z),

O (f (Unsm)) = 1/qm+n : TrFm+n/an(um+n) = w;n(f) (un) = 0.

This proves the first claim, since an element f(T') € B, 5 is divisible by t,/¢7(T) if and

only if f(up+m) = 0 for all m > 1. The second claim follows easily. O

Let D be a @,-module over F. Let ¢, ": B, r

[1/t:]®@F D — F,(t;) ®F D be the map
o " () @ s 7" f(un @ exprp(te/7")) @ @, " (2).

If f(t;) € Fo((tz) ®F D, let Op(f) € F,, @ D denote the coefficient of V.

Lemma 2.4.3. — Ify € (B, p[1/t:] @ D)V~ and if m > n, then

rig,F’

“m sy @ Op (™ () ifn>1
q TrFm/FnaD((pq (y)) - {(1 i q_l(Pq_l)aD(y> an —0.

Proof. — If y = t;* 302 axT" € By, p[1/tz] ®p D, then (by definition of ¢, ™)

o, " (y) = 7™, ZZsoq (ar) (um ® exprp(t/T™))",

and ¢,(y) = y means that:

©q(y)(T) = p Z y(T S w).
] (@)=0

If m > 2, the conjugates of u,, under Gal(F,,/F,,—1) are the {w ® U, }{](w)=0 so that:
Trr,/F 1000y ™ (V)

:aD( > "t ZZS% ag) (W D Up © expyyp(t. /7" >>k>
[7]

(w)=0

afer (o)
[7](w)=0

)=
= an(SOq " 1)(9))
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For m = 1, the computation is similar, except that the conjugates of u; under Gal(F;/F)

are the w, where [7](w) = 0 but w # 0, which results in:

Trpyrdp(e, (W) =0p [ @, | D0 y(T@w) || =0pley — ¢, ()
[W]OEO;)O:O
[l
2.5. Construction of extensions. — Let D be an F-analytic (¢, I')-module over

Biig, - The space D¥s=! is a closed subspace of D and therefore an LF space. Take K
such that K contains F},(x) and let b be a basis of I'k.

Proposition 2.5.1. — If y € D¥=L, there is a unique cocycle cy(y) € ZL (g, D¥a=1)
such that for all 1 < j < d and k > 0, we have

-1 vt
bj =1 Tlig(bi —1)

ey (y) (b)) = €(b) - (y).

We then have ¢,(y)' (1) = Op(y).

Proof. — There is obviously one and only one continuous cocycle satisfying the conditions
of the proposition. It is Q,-analytic, and in order to prove that it is F-analytic, we need

to check that the directional derivatives are independent of j. We have

oy ) v
lim —22 92 — 5 (h) e ——— (y) =
sy 0(bF) (b) M —1) (y) = O(y),
which is indeed independent of j, and thus ¢,(y)' (1) = Oy(y). 0

Lemma 2.5.2. — Ifn>n(K) and L = K,, and M = K,,.. and b is a basis of I'y, then

W is a basis of I'ny and corpyrew (y) = c(y).

Proof. — The Lubin-Tate character maps 'y, to 1 4+ 7"Op, and T'y; = I'} because (1 +
T Op)P = 147" Op. Since {b¥* - -- bk} with 0 < k; < p—1 is a set of representatives for

[z /T, and since [M : L] = ¢° = p?, the explicit formula for the corestriction (definition
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2.1.2) implies (here and elsewhere [x] is the smallest integer > )

cor /L (Cow (y))(bf)

el
Z k k bp ! —1 Vi1
= b bl () - 2 .
0<ki, . hg<p—1 ! 4 v —1 [Tz (07 — 1)

|5

=1y —1 b —1 vt
:g* b bkj]i ° ‘ ’
(0) ka:o V] (H bi—l) Hi;&j(bf_l)(y)

J 1#]
Lo b —1 Vi1
PO ()
i =1 Tligi(bi — 1)
= a(y) (b)),

This proves the lemma. O
Lemma 2.5.3. — Ifa and b are two bases of 'k, then c,(y) and ¢,(y) are cohomologous.
Proof. — If aq,...,aq and (B, ..., Bq are in F'*, the Laurent series

