IWASAWA THEORY AND F-ANALYTIC LUBIN-TATE (φ, Γ) -MODULES

by

Laurent Berger & Lionel Fourquaux

Abstract. — Let K be a finite extension of \mathbf{Q}_p . We use the theory of (φ, Γ) -modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of V, for certain representations V of $\mathrm{Gal}(\overline{\mathbf{Q}}_p/K)$. If in addition V is crystalline, we describe these classes explicitly using Bloch-Kato's exponential maps. This allows us to generalize Perrin-Riou's period map to the Lubin-Tate setting.

Contents

Introduction	2
1. Lubin-Tate (φ, Γ) -modules	5
1.1. Notation	5
1.2. Construction of Lubin-Tate (φ, Γ) -modules	6
1.3. Overconvergent Lubin-Tate (φ, Γ) -modules	7
1.4. Extensions of (φ, Γ) -modules	8
2. Analytic cohomology and Iwasawa theory	9
2.1. Analytic cohomology	9
2.2. Cohomology of F -analytic (φ, Γ) -modules	12
2.3. The space $D/(\psi_q - 1)$	13
2.4. The operator Θ_b	15
2.5. Construction of extensions	17
3. Explicit formulas for crystalline representations	21
3.1. Crystalline F-analytic representations	21
3.2. Bloch-Kato's exponentials for analytic representations	22
3.3. Interpolating exponentials and their duals	23
3.4. Kummer theory and the representation $F(\chi_{\pi})$	25
3.5. Perrin-Riou's big exponential map	27
References	30

2010 Mathematics Subject Classification. — 11F; 11S; 14G.

Key words and phrases. — p-adic representation; (φ, Γ) -module; Lubin-Tate group; overconvergent representation; p-adic Hodge theory; analytic cohomology; normalized traces; Bloch-Kato exponential; Iwasawa theory; Kummer theory.

Introduction

Let K be a finite extension of \mathbf{Q}_p and let $G_K = \operatorname{Gal}(\overline{\mathbf{Q}}_p/K)$. In this article, we use the theory of (φ, Γ) -modules in the Lubin-Tate setting to construct some classes in $\mathrm{H}^1(K, V)$, for "F-analytic" representations V of G_K . If in addition V is crystalline, we describe these classes explicitly using Bloch and Kato's exponential maps and generalize Perrin-Riou's period map to the Lubin-Tate setting.

We now describe our constructions in more detail, and introduce some notation which is used throughout this paper. Let F be a finite Galois extension of \mathbf{Q}_p , with ring of integers \mathcal{O}_F and maximal ideal \mathfrak{m}_F , let π be a uniformizer of \mathcal{O}_F and let $k_F = \mathcal{O}_F/\pi$ and $q = \operatorname{Card}(k_F)$. Let LT be the Lubin-Tate formal group [LT65] attached to π . We fix a coordinate T on LT, so that for each $a \in \mathcal{O}_F$ the multiplication-by-a map is given by a power series $[a](T) = aT + \operatorname{O}(T^2) \in \mathcal{O}_F[T]$. Let $\log_{\operatorname{LT}}(T)$ denote the attached logarithm and $\exp_{\operatorname{LT}}(T)$ its inverse for the composition. Let $\chi_\pi: G_F \to \mathcal{O}_F^\times$ be the attached Lubin-Tate character. If K is a finite extension of F, let $K_n = K(\operatorname{LT}[\pi^n])$ and $K_\infty = \bigcup_{n\geqslant 1} K_n$ and $\Gamma_K = \operatorname{Gal}(K_\infty/K)$.

Let \mathbf{A}_F denote the set of power series $\sum_{i \in \mathbf{Z}} a_i T^i$ with $a_i \in \mathcal{O}_F$ such that $a_i \to 0$ as $i \to -\infty$ and let $\mathbf{B}_F = \mathbf{A}_F[1/\pi]$, which is a field. It is endowed with a Frobenius map $\varphi_q : f(T) \mapsto f([\pi](T))$ and an action of Γ_F given by $g : f(T) \mapsto f([\chi_{\pi}(g)](T))$. If K is a finite extension of F, the theory of the field of norms ([FW79a, FW79b] and [Win83]) provides us with a finite unramified extension \mathbf{B}_K of \mathbf{B}_F . Recall [Fon90] that a (φ, Γ) -module over \mathbf{B}_K is a finite dimensional \mathbf{B}_K -vector space endowed with a compatible Frobenius map φ_q and action of Γ_K . We say that a (φ, Γ) -module over \mathbf{B}_K is étale if it has a basis in which $\mathrm{Mat}(\varphi_q) \in \mathrm{GL}_d(\mathbf{A}_K)$. The relevance of these objects is explained by the result below (see [Fon90], [KR09]).

Theorem. — There is an equivalence of categories between the category of F-linear representations of G_K and the category of étale (φ, Γ) -modules over \mathbf{B}_K .

Let \mathbf{B}_F^{\dagger} denote the set of power series $f(T) \in \mathbf{B}_F$ that have a non-empty domain of convergence. The theory of the field of norms again provides us $[\mathbf{Mat95}]$ with a finite extension \mathbf{B}_K^{\dagger} of \mathbf{B}_F^{\dagger} . We say that a (φ, Γ) -module over \mathbf{B}_K is overconvergent if it has a basis in which $\mathrm{Mat}(\varphi_q) \in \mathrm{GL}_d(\mathbf{B}_K^{\dagger})$ and $\mathrm{Mat}(g) \in \mathrm{GL}_d(\mathbf{B}_K^{\dagger})$ for all $g \in \Gamma_K$. If $F = \mathbf{Q}_p$, every étale (φ, Γ) -module over \mathbf{B}_K is overconvergent $[\mathbf{CC98}]$. If $F \neq \mathbf{Q}_p$, this is no longer the case $[\mathbf{FX13}]$. Let us say that an F-linear representation V of G_K is F-analytic if for all embeddings $\tau : F \to \overline{\mathbf{Q}}_p$, with $\tau \neq \mathrm{Id}$, the representation $\mathbf{C}_p \otimes_F^\tau V$ is trivial (as a semilinear \mathbf{C}_p -representation of G_K). The following result is known $[\mathbf{Ber16}]$.

Theorem. — If V is an F-analytic representation of G_K , it is overconvergent.

Another source of overconvergent representations of G_K is the set of representations that factor through Γ_K (see §1.3). Our first result is the following (theorem 1.3.1).

Theorem A. — If V is an overconvergent representation of G_K , there exists an Fanalytic representation $X_{\rm an}$ of G_K , a representation Y_{Γ} of G_K that factors through Γ_K ,
and a surjective G_K -equivariant map $X_{\rm an} \otimes_F Y_{\Gamma} \to V$.

We next focus on F-analytic representations. Let $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$ denote the Robba ring, which is the ring of power series $f(T) = \sum_{i \in \mathbf{Z}} a_i T^i$ with $a_i \in F$ such that there exists $\rho < 1$ such that f(T) converges for $\rho < |T| < 1$. We have $\mathbf{B}_F^{\dagger} \subset \mathbf{B}_{\mathrm{rig},F}^{\dagger}$. The theory of the field of norms again provides us with a finite extension $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ of $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$. If V is an F-linear representation of G_K , let $\mathrm{D}(V)$ denote the (φ,Γ) -module over \mathbf{B}_K attached to V. If V is overconvergent, there is a well defined (φ,Γ) -module $\mathrm{D}^{\dagger}(V)$ over \mathbf{B}_K^{\dagger} attached to V, such that $\mathrm{D}(V) = \mathbf{B}_K \otimes_{\mathbf{B}_K^{\dagger}} \mathrm{D}^{\dagger}(V)$. We call $\mathrm{D}_{\mathrm{rig}}^{\dagger}(V)$ the (φ,Γ) -module over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ attached to V, given by $\mathrm{D}_{\mathrm{rig}}^{\dagger}(V) = \mathbf{B}_{\mathrm{rig},K}^{\dagger} \otimes_{\mathbf{B}_K^{\dagger}} \mathrm{D}^{\dagger}(V)$.

The ring $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ is a free $\varphi_q(\mathbf{B}_{\mathrm{rig},K}^{\dagger})$ -module of degree q. This allows us to define [**FX13**] a map $\psi_q: \mathbf{B}_{\mathrm{rig},K}^{\dagger} \to \mathbf{B}_{\mathrm{rig},K}^{\dagger}$ that is a Γ_K -equivariant left inverse of φ_q , and likewise, if V is an overconvergent representation of G_K , a map $\psi_q: \mathrm{D}_{\mathrm{rig}}^{\dagger}(V) \to \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)$ that is a Γ_K -equivariant left inverse of φ_q .

The main result of this article is the construction, for an F-analytic representation V of G_K , of a collection of maps

$$h_{K_n,V}^1: \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_q=1} \to \mathrm{H}^1(K_n,V),$$

having a certain number of properties. For example, these maps are compatible with corestriction: $\operatorname{cor}_{K_{n+1}/K_n} \circ h^1_{K_{n+1},V} = h^1_{K_n,V}$ if $n \ge 1$. Another property is that if $F = \mathbf{Q}_p$ and $\pi = p$ (the cyclotomic case), these maps coïncide with those constructed in [CC99] (and generalized in [Ber03]).

If now K = F and V is a crystalline F-analytic representation of G_F , we give explicit formulas for $h^1_{F_n,V}$ using Bloch and Kato's exponential maps $[\mathbf{BK90}]$. Let V be as above, let $D_{\text{cris}}(V) = (\mathbf{B}_{\text{cris},F} \otimes_F V)^{G_F}$ (note that because the \otimes is over F, this is the identity component of the usual D_{cris}) and let $t_{\pi} = \log_{\text{LT}}(T)$. Let $\{u_n\}_{n\geqslant 0}$ be a compatible sequence of primitive π^n -torsion points of LT. Let $\mathbf{B}^+_{\text{rig},F}$ denote the positive part of the Robba ring, namely the ring of power series $f(T) = \sum_{i\geqslant 0} a_i T^i$ with $a_i \in F$ such that f(T) converges for $0 \leqslant |T| < 1$. If $n \geqslant 0$, we have a map $\varphi_q^{-n} : \mathbf{B}^+_{\text{rig},F} \to F_n[\![t_\pi]\!]$ given by $f(T) \mapsto f(u_n \oplus \exp_{\text{LT}}(t_\pi/\pi^n))$. Using the results of $[\mathbf{KR09}]$, we prove that there is a

natural (φ, Γ) -equivariant inclusion $D_{rig}^{\dagger}(V)^{\psi_q=1} \to \mathbf{B}_{rig,F}^{\dagger}[1/t_{\pi}] \otimes_F D_{cris}(V)$. This provides us, by composition, with maps $\varphi_q^{-n}: D_{rig}^{\dagger}(V)^{\psi_q=1} \to F_n((t_{\pi})) \otimes_F D_{cris}(V)$ and $\partial_V \circ \varphi_q^{-n}: D_{rig}^{\dagger}(V)^{\psi_q=1} \to F_n \otimes_F D_{cris}(V)$ where ∂_V is the "coefficient of t_{π}^0 " map. Recall finally that we have two maps, Bloch and Kato's exponential $\exp_{F_n,V}: F_n \otimes_F D_{cris}(V) \to H^1(F_n,V)$ and its dual $\exp_{F_n,V^*(1)}^* H^1(F_n,V) \to F_n \otimes_F D_{cris}(V)$ (the subscript $V^*(1)$ denotes the dual of V twisted by the cyclotomic character, but is merely a notation here). The first result is as follows (theorem 3.3.1).

Theorem B. — If V is as above and $y \in D_{rig}^{\dagger}(V)^{\psi_q=1}$, then

$$\exp_{F_n,V^*(1)}^*(h_{F_n,V}^1(y)) = \begin{cases} q^{-n}\partial_V(\varphi_q^{-n}(y)) & \text{if } n \geqslant 1\\ (1 - q^{-1}\varphi_q^{-1})\partial_V(y) & \text{if } n = 0. \end{cases}$$

Let $\nabla = t_{\pi} \cdot d/dt_{\pi}$, let $\nabla_i = \nabla - i$ if $i \in \mathbf{Z}$ and let $h \geqslant 1$ be such that $\mathrm{Fil}^{-h}\mathrm{D}_{\mathrm{cris}}(V) = \mathrm{D}_{\mathrm{cris}}(V)$. We prove that if $y \in (\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\psi_q=1}$, then $\nabla_{h-1} \circ \cdots \circ \nabla_0(y) \in \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_q=1}$, and we have the following result (theorem 3.3.2).

Theorem C. — If V is as above and $y \in (\mathbf{B}_{rig,F}^+ \otimes_F \mathbf{D}_{cris}(V))^{\psi_q=1}$, then

$$h_{F_n,V}^1(\nabla_{h-1} \circ \cdots \circ \nabla_0(y)) = (-1)^{h-1}(h-1)! \begin{cases} \exp_{F_n,V}(q^{-n}\partial_V(\varphi_q^{-n}(y))) & \text{if } n \geqslant 1\\ \exp_{F,V}((1-q^{-1}\varphi_q^{-1})\partial_V(y)) & \text{if } n = 0. \end{cases}$$

Using theorems B and C, we give in §3.5 a Lubin-Tate analogue of Perrin-Riou's "big exponential map" [PR94] using the same method as that of [Ber03] which treats the cyclotomic case. It will be interesting to compare this big exponential map with the "big logarithms" constructed in [Fou05] and [Fou08].

It is also instructive to specialize theorem C to the case $V = F(\chi_{\pi})$, which corresponds to "Lubin-Tate" Kummer theory. Recall that if L is a finite extension of F, Kummer theory gives us a map $\delta : LT(\mathfrak{m}_L) \to H^1(L, F(\chi_{\pi}))$. When L varies among the F_n , these maps are compatible: the diagram

$$\begin{array}{ccc} \operatorname{LT}(\mathfrak{m}_{F_{n+1}}) & \stackrel{\delta}{\longrightarrow} & \operatorname{H}^1(F_{n+1},V) \\ & & & \downarrow^{\operatorname{cor}_{F_{n+1}/F_n}} \\ & & \operatorname{LT}(\mathfrak{m}_{F_n}) & \stackrel{\delta}{\longrightarrow} & \operatorname{H}^1(F_n,V) \end{array}$$

commutes. Let S denote the set of sequences $\{x_n\}_{n\geqslant 1}$ with $x_n \in \mathfrak{m}_{F_n}$ and such that $\operatorname{Tr}^{\operatorname{LT}}_{F_{n+1}/F_n}(x_{n+1}) = [q/\pi](x_n)$ for $n\geqslant 1$. We prove that S is big, in the sense that (if $F\neq \mathbf{Q}_p$) the projection on the n-th coordinate map $S\otimes_{\mathcal{O}_F}F\to F_n$ is onto (this would not be the case if we did not have the factor q/π in the definition of S). Furthermore, we prove that if $x\in S$, there exists a power series $f(T)\in (\mathbf{B}^+_{\operatorname{rig},F})^{\psi_q=1/\pi}$ such that

 $f(u_n) = \log_{\mathrm{LT}}(x_n)$ for $n \ge 1$. We have $d/dt_{\pi}(f(T)) \in (\mathbf{B}_{\mathrm{rig},F}^+)^{\psi_q=1}$ and the following holds (theorem 3.4.5), where u is the basis of $F(\chi_{\pi})$ corresponding to the choice of $\{u_n\}_{n\ge 0}$.

Theorem D. We have
$$h^1_{F_n,F(\chi_n)}(d/dt_\pi(f(T))\cdot u)=(q/\pi)^{-n}\cdot \delta(x_n)$$
 for all $n\geqslant 1$.

In the cyclotomic case, there is $[\mathbf{Col79}]$ a power series $\mathrm{Col}_x(T)$ such that $\mathrm{Col}_x(u_n) = x_n$ for $n \geq 1$. We then have $f(T) = \log \mathrm{Col}_x(T)$, and theorem D is proved in $[\mathbf{CC99}]$. In the general Lubin-Tate case, we do not know whether there is a "Coleman power series" of which f(T) would be the \log_{LT} . This seems like a non-trivial question.

It would be interesting to compare our results with those of [SV17]. The authors of [SV17] also construct some classes in $H^1(K, V)$, but start from the space $D(V(\chi_{\pi} \cdot \chi_{\text{cyc}}^{-1}))^{\psi_q = \pi/q}$. In another direction, is it possible to extend our constructions to representations of the form $V \otimes_F Y_{\Gamma}$ with V F-analytic and Y_{Γ} factoring through Γ_K , and in particular recover the explicit reciprocity law of [Tsu04]?

1. Lubin-Tate (φ, Γ) -modules

In this chapter, we recall the theory of Lubin-Tate (φ, Γ) -modules and classify over-convergent representations.

1.1. Notation. — Let F be a finite Galois extension of \mathbf{Q}_p with ring of integers \mathcal{O}_F , and residue field k_F . Let π be a uniformizer of \mathcal{O}_F . Let $d = [F : \mathbf{Q}_p]$ and e be the ramification index of F/\mathbf{Q}_p . Let $q = p^f$ be the cardinality of k_F and let $F_0 = W(k_F)[1/p]$ be the maximal unramified extension of \mathbf{Q}_p inside F. Let σ denote the absolute Frobenius map on F_0 .

Let LT be the Lubin-Tate formal \mathcal{O}_F -module attached to π and choose a coordinate T for the formal group law, such that the action of π on LT is given by $[\pi](T) = T^q + \pi T$. If $a \in \mathcal{O}_F$, let [a](T) denote the power series that gives the action of a on LT. Let $\log_{\mathrm{LT}}(T)$ denote the attached logarithm and $\exp_{\mathrm{LT}}(T)$ its inverse. If K is a finite extension of F, let $K_n = K(\mathrm{LT}[\pi^n])$ and let $K_\infty = \bigcup_{n\geqslant 1} K_n$. Let $H_K = \mathrm{Gal}(\overline{\mathbb{Q}}_p/K_\infty)$ and $\Gamma_K = \mathrm{Gal}(K_\infty/K)$. By Lubin-Tate theory (see [LT65]), Γ_K is isomorphic to an open subgroup of \mathcal{O}_F^{\times} via the Lubin-Tate character $\chi_\pi : \Gamma_K \to \mathcal{O}_F^{\times}$.

Let $n(K) \ge 1$ be such that if $n \ge n(K)$, then $\chi_{\pi} : \Gamma_{K_n} \to 1 + \pi^n \mathcal{O}_F$ is an isomorphism, and $\log_p : 1 + \pi^n \mathcal{O}_F \to \pi^n \mathcal{O}_F$ is also an isomorphism.

Since $\log_{\mathrm{LT}}(T)$ converges on the open unit disk, it can be seen as an element of $\mathbf{B}_{\mathrm{rig},F}^+$ and we denote it by t_{π} . Recall that $g(t_{\pi}) = \chi_{\pi}(g) \cdot t_{\pi}$ if $g \in G_K$ and that $\varphi_q(t_{\pi}) = \pi \cdot t_{\pi}$. Let

 $\partial = d/dt_{\pi}$ so that $\partial f(T) = a(T) \cdot df(T)/dT$, where $a(T) = (d \log_{\mathrm{LT}}(T)/dT)^{-1} \in \mathcal{O}_F[\![T]\!]^{\times}$. We have $\partial \circ g = \chi_{\pi}(g) \cdot g \circ \partial$ if $g \in \Gamma_K$ and $\partial \circ \varphi_q = \pi \cdot \varphi_q \circ \partial$.

Recall that $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$ denotes the Robba ring, the ring of power series $f(T) = \sum_{i \in \mathbf{Z}} a_i T^i$ with $a_i \in F$ such that there exists $\rho < 1$ such that f(T) converges for $\rho < |T| < 1$. We have $\mathbf{B}_F^{\dagger} \subset \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ and by writing a power series as the sum of its plus part and its minus part, we get $\mathbf{B}_{\mathrm{rig},F}^{\dagger} = \mathbf{B}_{\mathrm{rig},F}^{+} + \mathbf{B}_F^{\dagger}$.

Each ring $R \in \{\mathbf{B}_{\mathrm{rig},F}^{\dagger}, \mathbf{B}_{\mathrm{rig},F}^{\dagger}, \mathbf{B}_{F}^{\dagger}, \mathbf{B}_{F}\}$ is equipped with a Frobenius map $\varphi_{q}: f(T) \mapsto f([\pi](T))$ and an action of Γ_{F} given by $g: f(T) \mapsto f([\chi_{\pi}(g)](T))$. Moreover, the ring R is a free $\varphi_{q}(R)$ -module of rank q, and we define $\psi_{q}: R \to R$ by the formula $\varphi_{q}(\psi_{q}(f)) = 1/q \cdot \mathrm{Tr}_{R/\varphi_{q}(R)}(f)$. The map ψ_{q} has the following properties (see for instance §2A of [FX13] and §1.2.3 of [Col16]): $\psi_{q}(x \cdot \varphi_{q}(y)) = \psi_{q}(x) \cdot y$, the map ψ_{q} commutes with the action of Γ_{F} , $\partial \circ \psi_{q} = \pi^{-1} \cdot \psi_{q} \circ \partial$ and if $f(T) \in \mathbf{B}_{\mathrm{rig},F}^{+}$ then $\varphi_{q} \circ \psi_{q}(f) = 1/q \cdot \sum_{z \in \mathrm{LT}[\pi]} f(T \oplus z)$. If M is a free R-module with a semilinear Frobenius map φ_{q} such that $\mathrm{Mat}(\varphi_{q})$ is invertible, then any $m \in M$ can be written as $m = \sum_{i} r_{i} \cdot \varphi_{q}(m_{i})$ with $r_{i} \in R$ and $m_{i} \in M$ and the map $\psi_{q}: m \mapsto \sum_{i} \psi_{q}(r_{i}) \cdot m_{i}$ is then well-defined. This applies in particular to the rings $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$, \mathbf{B}_{K}^{\dagger} , \mathbf{B}_{K}^{\dagger} and to the (φ, Γ) -modules over them.

1.2. Construction of Lubin-Tate (φ, Γ) -modules. — A (φ, Γ) -module over \mathbf{B}_K^{\dagger} or over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ is a finite dimensional \mathbf{B}_K -vector space D (or a finite dimensional \mathbf{B}_K^{\dagger} -vector space or a free $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ -module of finite rank respectively), along with a semi-linear Frobenius map φ_q whose matrix (in some basis) is invertible, and a continuous, semilinear action of Γ_K that commutes with φ_q .

We say that a (φ, Γ) -module D over \mathbf{B}_K is étale if D has a basis in which $\operatorname{Mat}(\varphi_q) \in \operatorname{GL}_d(\mathbf{A}_K)$. Let \mathbf{B} be the p-adic completion of $\bigcup_{M/F} \mathbf{B}_M$ where M runs through the finite extensions of F. By specializing the constructions of [Fon90], Kisin and Ren prove the following theorem (theorem 1.6 of [KR09]).

Theorem 1.2.1. — The functors $V \mapsto D(V) = (\mathbf{B} \otimes_F V)^{H_K}$ and $D \mapsto (\mathbf{B} \otimes_{\mathbf{B}_K} D)^{\varphi_q=1}$ give rise to mutually inverse equivalences of categories between the category of F-linear representations of G_K and the category of étale (φ, Γ) -modules over \mathbf{B}_K .

We say that a (φ, Γ) -module D is overconvergent if there exists a basis of D in which the matrices of φ_q and of all $g \in \Gamma_K$ have entries in \mathbf{B}_K^{\dagger} . This basis then generates a \mathbf{B}_K^{\dagger} -vector space \mathbf{D}^{\dagger} which is canonically attached to D. If V is a p-adic representation, we say that it is overconvergent if $\mathbf{D}(V)$ is overconvergent, and then $\mathbf{D}^{\dagger}(V)$ denotes the corresponding (φ, Γ) -module over \mathbf{B}_K^{\dagger} . The main result of [CC98] states that if $F = \mathbf{Q}_p$, then every étale (φ, Γ) -module over \mathbf{B}_K is overconvergent (the proof is given for $\pi = p$, but it is easy to see that it works for any uniformizer). If $F \neq \mathbf{Q}_p$, some simple examples (see [**FX13**]) show that this is no longer the case.

Recall that an F-linear representation of G_K is F-analytic if $\mathbf{C}_p \otimes_F^{\tau} V$ is the trivial \mathbf{C}_p -semilinear representation of G_K for all embeddings $\tau \neq \mathrm{Id} \in \mathrm{Gal}(F/\mathbf{Q}_p)$. This definition is the natural generalization of Kisin and Ren's notion of F-crystalline representation. Kisin and Ren then show that if $K \subset F_{\infty}$, and if V is a crystalline F-analytic representation of G_K , the (φ, Γ) -module attached to V is overconvergent (see §3.3 of [KR09]; they actually prove a stronger result, namely that the (φ, Γ) -module attached to such a V is of finite height).

If D_{rig}^{\dagger} is a (φ, Γ) -module over $\mathbf{B}_{\text{rig},K}^{\dagger}$, and if $g \in \Gamma_K$ is close enough to 1, then by standard arguments (see §2.1 of [**KR09**] or §1C of [**FX13**]), the series $\log(g) = \log(1 + (g-1))$ gives rise to a differential operator $\nabla_g : D_{\text{rig}}^{\dagger} \to D_{\text{rig}}^{\dagger}$. The map $v \mapsto \exp(v)$ is defined on a neighborhood of 0 in $\text{Lie }\Gamma_K$; the map $\text{Lie }\Gamma_K \to \text{End}(D_{\text{rig}}^{\dagger})$ arising from $v \mapsto \nabla_{\exp(v)}$ is \mathbf{Q}_p -linear, and we say that D_{rig}^{\dagger} is F-analytic if this map is F-linear (see §2.1 of [**KR09**] and §1.3 of [**FX13**]).

If V is an overconvergent representation of G_K , we let $D_{rig}^{\dagger}(V) = \mathbf{B}_{rig,K}^{\dagger} \otimes_{\mathbf{B}_K^{\dagger}} D^{\dagger}(V)$. The following is theorem D of [**Ber16**].