Oél"'(ld'Td_l Bl“'ﬁd'Td_l

(exp(anT) —1)--- (exp(aaT) = 1) (exp(BT) —1) - (exp(faT) — 1)
is the difference of two Laurent series, each having a simple pole at 0 with equal residues,
and therefore belongs to F[T]. Let a and b be two bases of I'x and take y € D¥a=1,

Let N be a I'g-stable Fréchet subspace of D that contains y and write N = l&nM]
Since M = M; is F-analytic, we have g = exp(¢(g)V) on M for g in some open subgroup
of k. Let k> 0 be large enough such that a? " and be " are in this subgroup, and let
a; = pFl(a;) and B; = p*l(b;). Taking k large enough (depending on M), we can assume
moreover that the power series T7'/(exp(7') — 1) applied to the operators a;V and (;V

converges on M. The element
w_( Oél"'ad'vd_l B /61"'6d'vd_1 >(>
(exp(ay V) — 1) -+ (exp(aqV) — 1)  (exp(f1V) —1)--- (exp(BsV) — 1) Y
of M is well defined. By proposition 2.5.1, we have
Capk (y>/(1> - Cbpk (y)/<1) = ®apk (y) - @bp’“ (y) = pfr(L)v(w>

where L is the extension of K such that [';, = Iﬂ}? . Thus, for g close enough to 1, we have

¢t (1)(9) — cr (¥)(9) = (g — 1)(p7"Pw). Lemma 2.5.2 now implies by corestricting that
this holds for all g, and, by corestricting again, that ¢,(y) and ¢,(y) are cohomologous in

M. By varying M, we get the same result in N, which implies the proposition. O
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Lemma 2.5.4. — If L/K is a finite extension contained in K., and if b is a basis of

I'x and a is a basis of 'y, then corp xc,(y) = cu(y).

Proof. — The groups 'y and I', are both free Z,-modules of rank d, so that by the
elementary divisors theorem, we can change the bases a and b in such a way that there
exists ey, ..., eq with a; = b7

Since {b¥--- bk} with 0 < k; < p® — 1 is a set of representatives for I'x/I'z, and since

[L: K] =pt e the explicit formula for the corestriction implies

corpx (ca(y)) (b5)
5]
R | d—1
- Y @Y ()
o<k <p®l —1 aj — 1 Hz‘;éj(ai - 1)
0<kg<pd—1
]
pi—1 I 1 a — 1 vi-1
=(b) : : : (y
i} bk -1 vdfl
) P ()
J Hiyéj( v )
= c(y)(b;)
[
Definition 2.5.5. — Let hl.y : DI (V)¥=' — HL (K, V) denote the map obtained by
composing y +— ¢(y) with H! (Tg, Diig(V)qul) — H. (Tg x 0, DLg(V)) (theorem 2.2.4)
and with H. (T'x x ¥, DI, (V) ~ H., (K, V) (proposition 2.2.1 and corollary 2.2.3).
Proposition 2.5.6. — We have coryyp o hyyy = hpy if M/L is a finite extension

contained in Koo /K. In particular, cork, ., /x, o hy, v = b, v if n > n(K).
Proof. — This follows from the definition and from lemma 2.5.4 above. [

Remark 2.5.7. — Proposition 2.5.6 allows us to extend the definition of hj i, to all K,

without assuming that K contains Fj,k), by corestricting.

Some of the constructions of this section are summarized in the following theorem.

Recall (see §3 of [Ber16]) that there is a ring Eiig that contains Biig o

a Frobenius map ¢, and an action of Gy and such that V' = (Eiig ®gt DLg(V))@qzl.
rig,

is equipped with
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Theorem 2.5.8. — If y € DLg(V)wq:1 and K contains K,y and b is a basis of I'k,
then
1. there is a unique cp(y) € Z!, (Tk, Diig(V)%:l) such that for k € Z,,
Bl Yy
bj =1 Tlig(bi —1)77
2. there is a unique m, € Diig(V)wq:O such that (p, — 1)co(y)(g) = (9 — 1)m, for all
g€lyk;

3. the (¢,I')-module corresponding to this extension has a basis in which

Mat(g) = (S Cb(yl)(g)) ifg€Tk, and  Mat(p,) = ((’; ”})

4. if z € ﬁiig ®@p V is such that (o, — 1)z = m,, then the cocycle

aly) (1) = ()

g ay)(g) —(g—1)z

defined on Gk has values in V' and represents hy y(y) in HY (K, V).