Theorem 1.2.2. The functor $V \mapsto D_{rig}^{\dagger}(V)$ gives rise to an equivalence of categories between the category of F-analytic representations of G_K and the category of étale F-analytic Lubin-Tate (φ, Γ) -modules over $\mathbf{B}_{rig,K}^{\dagger}$.

In general, representations of G_K that are not F-analytic are not overconvergent (see §1.3), and the analogue of theorem 1.2.2 without the F-analyticity condition on both sides does not hold.

1.3. Overconvergent Lubin-Tate (φ, Γ) -modules. — By theorem 1.2.2, there is an equivalence of categories between the category of F-analytic representations of G_K and the category of étale F-analytic Lubin-Tate (φ, Γ) -modules over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$. The purpose of this section is to prove a conjecture of Colmez that describes *all* overconvergent representations of G_K .

Any representation V of G_K that factors through Γ_K is overconvergent, since H_K acts trivially on V so that $\mathrm{D}(V) = \mathbf{B}_K \otimes_F V$ and therefore $\mathrm{D}(V)$ has a basis in which $\mathrm{Mat}(\varphi_q) = \mathrm{Id}$ and $\mathrm{Mat}(g) \in \mathrm{GL}_d(\mathcal{O}_F)$ if $g \in \Gamma_K$. If X is F-analytic and Y factors through Γ_K , $X \otimes_F Y$ is therefore overconvergent. We prove that any overconvergent representation of G_K is a quotient (and therefore also a subobject, by dualizing) of some representation of the form $X \otimes_F Y$ as above.

Theorem 1.3.1. — If V is an overconvergent representation of G_K , there exists an F-analytic representation X of G_K , a representation Y of G_K that factors through Γ_K , and a surjective G_K -equivariant map $X \otimes_F Y \to V$.

Proof. — Recall (see §3 of [Ber16]) that if r > 0, then inside $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ we have the subring $\mathbf{B}_{\mathrm{rig},K}^{\dagger,r}$ of elements defined on a fixed annulus whose inner radius depends on r and whose outer raidus is 1, and that (φ, Γ) -modules over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ can be defined over $\mathbf{B}_{\mathrm{rig},K}^{\dagger,r}$ if r is large enough, giving us a module $\mathbf{D}_{\mathrm{rig}}^{\dagger,r}(V)$. We also have rings $\mathbf{B}_{K}^{[r;s]}$ of elements defined on a closed annulus whose radii depend on $r \leq s$. One can think of an element of $\mathbf{B}_{\mathrm{rig},K}^{\dagger,r}$ as a compatible family of elements of $\{\mathbf{B}_{K}^{I}\}_{I}$ where I runs over a set of closed intervals whose union is $[r; +\infty[$. In the rest of the proof, we use this principle of glueing objects defined on closed annuli to get an object on the annulus corresponding to $\mathbf{B}_{\mathrm{rig},K}^{\dagger,r}$.

Choose r > 0 large enough such that $D_{rig}^{\dagger,r}(V)$ is defined, and $s \geqslant qr$. Let $D^{[r;s]}(V) = \mathbf{B}_K^{[r;s]} \otimes_{\mathbf{B}_{rig,K}^{\dagger,r}} D_{rig}^{\dagger,r}(V)$. If $a \in \mathcal{O}_F$, and if $\operatorname{val}_p(a) \geqslant n$ for n = n(r,s) large enough, the series $\exp(a \cdot \nabla)$ converges in the operator norm to an operator on the Banach space $D^{[r;s]}(V)$. This way, we can define a twisted action of Γ_{K_n} on $D^{[r;s]}(V)$, by the formula $h \star x = \exp(\log_n(\chi_\pi(h)) \cdot \nabla)(x)$. This action is now F-analytic by construction.

Since $s \geqslant qr$, the modules $D^{[q^m r; q^m s]}(V)$ for $m \geqslant 0$ are glued together (using the idea explained above) by φ_q and we get a new action of Γ_{K_n} on $D^{\dagger,r}_{rig}(V) = D^{[r;+\infty[}(V))$ and hence on $D^{\dagger}_{rig}(V)$. Since φ_q is unchanged, this new (φ, Γ) -module is étale, and therefore corresponds to a representation W of G_{K_n} . The representation W is F-analytic by theorem 1.2.2, and its restriction to H_K is isomorphic to V.

Let $X = \operatorname{ind}_{G_{K_n}}^{G_K} W$. By Mackey's formula, $X|_{H_K}$ contains $W|_{H_K} \simeq V|_{H_K}$ as a direct summand. The space $Y = \operatorname{Hom}(\operatorname{ind}_{G_{K_n}}^{G_K} W, V)^{H_K}$ is therefore a nonzero representation of Γ_K , and there is an element $y \in Y$ whose image is V. The natural map $X \otimes_F Y \to V$ is therefore surjective. Finally, X is F-analytic since W is F-analytic.

By dualizing, we get the following variant of theorem 1.3.1.

Corollary 1.3.2. — If V is an overconvergent representation of G_K , there exists an F-analytic representation X of G_K , a representation Y of G_K that factors through Γ_K , and an injective G_K -equivariant map $V \to X \otimes_F Y$.

1.4. Extensions of (φ, Γ) -modules. — In this section, we prove that there are no non-trivial extensions between an F-analytic (φ, Γ) -module and the twist of an F-analytic (φ, Γ) -module by a character that is not F-analytic. This is not used in the rest of the paper, but is of independent interest.

If $\delta \colon \Gamma_K \to \mathcal{O}_F^{\times}$ is a continuous character, and $g \in \Gamma_K$, let $w_{\delta}(g) = \log \delta(g) / \log \chi_{\pi}(g)$. Note that δ is F-analytic if and only if $w_{\delta}(g)$ is independent of $g \in \Gamma_K$.

We define the first cohomology group $H^1(D)$ of a (φ, Γ) -module D as in §4 of [**FX13**]. Let D be a (φ, Γ) -module over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$. Let G denote the semigroup $\varphi_q^{\mathbf{Z}_{\geqslant 0}} \times \Gamma_K$ and let $Z^1(D)$ denote the set of continuous functions $f \colon G \to D$ such that (h-1)f(g) = (g-1)f(h) for all $g, h \in G$. Let $B^1(D)$ be the subset of $Z^1(D)$ consisting of functions of the form $g \mapsto (g-1)y, \ y \in D$ and let $H^1(D) = Z^1(D)/B^1(D)$. If $g \in G$ and $f \in Z^1$, then $[h \mapsto (g-1)f(h)] = [h \mapsto (h-1)f(g)] \in B^1$. The natural actions of Γ_K and φ_q on H^1 are therefore trivial.

If D_0 and D_1 are two (φ, Γ) -modules, then $\operatorname{Hom}(D_1, D_0) = \operatorname{Hom}_{\mathbf{B}_{\mathrm{rig},K}^+-\mathrm{mod}}(D_1, D_0)$ is a free $\mathbf{B}_{\mathrm{rig},K}^+$ -module of rank $\mathrm{rk}(D_0)\,\mathrm{rk}(D_1)$ which is easily seen to be itself a (φ,Γ) -module. The space $\mathrm{H}^1(\operatorname{Hom}(D_1,D_0))$ classifies the extensions of D_1 by D_0 . More precisely, if D is such an extension and if $s\colon D_1\to D$ is a $\mathbf{B}_{\mathrm{rig},K}^+$ -linear map that is a section of the projection $D\to D_1$, then $g\mapsto s-g(s)$ is a cocycle on G with values in $\operatorname{Hom}(D_1,D_0)$ (the element $g(s)\in\operatorname{Hom}(D_1,D)$ being defined by g(s)(g(x))=g(s(x)) for all $g\in G$ and all $x\in D_1$). The class of this cocycle in the quotient $\mathrm{H}^1(\operatorname{Hom}(D_1,D_0))$ does not depend on the choice of the section s, and every such class defines a unique extension of D_1 by D_0 up to isomorphism.

Theorem 1.4.1. — If D is an F-analytic (φ, Γ) -module, and if $\delta \colon \Gamma_K \to \mathcal{O}_F^{\times}$ is not locally F-analytic, then $H^1(D(\delta)) = \{0\}$.

Proof. — If $g \in \Gamma_K$ and $x(\delta) \in D(\delta)$ with $x \in D$, we have

$$\nabla_q(x(\delta)) = \nabla(x)(\delta) + w_\delta(g) \cdot x(\delta).$$

If $g, h \in \Gamma_K$, this implies that $\nabla_g(x(\delta)) - \nabla_h(x(\delta)) = (w_\delta(g) - w_\delta(h)) \cdot x(\delta)$. If $\overline{f} \in H^1(D(\delta))$ and $g \in \Gamma_K$, then $g(\overline{f}) = \overline{f}$ and therefore $\nabla_g(\overline{f}) = 0$. The formula above shows that if $k \in \Gamma_K$, then $\nabla_g(f(k)) - \nabla_h(f(k)) = (w_\delta(g) - w_\delta(h)) \cdot f(k)$, so that $0 = (\nabla_g - \nabla_h)(\overline{f}) = (w_\delta(g) - w_\delta(h)) \cdot \overline{f}$, and therefore $\overline{f} = 0$ if δ is not locally analytic. \square

2. Analytic cohomology and Iwasawa theory

In this chapter, we explain how to construct classes in the cohomology groups of Fanalytic (φ, Γ) -modules. This allows us to define our maps $h_{K_n,V}^1$.

2.1. Analytic cohomology. — Let G be an F-analytic semigroup and let M be a Fréchet or LF space with a pro-F-analytic (§2 of [Ber16]) action of G. Recall that this

means that we can write $M = \varinjlim_i \varprojlim_j M_{ij}$ where M_{ij} is a Banach space with a locally analytic action of G. A function $f : G \to M$ is said to be pro-F-analytic if its image lies in $\varprojlim_j M_{ij}$ for some i and if the corresponding function $f : G \to M_{ij}$ is locally F-analytic for all j.

The analytic cohomology groups $H^i_{an}(G,M)$ are defined and studied in §4 of [FX13] and §5 of [Col16]. In particular, we have $H^0_{an}(G,M) = M^G$ and $H^1_{an}(G,M) = Z^1_{an}(G,M)/B^1_{an}(G,M)$ where $Z^1_{an}(G,M)$ is the set of pro-F-analytic functions $f: G \to M$ such that (g-1)f(h) = (h-1)f(g) for all $g,h \in G$ and $B^1_{an}(G,M)$ is the set of functions of the form $g \mapsto (g-1)m$.

Let M be a Fréchet space, and write $M = \varprojlim_n M_n$ with M_n a Banach space such that the image of M_{n+j} in M_n is dense for all $j \ge 0$.

Proposition 2.1.1. We have $H^1_{an}(G, M) = \varprojlim_n H^1_{an}(G, M_n)$.

Proof. — By definition, we have an exact sequence

$$0 \to \mathrm{B}^1_{\mathrm{an}}(G, M_n) \to \mathrm{Z}^1_{\mathrm{an}}(G, M_n) \to \mathrm{H}^1_{\mathrm{an}}(G, M_n) \to 0.$$

It is clear that $B_{an}^1(G, M) = \varprojlim_n B_{an}^1(G, M_n)$ and that $Z_{an}^1(G, M) = \varprojlim_n Z_{an}^1(G, M_n)$, since these spaces are spaces of functions on G satisfying certain compatible conditions. The Banach spaces $B_{an}^1(G, M_n)$ satisfy the Mittag-Leffler condition: $B_{an}^1(G, M_n) = M_n/M_n^G$ and the image of M_{n+j} in M_n is dense for all $j \geq 0$. This implies that the sequence

$$0 \to \varprojlim_{n} \mathrm{B}^{1}_{\mathrm{an}}(G, M_{n}) \to \varprojlim_{n} \mathrm{Z}^{1}_{\mathrm{an}}(G, M_{n}) \to \varprojlim_{n} \mathrm{H}^{1}_{\mathrm{an}}(G, M_{n}) \to 0$$

is exact, and the proposition follows.

In this paper, we mainly use the semigroups Γ_K , $\Gamma_K \times \Phi$ where $\Phi = \{\varphi_q^n, n \in \mathbf{Z}_{\geq 0}\}$ and $\Gamma_K \times \Psi$ where $\Psi = \{\psi_q^n, n \in \mathbf{Z}_{\geq 0}\}$. The semigroups Φ and Ψ are discrete and the F-analytic structure comes from the one on Γ_K .

Definition 2.1.2. — Let G be a compact group and let H be an open subgroup of G. We have the *corestriction* map $\operatorname{cor}: \operatorname{H}^1_{\operatorname{an}}(H,M) \to \operatorname{H}^1_{\operatorname{an}}(G,M)$, which satisfies $\operatorname{cor} \circ \operatorname{res} = [G:H]$. This map has the following equivalent explicit descriptions (see §2.5 of [Ser94] and §II.2 of [CC99]). Let $X \subset G$ be a set of representatives of G/H and let $f \in \operatorname{Z}^1_{\operatorname{an}}(H,M)$ be a cocycle.

1. By Shapiro's lemma, $H^1_{an}(H, M) = H^1_{an}(G, \operatorname{ind}_H^G M)$ and cor is the map induced by $i \mapsto \sum_{x \in X} x \cdot i(x^{-1})$;

- 2. if $M \subset N$ where N is a G-module and if there exists $n \in N$ such that f(h) = (h-1)(n), then $cor(f)(g) = (g-1)(\sum_{x \in X} xn)$;
- 3. if $g \in G$, let $\tau_g : X \to X$ be the permutation defined by $\tau_g(x)H = gxH$. We have $\operatorname{cor}(f)(g) = \sum_{x \in X} \tau_g(x) \cdot f(\tau_g(x)^{-1}gx)$.

If $g \in \Gamma_K$, let $\ell(g) = \log_p \chi_{\pi}(g)$. If M is a Fréchet space with a pro-F-analytic action of Γ_K and if $g \in \Gamma_K$ is such that $\chi_{\pi}(g) \in 1 + 2p\mathcal{O}_F$, then $\lim_{n \to \infty} (g^{p^n} - 1)/(p^n \ell(g))$ converges to an operator ∇ on M, which is independent of g thanks to the F-analyticity assumption. If $c : \Gamma_K \to M$ is an F-analytic map, let c'(1) denote its derivative at the identity.

Proposition 2.1.3. — If M is a Fréchet space with a pro-F-analytic action of Γ_K , the map $c \mapsto c'(1)$ induces an isomorphism $H^1_{an}(\Gamma_K, M) = (M/\nabla M)^{\Gamma_K}$, under which $\operatorname{cor}_{L/K}$ corresponds to $\operatorname{Tr}_{L/K}$.

Proof. — Assume for the time being that M is a Banach space. We first show that the map induced by $c \mapsto c'(1)$ is well-defined and lands in $(M/\nabla M)^{\Gamma_K}$. The map $c \mapsto c'(1)$ from $Z_{\rm an}^1(\Gamma_K, M) \to M$ is well-defined, and if c(g) = (g-1)m, then $c'(1) = \nabla m$ so that there is a well-defined map $H_{\rm an}^1(\Gamma_K, M) \to M/\nabla M$. If $h \in \Gamma_K$ then $(h-1)c'(1) = \lim_{g \to 1} (h-1)c(g)/\ell(g) = \lim_{g \to 1} (g-1)c(h)/\ell(g) = \nabla c(h)$ so that the image of $c \mapsto c'(1)$ lies in $(M/\nabla M)^{\Gamma_K}$.

The formula for the corestriction follows from the explicit descriptions above: if $h \in \Gamma_L$ then $\tau_h(x) = x$ so that $\operatorname{cor}(c)(h) = \sum_{x \in X} x \cdot c(h)$ and

$$\operatorname{cor}(c)'(1) = \lim_{h \to 1} \operatorname{cor}(c)(h)/\ell(h) = \sum_{x \in X} x \cdot c'(1) = \operatorname{Tr}_{L/K}(c'(1)).$$

We now show that the map is injective. If $c'(1) = \nabla m$, then the derivative of $g \mapsto c(g) - (g-1)m$ at g=1 is zero and hence c(g) = (g-1)m on some open subgroup Γ_L of Γ_K and $c = [L:K]^{-1} \operatorname{cor}_{L/K} \circ \operatorname{res}_{K/L}(c) = 0$.

We finally show that the map is surjective. Suppose now that $y \in (M/\nabla M)^{\Gamma_K}$. The formula $g \mapsto (\exp(\ell(g)\nabla) - 1)/\nabla \cdot y$ defines an analytic cocycle c_L on some open subgroup Γ_L of Γ_K . The image of $[L:K]^{-1}c_L$ under $\operatorname{cor}_{L/K}$ gives a cocycle $c \in \operatorname{H}^1_{\operatorname{an}}(\Gamma_K, M)$ such that c'(1) = y.

We now let $M = \varprojlim_n M_n$ be a Fréchet space. The map $\mathrm{H}^1_{\mathrm{an}}(\Gamma_K, M) \to (M/\nabla M)^{\Gamma_K}$ induced by $c \mapsto c'(1)$ is well-defined, and in the other direction we have the map $y \mapsto c_y$:

$$(M/\nabla M)^{\Gamma_K} \to \varprojlim_n (M_n/\nabla M_n)^{\Gamma_K} \to \varprojlim_n \mathrm{H}^1_{\mathrm{an}}(\Gamma_K, M_n) \to \mathrm{H}^1_{\mathrm{an}}(\Gamma_K, M).$$

These two maps are inverses of each other.

Remark 2.1.4. — Compare with the following theorem (see [**Tam15**], corollary 21): if G is a compact p-adic Lie group and if M is a locally analytic representation of G, then $H_{an}^{i}(G, M) = H^{i}(\text{Lie}(G), M)^{G}$.

2.2. Cohomology of F-analytic (φ, Γ) -modules. — If V is an F-analytic representation, let $\mathrm{H}^1_{\mathrm{an}}(K,V) \subset \mathrm{H}^1(K,V)$ classify the F-analytic extensions of F by V. Let D denote an F-analytic (φ, Γ) -module over $\mathbf{B}^{\dagger}_{\mathrm{rig},K}$, such as $\mathrm{D}^{\dagger}_{\mathrm{rig}}(V)$.

Proposition 2.2.1. — If V is F-analytic, then $H^1_{an}(K,V) = H^1_{an}(\Gamma_K \times \Phi, D^{\dagger}_{rig}(V))$.

Proof. — The group $\mathrm{H}^1_{\mathrm{an}}(\Gamma_K \times \Phi, \mathrm{D}^{\dagger}_{\mathrm{rig}}(V))$ classifies the F-analytic extensions of $\mathbf{B}^{\dagger}_{\mathrm{rig},K}$ by $\mathrm{D}^{\dagger}_{\mathrm{rig}}(V)$, which correspond to F-analytic extensions of F by V by theorem 1.2.2. \square

Theorem 2.2.2. — If D is an F-analytic (φ, Γ) -module over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ and i = 0, 1, then $\mathrm{H}_{\mathrm{an}}^{i}(\Gamma_{K}, \mathrm{D}^{\psi_{q}=0}) = 0$.

Proof. — Since $\mathbf{B}_{\mathrm{rig},F}^{\dagger} \subset \mathbf{B}_{\mathrm{rig},K}^{\dagger}$, the $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$ -module D is a free $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$ -module of finite rank. Let \mathcal{R}_F denote $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$ and let $\mathcal{R}_{\mathbf{C}_p}$ denote $\mathbf{C}_p \widehat{\otimes}_F \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ the Robba ring with coefficients in \mathbf{C}_p . There is an action of G_F on the coefficients of $\mathcal{R}_{\mathbf{C}_p}$ and $\mathcal{R}_{\mathbf{C}_p}^{G_F} = \mathcal{R}_F$.

Theorem 5.5 of [Col16] says that $H_{an}^i(\Gamma_K, (\mathcal{R}_{\mathbf{C}_p} \otimes_{\mathcal{R}_F} \mathbf{D})^{\psi_q=0}) = 0$. For i = 0, this implies our claim. For i = 1, it says that if $c : \Gamma_K \to \mathbf{D}^{\psi_q=0}$ is an F-analytic cocycle, there exists $m \in (\mathcal{R}_{\mathbf{C}_p} \otimes_{\mathcal{R}_F} \mathbf{D})^{\psi_q=0}$ such that c(g) = (g-1)m for all $g \in \Gamma_K$. If $\alpha \in G_F$, then $c(g) = (g-1)\alpha(m)$ as well, so that $\alpha(m) - m \in ((\mathcal{R}_{\mathbf{C}_p} \otimes_{\mathcal{R}_F} \mathbf{D})^{\psi_q=0})^{\Gamma_K} = 0$. This shows that $m \in ((\mathcal{R}_{\mathbf{C}_p} \otimes_{\mathcal{R}_F} \mathbf{D})^{\psi_q=0})^{G_F} = \mathbf{D}^{\psi_q=0}$.

Corollary 2.2.3. — The groups $H_{an}^i(\Gamma_K \times \Phi, D)$ and $H_{an}^i(\Gamma_K \times \Psi, D)$ are isomorphic for i = 0, 1.

Proof. — If i = 0, then we have an inclusion $D^{\varphi_q=1,\Gamma_K} \subset D^{\psi_q=1,\Gamma_K}$. If $x \in D^{\psi_q=1,\Gamma_K}$, then $x - \varphi_q(x) \in D^{\psi_q=0,\Gamma_K} = \{0\}$ by theorem 2.2.2, so that $x = \varphi_q(x)$ and the above inclusion is an equality.

Now let i = 1. If $f \in \mathcal{Z}^1_{\mathrm{an}}(\Gamma_K \times \Phi, \mathcal{D})$, let $Tf \in \mathcal{Z}^1_{\mathrm{an}}(\Gamma_K \times \Psi, \mathcal{D})$ be the function defined by Tf(g) = f(g) if $g \in \Gamma_K$ and $Tf(\psi_g) = -\psi_g(f(\varphi_g))$.

If $f \in \mathcal{Z}^1_{\mathrm{an}}(\Gamma_K \times \Psi, \mathcal{D})$ and $g \in \Gamma_K$, then $(\varphi_q \psi_q - 1)f(g) \in \mathcal{D}^{\psi_q=0}$ and the map $g \mapsto (\varphi_q \psi_q - 1)f(g)$ is an element of $\mathcal{Z}^1_{\mathrm{an}}(\Gamma_K, \mathcal{D}^{\psi_q=0})$. By theorem 2.2.2, applied once for existence and once for unicity, there is a unique $m_f \in \mathcal{D}^{\psi_q=0}$ such that $(\varphi_q \psi_q - 1)f(g) = (g-1)m_f$. Let $Uf \in \mathcal{Z}^1_{\mathrm{an}}(\Gamma_K \times \Phi, \mathcal{D})$ be the function defined by Uf(g) = f(g) if $g \in \Gamma_K$ and $Uf(\varphi_q) = -\varphi_q(f(\psi_q)) + m_f$.

It is straightforward to check that U and T are inverses of each other (even at the level of the $\mathbb{Z}^1_{\mathrm{an}}$) and that they descend to the $\mathrm{H}^1_{\mathrm{an}}$.

Theorem 2.2.4. — The map $f \mapsto f(\psi_q)$ from $Z^1_{an}(\Gamma_K \times \Psi, D)$ to D gives rise to an exact sequence:

$$0 \to \mathrm{H}^1_{\mathrm{an}}(\Gamma_K, \mathrm{D}^{\psi_q=1}) \to \mathrm{H}^1_{\mathrm{an}}(\Gamma_K \times \Psi, \mathrm{D}) \to \left(\frac{\mathrm{D}}{\psi_q - 1}\right)^{\Gamma_K}$$

Proof. — If $f \in \mathcal{Z}^1_{\mathrm{an}}(\Gamma_K \times \Psi, \mathcal{D})$ and $g \in \Gamma_K$, then $(g-1)f(\psi_q) = (\psi_q - 1)f(g) \in (\psi_q - 1)\mathcal{D}$ so that the image of f is in $(\mathcal{D}/(\psi_q - 1))^{\Gamma_K}$. The other verifications are similar.

2.3. The space $D/(\psi_q - 1)$. — By theorem 2.2.4 in the previous section, the cokernel of the map $H^1_{an}(\Gamma_K, D^{\psi_q=1}) \to H^1_{an}(\Gamma_K \times \Psi, D)$ injects into $(D/(\psi_q - 1))^{\Gamma_K}$. It can be useful to know that this cokernel is not too large. In this section, we bound $D/(\psi_q - 1)$ when $D = \mathbf{B}^{\dagger}_{rig,F}$, with the action of φ_q twisted by a^{-1} , for some $a \in F^{\times}$.

Theorem 2.3.1. — If $a \in F^{\times}$, then $\psi_q - a : \mathbf{B}_{\mathrm{rig},F}^{\dagger} \to \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ is onto unless $a = q^{-1}\pi^m$ for some $m \in \mathbf{Z}_{\geq 1}$, in which case $\mathbf{B}_{\mathrm{rig},F}^{\dagger}/(\psi_q - a)$ is of dimension 1.

In order to prove this theorem, we need some results about the action of ψ_q on $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$. Recall that the map $\partial = d/dt_{\pi}$ was defined in §1.1.

Lemma 2.3.2. — If $a \in F^{\times}$, then $a\varphi_q - 1 : \mathbf{B}^+_{\mathrm{rig},F} \to \mathbf{B}^+_{\mathrm{rig},F}$ is an isomorphism, unless $a = \pi^{-m}$ for some $m \in \mathbf{Z}_{\geq 0}$, in which case

$$\ker(a\varphi_q - 1 : \mathbf{B}_{\mathrm{rig},F}^+ \to \mathbf{B}_{\mathrm{rig},F}^+) = Ft_{\pi}^m$$
$$\operatorname{im}(a\varphi_q - 1 : \mathbf{B}_{\mathrm{rig},F}^+ \to \mathbf{B}_{\mathrm{rig},F}^+) = \{f(T) \in \mathbf{B}_{\mathrm{rig},F}^+ \mid \partial^m(f)(0) = 0\}.$$

Proof. — This is lemma 5.1 of [FX13].

Lemma 2.3.3. — If $m \in \mathbb{Z}_{\geqslant 0}$, there is an $h(T) \in (\mathbf{B}^+_{\mathrm{rig},F})^{\psi_q=0}$ such that $\partial^m(h)(0) \neq 0$.