Proof. — Items (1), (2) and (3) are reformulations of the constructions of this chapter.
Let us prove (4). Let us write the (¢, ')-module corresponding to the extension in (3)
as D' = DI (V) @ B,

rig rig,
representation V' = (BIig ®gt  D)#=!. We have V! = V@& F- (e—z) as F-vector spaces

rig, F

e It is an étale (p,I')-module that comes from the p-adic

since py(e — z) =e—z. If g € Gk, then
gle=z) =e+ay)9) —g(z) =e =2+ aly)lg) - (g -1)=
This proves (4). O

Let FF=Q, and m = p = ¢, and let V be a representation of G. In §IL.1 of [CC99],
Cherbonnier and Colmez define a map Logj.;) : DY(V)¥=" — Hy, (K, V), which is an
isomorphism (theorem I1.1.3 and proposition II1.3.2 of [CC99]).

Proposition 2.5.9. — If F' = Q, and m = p, then the map
hl n>1
D (V)¥=! — DI, (V)= Lien ko, lim H, (K, V) = lim H'(K,, V)
coincides with the map Logy.py : DI(V)¥=! — Hi (K, V) C lim HY'(K,, V).

Proof. — The map Logy.;, is contructed by mapping = € Df(V)¥=! to the sequence
(otpn(@),...) € lim HY(K,,V) (see theorem IL.1.3 in [CC99] and the paragraph

preceding it), where

Lpn(T) = [0 — Lk, () ( 9= 11x — (o0 — 1)b>1

n
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on Gk, and where (see proposition 1.4.1, lemma 1.5.2 and lemma 1.5.5 of ibid.)

1. v, = %K”:Kﬂ and 7, is a fixed generator of ', ;
2. Uk, (W) = 1‘;%527;) where r(K,) is the integer such that log x(I'k, ) = pT(Kn)Zp;

3. be Bt ®q, V is such that (¢ —1)b=a and a € DH(V)¥=! is such that (1, — 1)a —
(¢ — 1)z (using the fact that v, — 1 is bijective on DT(V)¥=0).

The theorem follows from comparing this with the explicit formula of theorem 2.5.8. [

3. Explicit formulas for crystalline representations

In this chapter, we explain how the constructions of the previous chapter are related
to p-adic Hodge theory, via Bloch and Kato’s exponential maps. Let Bgg be Fontaine’s
ring of periods [Fon94] and let B, p be the subring of BJ that is constructed in §8.5
of [Col02] (recall that B, » = F ®pg, B, where F; = F N Q™ and B}, is a ring
that is similar to Fontaine’s Bes).

We assume throughout this chapter that K = F' and that the representation V is

crystalline and F-analytic.

3.1. Crystalline F-analytic representations. — If V is an F-analytic crystalline
representation of G, let Deig(V) = (Bmax.r @p V)9F (this is the “component at identity”
of the usual Ds). By corollary 3.3.8 of [KR09], F-analytic crystalline representations of
G'p are overconvergent. Moreover, if M(D) C B/, p[1/tz] ®p D is the object constructed
in §2.2 of ibid., then by §2.4 of ibid., M (Deis(V)) contains a basis of D(V') and Diig(V) =
B!, » @p:_, M(Dexis(V)). This implies that Dl (V) ¢ Bl p[1/t:] ®p Des(V).

rig rig,F'

Theorem 3.1.1. — We have D, (V)%=! C B, p[1/t:] ®F Dexis(V)).

rig
Proof. — Take h > 0 such that the slopes of W‘hgoq on Dgis(V) are < —d. Let E be an
extension of F' such that E contains the eigenvalues of ¢, on Dg;s(V). We show that
Dl (V)%= C t;"E ®p B, p ®F Dexis(V). Let e1,..., e, be a basis of t;"E @p Degis(V)
in which the matrix (p;;) of ¢, is upper triangular. If y = Yy ® ©q(e;) with y; €
E®r BL&F, then v¢,(y) = y if and only if ¥y (yx) = Prs¥e + 2>k Prjy; for all k. The
theorem follows from applying lemma 3.1.2 below to k =n,n —1,...,1. O

Lemma 3.1.2. — Tukey € E®p Bl . and o € F such that valy(a) < —d. If ,(y) —

rig,
ay € FQ®p Bji_g,Fﬂ theny € E Qp B:i_g,p-

Proof. — This is lemma 5.4 of [FX13]. O
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3.2. Bloch-Kato’s exponentials for analytic representations. — We now recall
the definition of Bloch-Kato’s exponential map and its dual, and give a similar definition

for F-analytic representations.