Proof. — We have $\psi_q(T) = 0$ by (the proof of) proposition 2.2 of [**FX13**]. If there was some m_0 such that $\partial^m(T)(0) = 0$ for all $m \ge m_0$, then T would be a polynomial in t_π , which it is not. This implies that there is a sequence $\{m_i\}_i$ of integers with $m_i \to +\infty$, such that $\partial^{m_i}(T)(0) \ne 0$, and we can take $h(T) = \partial^{m_i-m}(T)$ for any $m_i \ge m$.

Corollary 2.3.4. — If $a \in F^{\times}$, then $\psi_q - a : \mathbf{B}_{\mathrm{rig},F}^+ \to \mathbf{B}_{\mathrm{rig},F}^+$ is onto.

Proof. — If $f(T) \in \mathbf{B}_{\mathrm{rig},F}^+$ and if we can write $f = (1 - a\varphi_q)g$, then $f = (\psi_q - a)(\varphi_q(g))$. If this is not possible, then by lemma 2.3.2 there exists $m \geq 0$ such that $a = \pi^{-m}$ and $\partial^m(f)(0) \neq 0$. Let h be the function provided by lemma 2.3.3. The function f $(\partial^m(f)(0)/\partial^m(h)(0)) \cdot h$ is in the image of $1-a\varphi_q$ by lemma 2.3.2, and $h=(\psi_q-a)(-a^{-1}h)$ since $\psi_q(h)=0$. This implies that f is in the image of ψ_q-a .

Lemma 2.3.5. — If $a^{-1} \in q \cdot \mathcal{O}_F$, then $\psi_q - a : \mathbf{B}_{\mathrm{rig},F}^{\dagger} \to \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ is onto.

Proof. — We have $\mathbf{B}_{\mathrm{rig},F}^{\dagger} = \mathbf{B}_{\mathrm{rig},F}^{\dagger} + \mathbf{B}_{F}^{\dagger}$ (by writing a power series as the sum of its plus part and of its minus part) and by corollary 2.3.4, $\psi_{q} - a : \mathbf{B}_{\mathrm{rig},F}^{\dagger} \to \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ is onto. Take $f(T) \in \mathbf{B}_{F}^{\dagger}$, choose some r > 0 and let $\mathbf{B}_{F}^{(0,r]}$ be the set of $f(T) \in \mathbf{B}_{F}^{\dagger}$ that converge and are bounded on the annulus $0 < \mathrm{val}_{p}(x) \le r$. It follows from proposition 1.4 of [Col16] that if $n \gg 0$, then $\psi_{q}^{n}(f) \in \mathbf{B}_{F}^{(0,r]}$ and by proposition 2.4(d) of [FX13], the sequence $(q/\pi \cdot \psi_{q})^{n}(f)$ is bounded in $\mathbf{B}_{F}^{(0,r]}$. The series $\sum_{n\geqslant 0} a^{-1-n} \psi_{q}^{n}(f)$ therefore converges in $\mathbf{B}_{F}^{(0,r]}$, and we can write $f = (\psi_{q} - a)g$ where $g = a^{-1}(1 - a^{-1}\psi_{q})^{-1}f = \sum_{n\geqslant 0} a^{-1-n} \psi_{q}^{n}(f)$.

Let Res : $\mathbf{B}_{\mathrm{rig},F}^{\dagger} \to F$ be defined by $\mathrm{Res}(f) = a_{-1}$ where $f(T)dt_{\pi} = \sum_{n \in \mathbf{Z}} a_n T^n dT$. The following lemma combines propositions 2.12 and 2.13 of $[\mathbf{FX13}]$.

Lemma 2.3.6. — The sequence $0 \to F \to \mathbf{B}_{\mathrm{rig},F}^{\dagger} \xrightarrow{\partial} \mathbf{B}_{\mathrm{rig},F}^{\dagger} \xrightarrow{\mathrm{Res}} F \to 0$ is exact, and $\mathrm{Res}(\psi_q(f)) = \pi/q \cdot \mathrm{Res}(f)$.

Proof of theorem 2.3.1. — Since $\partial \circ \psi_q = \pi^{-1} \psi_q \circ \partial$, the map ∂ induces a map:

(Der)
$$\frac{\mathbf{B}_{\mathrm{rig},F}^{\dagger}}{\psi_q - a} \xrightarrow{\partial} \frac{\mathbf{B}_{\mathrm{rig},F}^{\dagger}}{\psi_q - a\pi}.$$

Take $x \in \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ such that $\mathrm{Res}(x) = 1$. We have $\mathrm{Res}((\psi_q - a\pi)x) = \pi/q - a\pi$. If $a \neq q^{-1}$, this is non-zero and if $f \in \mathbf{B}_{\mathrm{rig},F}^{\dagger}$, proposition 2.3.6 allows us to write $f = \partial g + \mathrm{Res}(f)/(\pi/q - a\pi) \cdot (\psi_q - a\pi)x$. This implies that (Der) is onto if $a \neq q^{-1}$.

Combined with lemma 2.3.5, this implies that $\mathbf{B}_{\mathrm{rig},F}^{\dagger}/(\psi_q - a) = 0$ if a is not of the form $q^{-1}\pi^m$ for some $m \in \mathbf{Z}_{\geq 1}$.

When $a = q^{-1}$, we have an exact sequence

$$\frac{\mathbf{B}_{\mathrm{rig},F}^{\dagger}}{\psi_{a}-q^{-1}} \xrightarrow{\partial} \frac{\mathbf{B}_{\mathrm{rig},F}^{\dagger}}{\psi_{a}-q^{-1}\pi} \xrightarrow{\mathrm{Res}} F \to 0,$$

which now implies that $\mathbf{B}_{\mathrm{rig},F}^{\dagger}/(\psi_q-q^{-1}\pi)=F$, generated by the class of x.

We now assume again that $a \neq q^{-1}$ and compute the kernel of (Der). If $f \in \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ is such that $\partial f = (\psi_q - a\pi)g$, then $\operatorname{Res} \partial f = \operatorname{Res}(\psi_q - a\pi)g = (\pi/q - a\pi)\operatorname{Res}(g)$, so that $\operatorname{Res}(g) = 0$ and we can write $g = \partial h$. We have $\partial (f - (\psi_q - a)h) = 0$, so that $f = (\psi_q - a)h + c$, with $c \in F$. By corollary 2.3.4, there exists $b \in \mathbf{B}_{\mathrm{rig},F}^+$ such that $(\psi_q - a)(b) = c$, so that $f = (\psi_q - a)(h + b)$ and (Der) is bijective. We then have, by induction on $m \geqslant 1$, that $\mathbf{B}_{\mathrm{rig},F}^{\dagger}/(\psi_q - q^{-1}\pi^m) = F$, generated by the class of $\partial^m(x)$. \square

Remark 2.3.7. — More generally, we expect that the following holds: if D is a (φ, Γ) -module over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$, the F-vector space $\mathrm{D}/(\psi_q-1)$ is finite dimensional.

2.4. The operator Θ_b . — The power series $F(X) = X/(\exp(X) - 1)$ belongs to $\mathbb{Q}_p[\![X]\!]$ and has a nonzero radius of convergence. If M is a Banach space with a locally F-analytic action of Γ_K and $h \in \Gamma_K$ is close enough to 1, then

$$\frac{\nabla}{h-1} = \frac{\nabla}{\exp(\ell(h)\nabla) - 1} = \ell(h)^{-1} F(\ell(h)\nabla)$$

converges to a continuous operator on M. If $g \in \Gamma_K$, we then define

$$\frac{\nabla}{1-g} = \frac{\nabla}{1-g^n} \cdot \frac{1-g^n}{1-g}.$$

This operator is independent of the choice of n such that g^n is close enough to 1, and can be seen as an element of the locally F-analytic distribution algebra acting on M.

If M is a Fréchet space, write $M = \varprojlim_i M_i$ and define operators $\frac{\nabla}{1-g}$ on each M_i as above. These operators commute with the maps $M_j \to M_i$ (because n can be taken large enough for both M_i and M_j). This defines an operator $\frac{\nabla}{1-g}$ on M itself. The definition of $\frac{\nabla}{1-g}$ extends to an LF space with a pro-F-analytic action of Γ_K .

Assume that K contains F_1 and let $r(K) = f + \operatorname{val}_p([K:F_1])$. For example, $p^{r(F_n)} = q^n$ if $n \ge 1$. Assume further that K contains $F_{n(K)}$, so that $\chi_{\pi}: \Gamma_K \to \mathcal{O}_F^{\times}$ is injective and its image is a free \mathbb{Z}_p -module of rank d. If $b = (b_1, \ldots, b_d)$ is a basis of Γ_K (that is, $\Gamma_K = b_1^{\mathbb{Z}_p} \cdots b_d^{\mathbb{Z}_p}$), then let $\ell^*(b) = \ell(b_1) \cdots \ell(b_d)/p^{r(K)}$ and

$$\Theta_b = \ell^*(b) \cdot \frac{\nabla^d}{(b_1 - 1) \cdots (b_d - 1)}.$$

Lemma 2.4.1. — If $K = F_n$ and $m \ge 0$ and $x \in F_{m+n}$, then

$$\Theta_b(x) = q^{-m-n} \cdot \operatorname{Tr}_{F_{m+n}/F_n}(x).$$

Proof. — Since $\nabla = \lim_{k \to \infty} (b^{p^k} - 1)/p^k \ell(b)$, we have

$$\Theta_b = \lim_{k \to \infty} \frac{1}{q^n p^{kd}} \cdot \frac{(b_1^{p^k} - 1) \cdots (b_d^{p^k} - 1)}{(b_1 - 1) \cdots (b_d - 1)}.$$

The set $\{b_1^{a_1}\cdots b_d^{a_d}\}$ with $0\leqslant a_i\leqslant p^k-1$ runs through a set of representatives of $\Gamma_n/\Gamma_n^{p^k}=\Gamma_n/\Gamma_{n+ek}$ so that

$$\frac{1}{q^n p^{kd}} \cdot \frac{(b_1^{p^k} - 1) \cdots (b_d^{p^k} - 1)}{(b_1 - 1) \cdots (b_d - 1)} = \frac{1}{q^n p^{kd}} \operatorname{Tr}_{F_{n+ek}/F_n} = \frac{1}{q^{n+ek}} \cdot \operatorname{Tr}_{F_{n+ek}/F_n}.$$

The lemma follows from taking k large enough so that $ek \ge m$.

For $i \in \mathbf{Z}$, let $\nabla_i = \nabla - i$.

Lemma 2.4.2. If b is a basis of Γ_{F_n} and if $f(T) \in (\mathbf{B}_{\mathrm{rig},F}^+)^{\psi_q=0}$, then $\Theta_b(f(T)) \in (t_\pi/\varphi_q^n(T)) \cdot \mathbf{B}_{\mathrm{rig},F}^+$, and if $h \geqslant 2$ then $\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b(f(T)) \in (t_\pi/\varphi_q^n(T))^h \cdot \mathbf{B}_{\mathrm{rig},F}^+$.

Proof. — If $m \ge 1$, then by lemma 2.4.1 and using repeatedly the fact (see §1.1) that $\varphi_q \circ \psi_q(f) = 1/q \cdot \sum_{z \in \text{LT}[\pi]} f(T \oplus z)$,

$$\Theta_b(f(u_{n+m})) = 1/q^{m+n} \cdot \operatorname{Tr}_{F_{m+n}/F_n} f(u_{m+n}) = \psi_q^m(f)(u_n) = 0.$$

This proves the first claim, since an element $f(T) \in \mathbf{B}_{\mathrm{rig},F}^+$ is divisible by $t_{\pi}/\varphi_q^n(T)$ if and only if $f(u_{n+m}) = 0$ for all $m \ge 1$. The second claim follows easily.

Let D be a φ_q -module over F. Let $\varphi_q^{-n} \colon \mathbf{B}^+_{\mathrm{rig},F}[1/t_\pi] \otimes_F D \to F_n((t_\pi)) \otimes_F D$ be the map

$$\varphi_q^{-n} \colon t_\pi^{-h} f(T) \otimes x \mapsto \pi^{nh} t_\pi^{-h} f(u_n \oplus \exp_{\mathrm{LT}}(t_\pi/\pi^n)) \otimes \varphi_q^{-n}(x).$$

If $f(t_{\pi}) \in F_n((t_{\pi})) \otimes_F D$, let $\partial_D(f) \in F_n \otimes_F D$ denote the coefficient of t_{π}^0 .

Lemma 2.4.3. — If $y \in (\mathbf{B}^+_{\mathrm{rig},F}[1/t_\pi] \otimes_F D)^{\psi_q=1}$ and if $m \geqslant n$, then

$$q^{-m} \operatorname{Tr}_{F_m/F_n} \partial_D(\varphi_q^{-m}(y)) = \begin{cases} q^{-n} \partial_D(\varphi_q^{-n}(y)) & \text{if } n \geqslant 1\\ (1 - q^{-1} \varphi_q^{-1}) \partial_D(y) & \text{if } n = 0. \end{cases}$$

Proof. — If $y = t_{\pi}^{-\ell} \sum_{k=0}^{+\infty} a_k T^k \in \mathbf{B}_{\mathrm{rig},F}^+[1/t_{\pi}] \otimes_F D$, then (by definition of φ_q^{-m})

$$\varphi_q^{-m}(y) = \pi^{m\ell} t_{\pi}^{-\ell} \sum_{k=0}^{+\infty} \varphi_q^{-m}(a_k) (u_m \oplus \exp_{\mathrm{LT}}(t_{\pi}/\pi^m))^k,$$

and $\psi_q(y) = y$ means that:

$$\varphi_q(y)(T) = \frac{1}{q} \sum_{[\pi](\omega)=0} y(T \oplus \omega).$$

If $m \ge 2$, the conjugates of u_m under $\operatorname{Gal}(F_m/F_{m-1})$ are the $\{\omega \oplus u_m\}_{[\pi](\omega)=0}$ so that:

$$\operatorname{Tr}_{F_m/F_{m-1}} \partial_D(\varphi_q^{-m}(y))$$

$$= \partial_D \left(\sum_{[\pi](\omega)=0} \pi^{m\ell} t_\pi^{-\ell} \sum_{k=0}^{+\infty} \varphi_q^{-m}(a_k) (\omega \oplus u_m \oplus \exp_{\operatorname{LT}}(t_\pi/\pi^m))^k \right)$$

$$= \partial_D \left(\varphi_q^{-m} \left(\sum_{[\pi](\omega)=0} y(T \oplus \omega) \right) \right)$$

$$= q \partial_D(\varphi_q^{-(m-1)}(y)).$$

For m = 1, the computation is similar, except that the conjugates of u_1 under $Gal(F_1/F)$ are the ω , where $[\pi](\omega) = 0$ but $\omega \neq 0$, which results in:

$$\operatorname{Tr}_{F_1/F} \partial_D(\varphi_q^{-1}(y)) = \partial_D \left(\varphi_q^{-1} \left(\sum_{\substack{[\pi](\omega) = 0 \\ \omega \neq 0}} y(T \oplus \omega) \right) \right) = \partial_D (qy - \varphi_q^{-1}(y)).$$

2.5. Construction of extensions. — Let D be an F-analytic (φ, Γ) -module over $\mathbf{B}_{\mathrm{rig},K}^{\dagger}$. The space $\mathbf{D}^{\psi_q=1}$ is a closed subspace of D and therefore an LF space. Take K such that K contains $F_{n(K)}$ and let b be a basis of Γ_K .

Proposition 2.5.1. — If $y \in D^{\psi_q=1}$, there is a unique cocycle $c_b(y) \in Z^1_{an}(\Gamma_K, D^{\psi_q=1})$ such that for all $1 \leq j \leq d$ and $k \geq 0$, we have

$$c_b(y)(b_j^k) = \ell^*(b) \cdot \frac{b_j^k - 1}{b_j - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_i - 1)} (y).$$

We then have $c_b(y)'(1) = \Theta_b(y)$.

Proof. — There is obviously one and only one continuous cocycle satisfying the conditions of the proposition. It is \mathbf{Q}_p -analytic, and in order to prove that it is F-analytic, we need to check that the directional derivatives are independent of j. We have

$$\lim_{k \to 0} \frac{c_b(y)(b_j^k)}{\ell(b_j^k)} = \ell^*(b) \cdot \frac{\nabla^d}{\prod_i (b_i - 1)}(y) = \Theta_b(y),$$

which is indeed independent of j, and thus $c_b(y)'(1) = \Theta_b(y)$.

Lemma 2.5.2. — If $n \ge n(K)$ and $L = K_n$ and $M = K_{n+e}$ and b is a basis of Γ_L , then b^p is a basis of Γ_M and $\operatorname{cor}_{M/L} c_{b^p}(y) = c_b(y)$.

Proof. — The Lubin-Tate character maps Γ_L to $1 + \pi^n \mathcal{O}_F$, and $\Gamma_M = \Gamma_L^p$ because $(1 + \pi^n \mathcal{O}_F)^p = 1 + \pi^{n+e} \mathcal{O}_F$. Since $\{b_1^{k_1} \cdots b_d^{k_d}\}$ with $0 \leq k_i \leq p-1$ is a set of representatives for Γ_L/Γ_M , and since $[M:L] = q^e = p^d$, the explicit formula for the corestriction (definition

2.1.2) implies (here and elsewhere [x] is the smallest integer $\geq x$)

$$cor_{M/L}(c_{b^{p}}(y))(b_{j}^{k})
= \sum_{0 \leqslant k_{1}, \dots, k_{d} \leqslant p-1} b_{1}^{k_{1}} \dots b_{d}^{k_{d}} \cdot \ell^{*}(b^{p}) \cdot \frac{b_{j}^{p \lceil \frac{k-k_{j}}{p} \rceil} - 1}{b_{j}^{p} - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_{i}^{p} - 1)}(y)
= \ell^{*}(b) \left(\sum_{k_{j}=0}^{p-1} b_{j}^{k_{j}} \frac{b_{j}^{p \lceil \frac{k-k_{j}}{p} \rceil} - 1}{b_{j}^{p} - 1} \right) \cdot \left(\prod_{i \neq j} \frac{b_{i}^{p} - 1}{b_{i} - 1} \right) \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_{i}^{p} - 1)}(y)
= \ell^{*}(b) \frac{b_{j}^{k} - 1}{b_{j} - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_{i} - 1)}(y)
= c_{b}(y)(b_{j}^{k}).$$

This proves the lemma.

Lemma 2.5.3. — If a and b are two bases of Γ_K , then $c_a(y)$ and $c_b(y)$ are cohomologous.

Proof. — If $\alpha_1, \ldots, \alpha_d$ and β_1, \ldots, β_d are in F^{\times} , the Laurent series

$$\frac{\alpha_1 \cdots \alpha_d \cdot T^{d-1}}{(\exp(\alpha_1 T) - 1) \cdots (\exp(\alpha_d T) - 1)} - \frac{\beta_1 \cdots \beta_d \cdot T^{d-1}}{(\exp(\beta_1 T) - 1) \cdots (\exp(\beta_d T) - 1)}$$

is the difference of two Laurent series, each having a simple pole at 0 with equal residues, and therefore belongs to F[T]. Let a and b be two bases of Γ_K and take $y \in D^{\psi_q=1}$.

Let N be a Γ_K -stable Fréchet subspace of D that contains y and write $N = \varprojlim M_j$. Since $M = M_j$ is F-analytic, we have $g = \exp(\ell(g)\nabla)$ on M for g in some open subgroup of Γ_K . Let $k \gg 0$ be large enough such that $a_i^{p^k}$ and $b_i^{p^k}$ are in this subgroup, and let $\alpha_i = p^k \ell(a_i)$ and $\beta_i = p^k \ell(b_i)$. Taking k large enough (depending on M), we can assume moreover that the power series $T/(\exp(T) - 1)$ applied to the operators $\alpha_i \nabla$ and $\beta_i \nabla$ converges on M. The element

$$w = \left(\frac{\alpha_1 \cdots \alpha_d \cdot \nabla^{d-1}}{(\exp(\alpha_1 \nabla) - 1) \cdots (\exp(\alpha_d \nabla) - 1)} - \frac{\beta_1 \cdots \beta_d \cdot \nabla^{d-1}}{(\exp(\beta_1 \nabla) - 1) \cdots (\exp(\beta_d \nabla) - 1)}\right)(y)$$

of M is well defined. By proposition 2.5.1, we have

$$c_{a^{p^k}}(y)'(1) - c_{b^{p^k}}(y)'(1) = \Theta_{a^{p^k}}(y) - \Theta_{b^{p^k}}(y) = p^{-r(L)}\nabla(w)$$

where L is the extension of K such that $\Gamma_L = \Gamma_K^{p^k}$. Thus, for g close enough to 1, we have $c_{a^{p^k}}(y)(g) - c_{b^{p^k}}(y)(g) = (g-1)(p^{-r(L)}w)$. Lemma 2.5.2 now implies by corestricting that this holds for all g, and, by corestricting again, that $c_a(y)$ and $c_b(y)$ are cohomologous in M. By varying M, we get the same result in N, which implies the proposition. \square

Lemma 2.5.4. — If L/K is a finite extension contained in K_{∞} , and if b is a basis of Γ_K and a is a basis of Γ_L , then $\operatorname{cor}_{L/K} c_a(y) = c_b(y)$.

Proof. — The groups Γ_K and Γ_L are both free \mathbf{Z}_p -modules of rank d, so that by the elementary divisors theorem, we can change the bases a and b in such a way that there exists e_1, \ldots, e_d with $a_i = b_i^{p^{e_i}}$.

Since $\{b_1^{k_1}\cdots b_d^{k_d}\}$ with $0 \leqslant k_i \leqslant p^{e_i}-1$ is a set of representatives for Γ_K/Γ_L , and since $[L:K]=p^{e_1+\cdots+e_d}$, the explicit formula for the corestriction implies

$$cor_{L/K}(c_{a}(y))(b_{j}^{k})
= \sum_{\substack{0 \leq k_{1} \leq p^{e_{1}-1} \\ 0 \leq k_{d} \leq p^{e_{d}-1}}} b_{1}^{k_{1}} \dots b_{d}^{k_{d}} \cdot \ell^{*}(a) \cdot \frac{a_{j}^{\left\lceil \frac{k-k_{j}}{p^{e_{j}}} \right\rceil} - 1}{a_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (a_{i}-1)} (y)
= \ell^{*}(b) \cdot \left(\sum_{k_{j}=0}^{p^{e_{j}-1}} \frac{a_{j}^{\left\lceil \frac{k-k_{j}}{p^{e_{j}}} \right\rceil} - 1}{a_{j}-1} \right) \cdot \left(\prod_{i \neq j} \frac{a_{i}-1}{b_{i}-1} \right) \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (a_{i}-1)} (y)
= \ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_{i}-1)} (y)
= c_{b}(y)(b_{j}^{k}).$$

Definition 2.5.5. — Let $h_{K,V}^1: \mathcal{D}_{rig}^{\dagger}(V)^{\psi_q=1} \to \mathcal{H}_{an}^1(K,V)$ denote the map obtained by composing $y \mapsto \overline{c}_b(y)$ with $\mathcal{H}_{an}^1(\Gamma_K, \mathcal{D}_{rig}^{\dagger}(V)^{\psi_q=1}) \to \mathcal{H}_{an}^1(\Gamma_K \times \Psi, \mathcal{D}_{rig}^{\dagger}(V))$ (theorem 2.2.4) and with $\mathcal{H}_{an}^1(\Gamma_K \times \Psi, \mathcal{D}_{rig}^{\dagger}(V)) \simeq \mathcal{H}_{an}^1(K,V)$ (proposition 2.2.1 and corollary 2.2.3).

Proposition 2.5.6. — We have $\operatorname{cor}_{M/L} \circ h^1_{M,V} = h^1_{L,V}$ if M/L is a finite extension contained in $K_{\infty}/K_{n(K)}$. In particular, $\operatorname{cor}_{K_{n+1}/K_n} \circ h^1_{K_{n+1},V} = h^1_{K_n,V}$ if $n \ge n(K)$.

Proof. — This follows from the definition and from lemma 2.5.4 above.

Remark 2.5.7. — Proposition 2.5.6 allows us to extend the definition of $h_{K,V}^1$ to all K, without assuming that K contains $F_{n(K)}$, by corestricting.

Some of the constructions of this section are summarized in the following theorem. Recall (see §3 of [Ber16]) that there is a ring $\tilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}$ that contains $\mathbf{B}_{\mathrm{rig},F}^{\dagger}$, is equipped with a Frobenius map φ_q and an action of G_F and such that $V = (\tilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig},F}^{\dagger}} \mathrm{D}_{\mathrm{rig}}^{\dagger}(V))^{\varphi_q=1}$.

Theorem 2.5.8. — If $y \in D_{rig}^{\dagger}(V)^{\psi_q=1}$ and K contains $K_{n(K)}$ and b is a basis of Γ_K , then

1. there is a unique $c_b(y) \in \mathrm{Z}^1_{\mathrm{an}}(\Gamma_K, \mathrm{D}^\dagger_{\mathrm{rig}}(V)^{\psi_q=1})$ such that for $k \in \mathbf{Z}_p$,

$$c_b(y)(b_j^k) = \ell^*(b) \cdot \frac{b_j^k - 1}{b_j - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_i - 1)}(y);$$

- 2. there is a unique $m_c \in D_{rig}^{\dagger}(V)^{\psi_q=0}$ such that $(\varphi_q 1)c_b(y)(g) = (g-1)m_c$ for all $g \in \Gamma_K$;
- 3. the (φ, Γ) -module corresponding to this extension has a basis in which

$$\operatorname{Mat}(g) = \begin{pmatrix} * & c_b(y)(g) \\ 0 & 1 \end{pmatrix} \text{ if } g \in \Gamma_K, \quad and \quad \operatorname{Mat}(\varphi_q) = \begin{pmatrix} * & m_c \\ 0 & 1 \end{pmatrix};$$

4. if $z \in \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_F V$ is such that $(\varphi_q - 1)z = m_c$, then the cocycle

$$g \mapsto c_b(y)(g) - (g-1)z$$

defined on G_K has values in V and represents $h_{K,V}^1(y)$ in $H_{an}^1(K,V)$.