Lemma 3.2.1. — We have an exact sequence
0= F — (Bl r[1/tz])?"=" — Bar/Biz — 0.
Proof. — This is lemma 9.25 of [Col02]. O

If V is a de Rham F-linear representation of G, we can ®p the above sequence with
V and we get a connecting homomorphism expg i : (Bar ®p V)% — H'(K, V). Recall
that if W is an F-vector space, there is a natural injective map W @p V' — W ®q, V.

Lemma 38.2.2. — If V is F-analytic, the map expg.y : (Bar ®p V)% — HY(K,V)
defined above coincides with Bloch-Kato’s exponential via the inclusion (Bqr ®r V)% C
(Bar ®q, V)%, and its image is in H (K, V).

Proof. — Bloch and Kato’s exponential is defined as follows (definition 3.10 of [BK90]):
if ¢, denotes the Frobenius map that lifts z +— 2 and if z € (B4r ®q, V)", there exists
T e Bmax Q
g (9-1)z.

Lemma 3.2.1 says that we can lift 2 € (Bqr ®r V)" to some Z € (B, p[1/t=])?" = ®p
V such that 2 —z € B{z ®pV C Bjz ®q, V. In addition, BY q, = Fo®q, Bl q, (sce
lemma 1.1.11 of [Ber08]) so that (B}, p[1/t:])?=" C F ®q, B/, o . We can therefore

max,Qp -

®q, V such that T —z € Bjy ®q, V, and exp(z) is represented by the cocyle

view T as an element of Bﬁ’;le ®q, V, and expyy(7) = [g + (9 — 1)7] = exp(x).
The construction of expg 1-(7) shows that the cocycle expyy-(7) is de Rham. At each
embedding 7 # Id of F, the extension of F' by V' given by expg 1-(z) is therefore Hodge-

Tate with weights 0. This finishes the proof of the lemma. m

Recall the following theorem of Kato (see §II.1 of [Kat93]).

Theorem 3.2.3. — IfV is a de Rham representation, the map from (Bar ®q, V)Ex to
H'(K,Bar ®q, V) defined by x — [g — 10g(Xeye(9))z] is an isomorphism, and the dual
exponential map expic v« : HY(K,V) = (Bar ®q, V)% is equal to the composition of
the map H' (K, V) — H'(K,Bar ®q, V) with the inverse of this isomorphism.

Concretely, if ¢ € Z' (K, Bgr ®q, V) is some cocycle, there exists w € Bgr ®q, V' such
that c(g) = 10g(Xeye(9)) - exPy+1)(€) + (9 — 1)(w).
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Corollary 8.2.4. — If c € ZH(K,Baqr ®@r V), and if there exist v € (Bgr @p V)% and
w € Bar @ V' such that c(g) = €(g) - © + (9 — 1)(w), then expi; y+(c) = z.

Proof. — This follows from theorem 3.2.3 and from the fact that g — log(x(7)/Xcyc(7))
is Bgr-admissible, since ¢, /t € (Blz)* so that log(t,/t) € By is well-defined. O

3.3. Interpolating exponentials and their duals. — Let V be an F-analytic crys-
talline representation. By theorem 3.1.1, we have DI, (V)¥=! C B, r[1/tx] ®F Dexis (V).

Let 0y denote the map dp of §2.4 for D = De,s(V).
Theorem 3.3.1. — Ify € DI (V)%= then

rig
q "ov (e, "(y)) ifn>1

eXP?n,V*(l) (hllu'n,V(y» = {(1 . q,1¢,1)8v(y) an —0
q .

Proof. — Since the diagram
exp} *
Hl (Fn+17 V) M} Fn+1 ®F Dcris(v)
corpn+1/pnl TanH/Fnl
Hl(an V) M Fn ®F Dcris(v)

is commutative, we only need to prove the theorem when n > n(F') by lemma 2.4.3 and
proposition 2.5.6. By theorem 2.5.8, we have
v —1 vt
hi v (y)(0F) = 4 (b) - 2— -

with z € BLg®FV so that if m >> 0, then ;™ (2) € Bir ®rV (see §3 of [Ber16] and §2.2
of [Ber02]). Moreover, @;m(y) € Fu((tr)@FDais(V). Let W = {w € F,(tx)@FDeris(V)
such that dy (w) = 0}. The operator V is bijective on W, and F,,,((tx)) ® p Deyis (V') injects
into Bqr ®Fr V', hence there exists u € Bgqg ®r V' such that
1 k bi—1 vt k
hi, v ()(b5) = €°(b) - - (Ov (e, ")) — (b7 — Du
F VAT bj =1 Iligy(bi —1) ! !

= ((0F) - ©4(0v (0, ™ (y))) — (0 — L)u

= ((0f) - q "o (" () — (b = L)u,

by lemmas 2.4.1 and 2.4.3. This proves the theorem by corollary 3.2.4. O]

(y) - (bf o 1)Z7

We now give explicit formulas for expp, ;. Take h > 0 such that Fil_thriS(V) =
Deris(V), so that ¢2(Bif, r ®r Deis(V)) C Diig(V) (in the notation of §2.2 of [KRO9], we
have t2(Bf, p @ Dexis(V)) € M(Deris(V))). In particular, if y € (B, p @ Deis(V)) ¥,

rig,
then Vj,_j0---0Vy(y) € DI (V)¥e=1,

rig
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Theorem 3.3.2. — Ify € (B, p ®p Dexis(V))¥e=", then
ex Oy (" ifn=>1
By (Vs 0+ 0 Vo) = (~1)"~"(h — 1) { Prnyl"Orle W)

expry((1—q o, Nov(y) ifn=0.

Proof. — Since the diagram

eXPFR, 1,V

Fri1 ®F Deis(V)

Tan+1/FnJ Coan+1/FnJ

HY (Fo1, V)

Fn QF Dcris(v) m} Hl (Fna V)
is commutative, we only need to prove the theorem when n > n(F) by lemma 2.4.3 and

proposition 2.5.6. By theorem 2.5.8, we have

i, v (Vo100 Vo(y)) (b))

bk —1 v

bj —1 Tlizi(bi — 1)
= (0 = 1) (Vo100 V300 (y) — (b — 1)z,

= 0*(b) -

(Vh-10---0Vo(y)) — (0 — 1)z

so that hp, (Va—10---0V(y))(9) = (9—1)(Vho10---0V100)(y) —(g—1)zif g € Tk.
By lemma 2.4.2, we have
(Vh-10:--0V100) (2= 1)y) € (tx/97 (1)) (By p @5 Derss(V)) 7= € Dl (V) "=,

so that (in the notation of theorem 2.5.8) m, = (V1 0---0V;004)((¢, — 1)y). Since

(pg — 1)z = m,, we have (¢, — 1)((Vp—10---0V100,)(y) — z) = 0, and therefore
(Vh—l o---oVjo @b)(y) —zZ € (ﬁiig[l/tﬂ])sﬁ’q:l RV

The ring Biig contains B, » and the inclusion (B}, p[1/t-])#*=" C (]~31ig

an equality (proposition 3.2 of [Ber02]). This implies that

[1/ta])?= is

(Vihor0---0V1i06y)(y) — 2 C (B pll/t)? @p V.
Moreover, we have z € ]N3Lg ®p V so that if m > 0, then ¢, (2) € Bz ®r V. In
addition, ™ (y) belongs to I}, [t:] ®F Deais(V), so that ¢ ™(y) — dv(w;™(y)) belongs
to taFinftr] ®F Dens(V') and therefore

(Vhr0---0V106,) (Sﬁgm(y) - 3v(90;m(y))) € th Font] @p Dexis(V)

We can hence write

hi,v(Viei o0 Vo()(g) = (9 = 1) (V100 V100,00 (0, (y) — (9 — Du,
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with u € Bl ®¢ V. The theorem now follows from the fact that

Oy 0 Ay (e, ™(y)) = ¢ "Ov(e;"(y)) € F ®F Dais(V')

by lemmas 2.4.2 and 2.4.3, that V;_j0---0V; = (=1)""1(h — 1)! on F,, ®p Deris(V),
and from the reminders given in §3.2, in particular the fact that expy  is the connecting
homomorphism when tensoring the exact sequence of lemma 3.2.1 with V' and taking

Galois invariants. O

3.4. Kummer theory and the representation F(y,). — Throughout this section,
V = F(Xx). Let L C Q, be an extension of K. The Kummer map ¢ : LT(m,) — H'(L, V)
is defined as follows. Choose a generator u = (ug)k>o of T LT = @k LT[r*]. If x €
LT(myp), let zy € LT(mQP) be such that [7¥](z)) = z. If g € Gy, then g(z)) —z € LT[7"]
so that we can write g(zx) — zx = [cx(g9)](ux) for some cp(g) € Op/*. If c(g) =
(cx(9))k=0 € Op then d(x) = [g — c(g)] € H'(L, V).