Proof. — Items (1), (2) and (3) are reformulations of the constructions of this chapter. Let us prove (4). Let us write the (φ, Γ) -module corresponding to the extension in (3) as $D' = D_{rig}^{\dagger}(V) \oplus B_{rig,F}^{\dagger} \cdot e$. It is an étale (φ, Γ) -module that comes from the *p*-adic representation $V' = (\tilde{\mathbf{B}}_{rig}^{\dagger} \otimes_{\mathbf{B}_{rig,F}^{\dagger}} D')^{\varphi_q=1}$. We have $V' = V \oplus F \cdot (e-z)$ as *F*-vector spaces since $\varphi_q(e-z) = e-z$. If $g \in G_K$, then

$$g(e-z) = e + c_b(y)(g) - g(z) = e - z + c_b(y)(g) - (g-1)z.$$

This proves (4).

Let $F = \mathbf{Q}_p$ and $\pi = p = q$, and let V be a representation of G_K . In §II.1 of [CC99], Cherbonnier and Colmez define a map $\operatorname{Log}_{V^*(1)}^* : \operatorname{D}^{\dagger}(V)^{\psi=1} \to \operatorname{H}^1_{\operatorname{Iw}}(K,V)$, which is an isomorphism (theorem II.1.3 and proposition III.3.2 of [CC99]).

Proposition 2.5.9. — If $F = \mathbf{Q}_p$ and $\pi = p$, then the map

$$D^{\dagger}(V)^{\psi=1} \to D^{\dagger}_{\mathrm{rig}}(V)^{\psi=1} \xrightarrow{\{h^{1}_{K_{n},V}\}_{n\geqslant 1}} \varprojlim_{n} H^{1}_{\mathrm{an}}(K_{n},V) \to \varprojlim_{n} H^{1}(K_{n},V)$$

coincides with the map $\operatorname{Log}_{V^*(1)}^*: \operatorname{D}^{\dagger}(V)^{\psi=1} \to \operatorname{H}^1_{\operatorname{Iw}}(K,V) \subset \varprojlim_n \operatorname{H}^1(K_n,V).$

Proof. — The map $\operatorname{Log}_{V^*(1)}^*$ is contructed by mapping $x \in \operatorname{D}^{\dagger}(V)^{\psi=1}$ to the sequence $(\ldots, \iota_{\psi,n}(x), \ldots) \in \varprojlim_n \operatorname{H}^1(K_n, V)$ (see theorem II.1.3 in [**CC99**] and the paragraph preceding it), where

$$\iota_{\psi,n}(x) = \left[\sigma \mapsto \ell_{K_n}(\gamma_n) \left(\frac{\sigma - 1}{\gamma_n - 1}x - (\sigma - 1)b\right)\right]$$

on G_{K_n} and where (see proposition I.4.1, lemma I.5.2 and lemma I.5.5 of ibid.)

- 1. $\gamma_n = \gamma_1^{[K_n:K_1]}$ and γ_1 is a fixed generator of Γ_{K_1} ;
- 2. $\ell_{K_n}(\gamma_n) = \frac{\log \chi(\gamma_n)}{p^{r(K_n)}}$ where $r(K_n)$ is the integer such that $\log \chi(\Gamma_{K_n}) = p^{r(K_n)} \mathbf{Z}_p$;
- 3. $b \in \widetilde{\mathbf{B}}^{\dagger} \otimes_{\mathbf{Q}_p} V$ is such that $(\varphi 1)b = a$ and $a \in D^{\dagger}(V)^{\psi=1}$ is such that $(\gamma_n 1)a = (\varphi 1)x$ (using the fact that $\gamma_n 1$ is bijective on $D^{\dagger}(V)^{\psi=0}$).

The theorem follows from comparing this with the explicit formula of theorem 2.5.8.

3. Explicit formulas for crystalline representations

In this chapter, we explain how the constructions of the previous chapter are related to p-adic Hodge theory, via Bloch and Kato's exponential maps. Let \mathbf{B}_{dR} be Fontaine's ring of periods [Fon94] and let $\mathbf{B}_{\max,F}^+$ be the subring of \mathbf{B}_{dR}^+ that is constructed in §8.5 of [Col02] (recall that $\mathbf{B}_{\max,F}^+ = F \otimes_{F_0} \mathbf{B}_{\max}^+$ where $F_0 = F \cap \mathbf{Q}_p^{\text{unr}}$ and \mathbf{B}_{\max}^+ is a ring that is similar to Fontaine's \mathbf{B}_{cris}).

We assume throughout this chapter that K = F and that the representation V is crystalline and F-analytic.

3.1. Crystalline F-analytic representations. — If V is an F-analytic crystalline representation of G_F , let $D_{cris}(V) = (\mathbf{B}_{\max,F} \otimes_F V)^{G_F}$ (this is the "component at identity" of the usual D_{cris}). By corollary 3.3.8 of $[\mathbf{KR09}]$, F-analytic crystalline representations of G_F are overconvergent. Moreover, if $\mathcal{M}(D) \subset \mathbf{B}^+_{rig,F}[1/t_\pi] \otimes_F D$ is the object constructed in §2.2 of ibid., then by §2.4 of ibid., $\mathcal{M}(D_{cris}(V))$ contains a basis of $D^{\dagger}(V)$ and $D^{\dagger}_{rig}(V) = \mathbf{B}^{\dagger}_{rig,F} \otimes_{\mathbf{B}^+_{rig},F} \mathcal{M}(D_{cris}(V))$. This implies that $D^{\dagger}_{rig}(V) \subset \mathbf{B}^{\dagger}_{rig,F}[1/t_\pi] \otimes_F D_{cris}(V)$.

Theorem 3.1.1. We have
$$D_{\mathrm{rig}}^{\dagger}(V)^{\psi_q=1} \subset \mathbf{B}_{\mathrm{rig},F}^{+}[1/t_{\pi}] \otimes_F D_{\mathrm{cris}}(V)$$
.

Proof. — Take $h \ge 0$ such that the slopes of $\pi^{-h}\varphi_q$ on $D_{cris}(V)$ are $\le -d$. Let E be an extension of F such that E contains the eigenvalues of φ_q on $D_{cris}(V)$. We show that $D_{rig}^{\dagger}(V)^{\psi_q=1} \subset t_{\pi}^{-h}E \otimes_F B_{rig,F}^+ \otimes_F D_{cris}(V)$. Let e_1, \ldots, e_n be a basis of $t_{\pi}^{-h}E \otimes_F D_{cris}(V)$ in which the matrix $(p_{i,j})$ of φ_q is upper triangular. If $y = \sum_{i=1}^d y_i \otimes \varphi_q(e_i)$ with $y_i \in E \otimes_F B_{rig,F}^{\dagger}$, then $\psi_q(y) = y$ if and only if $\psi_q(y_k) = p_{k,k}y_k + \sum_{j>k} p_{k,j}y_j$ for all k. The theorem follows from applying lemma 3.1.2 below to $k = n, n - 1, \ldots, 1$.

Lemma 3.1.2. — Take $y \in E \otimes_F \mathbf{B}_{\mathrm{rig},F}^{\dagger}$ and $\alpha \in F$ such that $\mathrm{val}_{\pi}(\alpha) \leqslant -d$. If $\psi_q(y) - \alpha y \in E \otimes_F \mathbf{B}_{\mathrm{rig},F}^+$, then $y \in E \otimes_F \mathbf{B}_{\mathrm{rig},F}^+$.

Proof. — This is lemma
$$5.4$$
 of $[FX13]$.

3.2. Bloch-Kato's exponentials for analytic representations. — We now recall the definition of Bloch-Kato's exponential map and its dual, and give a similar definition for F-analytic representations.

Lemma 3.2.1. — We have an exact sequence

$$0 \to F \to (\mathbf{B}_{\max,F}^+[1/t_\pi])^{\varphi_q=1} \to \mathbf{B}_{\mathrm{dR}}/\mathbf{B}_{\mathrm{dR}}^+ \to 0.$$

Proof. — This is lemma 9.25 of [Col02].

If V is a de Rham F-linear representation of G_K , we can \otimes_F the above sequence with V and we get a connecting homomorphism $\exp_{K,V} : (\mathbf{B}_{dR} \otimes_F V)^{G_K} \to \mathrm{H}^1(K,V)$. Recall that if W is an F-vector space, there is a natural injective map $W \otimes_F V \to W \otimes_{\mathbf{Q}_p} V$.

Lemma 3.2.2. — If V is F-analytic, the map $\exp_{K,V}: (\mathbf{B}_{dR} \otimes_F V)^{G_K} \to \mathrm{H}^1(K,V)$ defined above coincides with Bloch-Kato's exponential via the inclusion $(\mathbf{B}_{dR} \otimes_F V)^{G_K} \subset (\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)^{G_K}$, and its image is in $\mathrm{H}^1_{\mathrm{an}}(K,V)$.

Proof. — Bloch and Kato's exponential is defined as follows (definition 3.10 of [**BK90**]): if φ_p denotes the Frobenius map that lifts $x \mapsto x^p$ and if $x \in (\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)^{G_K}$, there exists $\tilde{x} \in \mathbf{B}_{\max,\mathbf{Q}_p}^{\varphi_p=1} \otimes_{\mathbf{Q}_p} V$ such that $\tilde{x} - x \in \mathbf{B}_{dR}^+ \otimes_{\mathbf{Q}_p} V$, and $\exp(x)$ is represented by the cocyle $g \mapsto (g-1)\tilde{x}$.

Lemma 3.2.1 says that we can lift $x \in (\mathbf{B}_{\mathrm{dR}} \otimes_F V)^{G_K}$ to some $\tilde{x} \in (\mathbf{B}_{\mathrm{max},F}^+[1/t_{\pi}])^{\varphi_q=1} \otimes_F V$ such that $\tilde{x} - x \in \mathbf{B}_{\mathrm{dR}}^+ \otimes_F V \subset \mathbf{B}_{\mathrm{dR}}^+ \otimes_{\mathbf{Q}_p} V$. In addition, $\mathbf{B}_{\mathrm{max},\mathbf{Q}_p}^{\varphi_q=1} = F_0 \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{max},\mathbf{Q}_p}^{\varphi_p=1}$ (see lemma 1.1.11 of $[\mathbf{Ber08}]$) so that $(\mathbf{B}_{\mathrm{max},F}^+[1/t_{\pi}])^{\varphi_q=1} \subset F \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{max},\mathbf{Q}_p}^{\varphi_p=1}$. We can therefore view \tilde{x} as an element of $\mathbf{B}_{\mathrm{max},\mathbf{Q}_p}^{\varphi_p=1} \otimes_{\mathbf{Q}_p} V$, and $\exp_{K,V}(x) = [g \mapsto (g-1)\tilde{x}] = \exp(x)$.

The construction of $\exp_{K,V}(x)$ shows that the cocycle $\exp_{K,V}(x)$ is de Rham. At each embedding $\tau \neq \operatorname{Id}$ of F, the extension of F by V given by $\exp_{K,V}(x)$ is therefore Hodge-Tate with weights 0. This finishes the proof of the lemma.

Recall the following theorem of Kato (see $\S II.1$ of [Kat93]).

Theorem 3.2.3. — If V is a de Rham representation, the map from $(\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)^{G_K}$ to $\mathrm{H}^1(K, \mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)$ defined by $x \mapsto [g \mapsto \log(\chi_{\mathrm{cyc}}(\overline{g}))x]$ is an isomorphism, and the dual exponential map $\exp_{K,V^*(1)}^* : \mathrm{H}^1(K,V) \to (\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)^{G_K}$ is equal to the composition of the map $\mathrm{H}^1(K,V) \to \mathrm{H}^1(K,\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)$ with the inverse of this isomorphism.

Concretely, if $c \in \mathrm{Z}^1(K, \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_p} V)$ is some cocycle, there exists $w \in \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_p} V$ such that $c(g) = \log(\chi_{\mathrm{cyc}}(\overline{g})) \cdot \exp_{K,V^*(1)}^*(c) + (g-1)(w)$.

Corollary 3.2.4. — If $c \in \mathbb{Z}^1(K, \mathbf{B}_{dR} \otimes_F V)$, and if there exist $x \in (\mathbf{B}_{dR} \otimes_F V)^{G_K}$ and $w \in \mathbf{B}_{dR} \otimes_F V$ such that $c(g) = \ell(\overline{g}) \cdot x + (g-1)(w)$, then $\exp_{K,V^*(1)}^*(c) = x$.

Proof. — This follows from theorem 3.2.3 and from the fact that $g \mapsto \log(\chi_{\pi}(\overline{g})/\chi_{\text{cyc}}(\overline{g}))$ is \mathbf{B}_{dR} -admissible, since $t_{\pi}/t \in (\mathbf{B}_{\text{dR}}^+)^{\times}$ so that $\log(t_{\pi}/t) \in \mathbf{B}_{\text{dR}}^+$ is well-defined.

3.3. Interpolating exponentials and their duals. — Let V be an F-analytic crystalline representation. By theorem 3.1.1, we have $D_{\text{rig}}^{\dagger}(V)^{\psi_q=1} \subset \mathbf{B}_{\text{rig},F}^+[1/t_{\pi}] \otimes_F D_{\text{cris}}(V)$. Let ∂_V denote the map ∂_D of §2.4 for $D = D_{\text{cris}}(V)$.