If x € LT(my), and L/K is finite Galois, let TrlﬁK be the map defined by TrlﬁK(:E) =
ZIQEGM( 1/x) 9(x) where the superscript LT means that the summation is carried out using
the Lubin-Tate addition. If F' = Q, and LT = G,,, we recover the classical Kummer
map, and TrIﬁK(x) =Npk(1+2z) -1

Lemma 3.4.1. — We have the following commutative diagram.:

LT(mg, .,) —— HY(K,i1,V)

n+1

TrIIJ(Tn-ﬁ-l/KnJ lcorKnH/Kn
LT(mg,) —— HYK,, V).

Proof. — This is a straightforward consequence of the explicit description of the core-

striction map. O

Recall that ¢, 0 1g(f) = £ X crmp f(T @ w), so that for n > 1:

q

(D) = = 3 f<un+leaw>:;Trpm/nf(uml).

w€eLT[r]

In particular, if f(T') € B,  is such that ¢,(f(T)) = 1/7 - f(T) and y,, = f(u,), then

rig, F’
Tre,, ., /F, (Ynt1) = ¢/ - Yn.

Proposition 3.4.2. — Assume that F # Q,. If {yn}n>1 is a sequence with vy, € F,
and Trg, /5, (Yns1) = Q/T - Yn, there exists f(T) € B, p such that ¥ (f(T)) = 1/7- f(T)
and y, = f(uy,) for allmn > 1.
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Proof. — By [Laz62], there exists a power series g(T) € B

s such that g(u,) = y, for
all n > 1. We also have

1 1
1q9(0) = 59(0) + gTrF1/Fog(u1)7

and since ¢ # m (because F' # Q,), we can choose ¢(0) such that

1 1 1
~g(0) = —g(0) + - T .
WQ( ) qg( ) + q I'ry /Ry Y1

This implies that (¢,(g) —1/m-g)(u,) = 0 for all n > 0, so that ¥, (g) —1/7-g € t.-Bf,

rig,F'*

It is therefore enough to prove that ¢, — 1/7 : ¢, - B;Q& » — tp - BE . is onto. Since

rig, F'
Yo(tnf) = 1/7 - tx1y(f), this amounts to proving that 1, — 1 : Bf, , — Bj, r is onto,

which follows from corollary 2.3.4. O

Definition 3.4.3. — Let S denote the set of sequences {z,},>1 with x,, € mg, and

T (@) = o/ () for n > 1.

The following proposition says that if F' # Q,, then S is quite large: for any k > 1,
the “k-th component” map F ®p, S — Fj is surjective (if F' = Q,,, there are restrictions

on “universal norms”).

Proposition 3.4.4. — Assume that F' # Q,. If z € mp,, there exists { > 0 and x € S
such that xy, = [1*](2).

Proof. — We claim that Trp,,,/r,(OF,,,) = 7OFp,. Indeed, let D denote the different.
We have (see for instance proposition 7.11 of [Iwa86])
1 1 1 1
valy(Dp,pa/m) = - <” +1- q_1> e <” - 1) = val,(m).
) = mOp, by proposition 7 of Chapter III of [Ser68].

Since 7 divides ¢/, this shows that given y € Op,, there exists a sequence {y,}n>1

This implies that Trg, ., /5, (OF,,,
with x, € Op, such that y, = y, and Trg,, /5, (Ynt1) = ¢/7 - yn for n > 1. Take
{1, 05 > 0 such that 7 Oc, is in the domain of expyy and such that 7> logyr(2) € Op,.
Let y = 72 log;p(2). Let {y,}n>1 be a sequence as above, let x, = exprp(7“y,) and
¢ = {; + 5. The elements z; © [7Y](2), as well as TrI}gH/Fn (Tpa1) © [q/7](zy,) for all n,
have their log; equal to zero and are in a domain in which log;; is injective. This proves

the proposition. O

If z € S and y, = logr(x,), then y, € F, and Trg, ,,/p, (Yn+1) = ¢/7 - Yn, so that
by proposition 3.4.2, there exists f(T') € B/,  such that ¢,(f(T)) = 7' - f(T) and

rig, F’
Yn = f(un) for all n > 1. If f(T) € Bf, r is such that ¢, (f(T)) = 7#~' - f(T), then
of € (B, p)¥=! and Of - u can be seen as an element of DL V)va=l,
rig, I g
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Theorem 3.4.5. — If v € S, and if f(T) € B,  is such that f(u,) = log;p(z,) and

rig, F'

Go(J(T)) = 771+ J(T), then il y(F(T) - ) = (/m)~" - 8(xa) for alln > 1.

Proof. — Let y = f(T) ® t-'u, so that y € (BX

rig,F OF Deris(V))¥e=1. By theorem 3.3.2

applied to y with h = 1, we have hy, (V(y)) = expp, v (¢ "0v (¢, "(y))) if n > 1. Since
p,"0d=mn"-00 " this implies that

hip, v (OF (T) - w) = expp, v (¢ "Ov (9, " () = (a/m) " - expp, v (logip(w) - ).

By example 3.10.1 of [BK90] and lemma 3.2.2, we have 6(z,) = expp,_ 1 (logpr(w,) - u).
This proves the theorem. O

Remark 3.4.6. — If F =Q, and 7 = ¢ = p and © = {x,,},,>1, this theorem says that
Expq, (6(z)) = dlog Col,(T'), which is (iii) of proposition V.3.2 of [CC99] (see theorem
I1.1.3 of ibid for the definition of the map Expg : HE, (F, Q,(1)) — D, (Q,(1))%=).

Remark 3.4.7. — If © € S, then by proposition 3.4.2, there is a power series f(T')
such that f(u,) = logyr(z,) for n > 1. Is there a power series g(7') € Op[T] such that
g(un) = x,, so that f(T) =logg(T)?

If F = Q,, such a power series is the classical Coleman power series [Col79]. If F' # Q,,
and x € S and z is a [¢/7|-torsion point, and k > d — 1 so that z € Fj, then the sequence
' = {a! }n>1 defined by x!, = x,, if n # k and 2z}, = 1 @ z also belongs to S. This means

that we cannot naively interpolate x.

3.5. Perrin-Riou’s big exponential map. — In this last section, we explain
how the explicit formulas of the previous sections can be used to give a Lubin-
Tate analogue of Perrin-Riou’s “big exponential map” [PR94]. Take h > 1 such that
Fil "Deyis(V) = Dawis(V). If f € B, p®pDeris(V), let A(f) be the image of &_,0"(f)(0)
in EBZ:oDcriS(V)/(1 - 7Tk90q)-

Lemma 3.5.1. — There is an exact sequence:

_ =1 1-p,
0 = Bt Ders(V)*= " = (B ®r D (1)) 5%
= Dcris V
(Bl—r&i_g,F)%io QF Dcris(v> £> EBZ_ ﬁ —

Proof. — Note that the map ¢, acts diagonally on tensor products. It is easy to see that
ker(1 — @g) = ®F_ot*Des(V)#1=" ", that A is surjective, and that im(1 — ¢ ) C ker A,

so we now prove that im(1 — ¢,) = ker A.
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If f,g€ BngF ®F Deis(V) and f = (1 — ¢,)g, then ¢, (f) = 0 if and only if ¢,(g) = g.
It is therefore enough to show that if f € Bf, » @ Deris(V) is such that A(f) = 0, then
f=(1-p,)g for some g € BI&F @F Deris (V).
The map 1 — ¢, : T""'Bf, p ®p Deris (V) = T B, p @ Deris (V) is bijective because
the slopes of ¢, on Th“Brlg 7 ®p D are > 0. This implies that 1 — ¢, induces a sequence

] B, ; ®r Dan(V) 1=
0— h, tchris V) Pa=" k - rig,F’ cris zpq>
@k_o g ( ) Th+1Br+lg . R Dcris(v)
B:;gF QF DCFiS(V) A h Dcris(v)

— .
Th+1B;tg 7 @F Deis(V) k=01 _ e,

We have ker(T— ;) = ®F_ot*Des(V)#e=" " and by comparing dimensions, we see
that coker(T— ;) = ®F_Deis(V)/(1 — 7¥p,). This and the bijectivity of 1 — ¢, on

Th“B;:g 7 @F Dais(V) imply the claim. O

If f S ((Bj;gF
Deris(V))¥e=! such that f = (1 — ¢,)y. Since Vj,_; o--- o Vj kills @Z;étfrDcriS(V)%:f
we see that Vh 10---0Vy(y) does not depend upon the choice of such a y (unless

Deis(V)#77=7 %0)

Definition 3.5.2. — Let h > 1 be such that Fil*thS(V) = Duis(V) and such that

DcriS(V)‘Pq:fh = 0. We deduce from the above construction a well-defined map:

)¥1=0 @ Deris(V))2=0, then by lemma 3.5.1 there exists y € (B, p ®r

k

vih : ((Bl—rtg F)quo QF Dcris(v)) —> DT (V)¢q:1’

rig
given by Qu(f) = Vi1 0--- 0 Vy(y) where the element y € (B, r @5 Deris(V))¥e=" is
such that f = (1 — ¢,)y and is provided by lemma 3.5.1.
If Deyi(V)#9=" " £ 0, we get a map

"= @ Dos(V))30 = Dl (V)= yor=xs,

rig

Qv : (BE

rig, F’

Let u be a basis of F'(x,) as above, and let e; = u®J if j € Z.

Theorem 3.5.3. — Take y € (B, r ®p Des(V))"=" and let h > 1 be such that

Fil "Deis (V) = Deis (V). Let f = (1 — )y so that f € (B r)"=" ®p Deris (V)20
Ifj€Z and h+j > 1, then

By o Qualf) @ ¢) = (~1)" 7 (4 j — 1)1x

eXPr, v(xd) (q_”av(x;)(%_”(a_jy ® t;jej))) ifn>1
eXPp i) (1= q_l‘ﬂq_l)ﬁv(xgr)(a_jy ®@tle;)) ifn=0.
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If 7 €Z and h+j <0, then

exp;‘,,“\/*(l—j)(h‘F V(x )(QVh(f> ® 6])) =

1 0 "0y (" (07 y @t e))) ifn>1
(=h =) (1=, )y ) (0 Ty @t 7e;) if n=0.

Proof. — If h+ 5 > 1, the following diagram is commutative:

_ Xe; i =
D, (V) Dlig(V(x§))¥r="!
Vhlo---OVOT thleo.”OVOT
Yg=1 o=@t e, =1
(BrlgF QF DCTIS(V)) — (BIgF QF DCYiS(V(X]))) )

and the theorem is a straightforward consequence of theorem 3.3.2 applied to 0 7y®t Ve,
h+ j and V(x2) (which are the j-th twists of y, h and V).
If h4+ 7 <0, and I'g, is torsion free, then theorem 3.3.1 shows that

eXP}n,V*u—j)(h}: Vi )(Vh 10---0Vo(y) ®e))
= q "0y (0" (Vi1 0+ 0 Vio(y) @ ¢;))
in Deis(V(x2)), and a short computation involving Taylor series shows that
Oy i) (0" (Vi1 0 0 Vo(y) @ €5)) = (= — )17y (97" (07 y @ 17 ey)).

To get the other n, we corestrict. O]

Corollary 3.5.4. — We have Qv (v)®e; = (0 7x@t7e;) and Vi,oQy p(z) =

V(x ),h+3
Qvpta(z).
Remark 8.5.5. — The notation 077 is somewhat abusive if j > 1 as 0 is not injective
on leg # (it is surjective as can be seen by “integrating” directly a power series) but the

reader can check that this leads to no ambiguity in the formulas of theorem 3.5.3 above.

If F=Q,and m = p, definition 3.5.2 and theorem 3.5.3 are given in §I1.5 of [Ber03].
They imply that €y, coincides with Perrin-Riou’s exponential map (see theorem 3.2.3 of
[PR94]) after making suitable identifications (theorem I1.13 of [Ber03]).

Our definition therefore generalizes Perrin-Riou’s exponential map to the F-analytic
setting. We hope to use the results of [Fou05| and [Fou08] to relate our constructions

to suitable Iwasawa algebras as in the cyclotomic case.
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