Theorem 3.3.1. — If $y \in D_{rig}^{\dagger}(V)^{\psi_q=1}$, then

$$\exp_{F_n,V^*(1)}^*(h_{F_n,V}^1(y)) = \begin{cases} q^{-n}\partial_V(\varphi_q^{-n}(y)) & \text{if } n \geqslant 1\\ (1 - q^{-1}\varphi_q^{-1})\partial_V(y) & \text{if } n = 0. \end{cases}$$

Proof. — Since the diagram

$$\begin{array}{ccc}
H^{1}(F_{n+1}, V) & \xrightarrow{\exp_{F_{n+1}, V^{*}(1)}^{*}} & F_{n+1} \otimes_{F} D_{cris}(V) \\
& & & & & & \\
\operatorname{cor}_{F_{n+1}/F_{n}} \downarrow & & & & & \\
H^{1}(F_{n}, V) & \xrightarrow{\exp_{F_{n}, V^{*}(1)}^{*}} & F_{n} \otimes_{F} D_{cris}(V)
\end{array}$$

is commutative, we only need to prove the theorem when $n \ge n(F)$ by lemma 2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

$$h_{F_n,V}^1(y)(b_j^k) = \ell^*(b) \cdot \frac{b_j^k - 1}{b_j - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_i - 1)} (y) - (b_j^k - 1)z,$$

with $z \in \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{F} V$ so that if $m \gg 0$, then $\varphi_{q}^{-m}(z) \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V$ (see §3 of [**Ber16**] and §2.2 of [**Ber02**]). Moreover, $\varphi_{q}^{-m}(y) \in F_{m}((t_{\pi})) \otimes_{F} \mathrm{D}_{\mathrm{cris}}(V)$. Let $W = \{w \in F_{m}((t_{\pi})) \otimes_{F} \mathrm{D}_{\mathrm{cris}}(V) \text{ such that } \partial_{V}(w) = 0\}$. The operator ∇ is bijective on W, and $F_{m}((t_{\pi})) \otimes_{F} \mathrm{D}_{\mathrm{cris}}(V)$ injects into $\mathbf{B}_{\mathrm{dR}} \otimes_{F} V$, hence there exists $u \in \mathbf{B}_{\mathrm{dR}} \otimes_{F} V$ such that

$$h_{F_n,V}^1(y)(b_j^k) = \ell^*(b) \cdot \frac{b_j^k - 1}{b_j - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_i - 1)} (\partial_V(\varphi_q^{-m}(y))) - (b_j^k - 1)u$$

$$= \ell(b_j^k) \cdot \Theta_b(\partial_V(\varphi_q^{-m}(y))) - (b_j^k - 1)u$$

$$= \ell(b_j^k) \cdot q^{-n} \partial_V(\varphi_q^{-n}(y))) - (b_j^k - 1)u,$$

by lemmas 2.4.1 and 2.4.3. This proves the theorem by corollary 3.2.4.

We now give explicit formulas for $\exp_{F_n,V}$. Take $h \geqslant 0$ such that $\operatorname{Fil}^{-h}\operatorname{D}_{\operatorname{cris}}(V) = \operatorname{D}_{\operatorname{cris}}(V)$, so that $t_{\pi}^h(\mathbf{B}_{\operatorname{rig},F}^+ \otimes_F \operatorname{D}_{\operatorname{cris}}(V)) \subset \operatorname{D}_{\operatorname{rig}}^{\dagger}(V)$ (in the notation of §2.2 of [**KR09**], we have $t_{\pi}^h(\mathbf{B}_{\operatorname{rig},F}^+ \otimes_F \operatorname{D}_{\operatorname{cris}}(V)) \subset \mathcal{M}(\operatorname{D}_{\operatorname{cris}}(V))$). In particular, if $y \in (\mathbf{B}_{\operatorname{rig},F}^+ \otimes_F \operatorname{D}_{\operatorname{cris}}(V))^{\psi_q=1}$, then $\nabla_{h-1} \circ \cdots \circ \nabla_0(y) \in \operatorname{D}_{\operatorname{rig}}^{\dagger}(V)^{\psi_q=1}$.

Theorem 3.3.2. — If $y \in (\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathbf{D}_{\mathrm{cris}}(V))^{\psi_q=1}$, then

$$h_{F_n,V}^1(\nabla_{h-1} \circ \cdots \circ \nabla_0(y)) = (-1)^{h-1}(h-1)! \begin{cases} \exp_{F_n,V}(q^{-n}\partial_V(\varphi_q^{-n}(y))) & \text{if } n \geqslant 1\\ \exp_{F,V}((1-q^{-1}\varphi_q^{-1})\partial_V(y)) & \text{if } n = 0. \end{cases}$$

Proof. — Since the diagram

$$F_{n+1} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V) \xrightarrow{\exp_{F_{n+1},V}} \mathcal{H}^{1}(F_{n+1},V)$$

$$\operatorname{Tr}_{F_{n+1}/F_{n}} \downarrow \qquad \operatorname{cor}_{F_{n+1}/F_{n}} \downarrow$$

$$F_{n} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V) \xrightarrow{\exp_{F_{n},V}} \mathcal{H}^{1}(F_{n},V)$$

is commutative, we only need to prove the theorem when $n \ge n(F)$ by lemma 2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

$$\begin{split} h^1_{F_n,V}(\nabla_{h-1} \circ \cdots \circ \nabla_0(y))(b^k_j) \\ &= \ell^*(b) \cdot \frac{b^k_j - 1}{b_j - 1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j} (b_i - 1)} (\nabla_{h-1} \circ \cdots \circ \nabla_0(y)) - (b^k_j - 1)z \\ &= (b^k_j - 1) \cdot (\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)(y) - (b^k_j - 1)z, \end{split}$$

so that $h_{F_n,V}^1(\nabla_{h-1}\circ\cdots\circ\nabla_0(y))(g)=(g-1)(\nabla_{h-1}\circ\cdots\circ\nabla_1\circ\Theta_b)(y)-(g-1)z$ if $g\in\Gamma_K$. By lemma 2.4.2, we have

$$(\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)((\varphi_q - 1)y) \in (t_\pi/\varphi_q^n(T))^h(\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\psi_q = 0} \subset \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_q = 0},$$

so that (in the notation of theorem 2.5.8) $m_c = (\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)((\varphi_q - 1)y)$. Since $(\varphi_q - 1)z = m_c$, we have $(\varphi_q - 1)((\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)(y) - z) = 0$, and therefore

$$(\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)(y) - z \in (\widetilde{\mathbf{B}}_{rig}^{\dagger}[1/t_{\pi}])^{\varphi_q=1} \otimes_F V$$

The ring $\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}$ contains $\mathbf{B}_{\mathrm{max},F}^{+}$ and the inclusion $(\mathbf{B}_{\mathrm{max},F}^{+}[1/t_{\pi}])^{\varphi_{q}=1} \subset (\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}[1/t_{\pi}])^{\varphi_{q}=1}$ is an equality (proposition 3.2 of [**Ber02**]). This implies that

$$(\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b)(y) - z \subset (\mathbf{B}_{\max,F}^+[1/t_\pi])^{\varphi_q=1} \otimes_F V.$$

Moreover, we have $z \in \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_F V$ so that if $m \gg 0$, then $\varphi_q^{-m}(z) \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_F V$. In addition, $\varphi_q^{-m}(y)$ belongs to $F_m[\![t_{\pi}]\!] \otimes_F \mathrm{D}_{\mathrm{cris}}(V)$, so that $\varphi_q^{-m}(y) - \partial_V(\varphi_q^{-m}(y))$ belongs to $t_{\pi}F_m[\![t_{\pi}]\!] \otimes_F \mathrm{D}_{\mathrm{cris}}(V)$ and therefore

$$(\nabla_{h-1} \circ \cdots \circ \nabla_1 \circ \Theta_b) \left(\varphi_q^{-m}(y) - \partial_V (\varphi_q^{-m}(y)) \right) \in t_\pi^h F_m[\![t_\pi]\!] \otimes_F \mathcal{D}_{\mathrm{cris}}(V)$$
$$\subset \mathbf{B}_{\mathrm{dR}}^+ \otimes_F V.$$

We can hence write

$$h^1_{F_n,V}(\nabla_{h-1}\circ\cdots\circ\nabla_0(y))(g)=(g-1)(\nabla_{h-1}\circ\cdots\circ\nabla_1\circ\Theta_b\circ\partial_V(\varphi_q^{-m}(y))-(g-1)u,$$

with $u \in \mathbf{B}_{\mathrm{dR}}^+ \otimes_F V$. The theorem now follows from the fact that

$$\Theta_b \circ \partial_V(\varphi_q^{-m}(y)) = q^{-n}\partial_V(\varphi_q^{-n}(y)) \in F_n \otimes_F \mathcal{D}_{\mathrm{cris}}(V)$$

by lemmas 2.4.2 and 2.4.3, that $\nabla_{h-1} \circ \cdots \circ \nabla_1 = (-1)^{h-1}(h-1)!$ on $F_n \otimes_F \mathcal{D}_{\mathrm{cris}}(V)$, and from the reminders given in §3.2, in particular the fact that $\exp_{K,V}$ is the connecting homomorphism when tensoring the exact sequence of lemma 3.2.1 with V and taking Galois invariants.

3.4. Kummer theory and the representation $F(\chi_{\pi})$. — Throughout this section, $V = F(\chi_{\pi})$. Let $L \subset \overline{\mathbb{Q}}_p$ be an extension of K. The Kummer map $\delta : \mathrm{LT}(\mathfrak{m}_L) \to \mathrm{H}^1(L,V)$ is defined as follows. Choose a generator $u = (u_k)_{k \geqslant 0}$ of $T_{\pi} \mathrm{LT} = \varprojlim_k \mathrm{LT}[\pi^k]$. If $x \in \mathrm{LT}(\mathfrak{m}_L)$, let $x_k \in \mathrm{LT}(\mathfrak{m}_{\overline{\mathbb{Q}}_p})$ be such that $[\pi^k](x_k) = x$. If $g \in G_L$, then $g(x_k) - x_k \in \mathrm{LT}[\pi^k]$ so that we can write $g(x_k) - x_k = [c_k(g)](u_k)$ for some $c_k(g) \in \mathcal{O}_F/\pi^k$. If $c(g) = (c_k(g))_{k \geqslant 0} \in \mathcal{O}_F$ then $\delta(x) = [g \mapsto c(g)] \in \mathrm{H}^1(L,V)$.

If $x \in LT(\mathfrak{m}_L)$, and L/K is finite Galois, let $Tr_{L/K}^{LT}$ be the map defined by $Tr_{L/K}^{LT}(x) = \sum_{g \in Gal(L/K)}^{LT} g(x)$ where the superscript LT means that the summation is carried out using the Lubin-Tate addition. If $F = \mathbf{Q}_p$ and $LT = \mathbf{G}_m$, we recover the classical Kummer map, and $Tr_{L/K}^{LT}(x) = N_{L/K}(1+x) - 1$.

Lemma 3.4.1. — We have the following commutative diagram:

$$\begin{array}{ccc}
\operatorname{LT}(\mathfrak{m}_{K_{n+1}}) & \stackrel{\delta}{\longrightarrow} & \operatorname{H}^{1}(K_{n+1}, V) \\
\operatorname{Tr}_{K_{n+1}/K_{n}}^{\operatorname{LT}} & & & \downarrow^{\operatorname{cor}_{K_{n+1}/K_{n}}} \\
\operatorname{LT}(\mathfrak{m}_{K_{n}}) & \stackrel{\delta}{\longrightarrow} & \operatorname{H}^{1}(K_{n}, V).
\end{array}$$

Proof. — This is a straightforward consequence of the explicit description of the corestriction map. \Box

Recall that $\varphi_q \circ \psi_q(f) = \frac{1}{q} \sum_{\omega \in LT[\pi]} f(T \oplus \omega)$, so that for $n \geqslant 1$:

$$\psi_q(f)(u_n) = \frac{1}{q} \sum_{\omega \in \mathrm{LT}[\pi]} f(u_{n+1} \oplus \omega) = \frac{1}{q} \mathrm{Tr}_{F_{n+1}/F_n} f(u_{n+1}).$$

In particular, if $f(T) \in \mathbf{B}_{\mathrm{rig},F}^+$ is such that $\psi_q(f(T)) = 1/\pi \cdot f(T)$ and $y_n = f(u_n)$, then $\mathrm{Tr}_{F_{n+1}/F_n}(y_{n+1}) = q/\pi \cdot y_n$.

Proposition 3.4.2. — Assume that $F \neq \mathbf{Q}_p$. If $\{y_n\}_{n\geqslant 1}$ is a sequence with $y_n \in F_n$ and $\operatorname{Tr}_{F_{n+1}/F_n}(y_{n+1}) = q/\pi \cdot y_n$, there exists $f(T) \in \mathbf{B}^+_{\operatorname{rig},F}$ such that $\psi_q(f(T)) = 1/\pi \cdot f(T)$ and $y_n = f(u_n)$ for all $n \geqslant 1$.

Proof. — By [Laz62], there exists a power series $g(T) \in \mathbf{B}_{\mathrm{rig},F}^+$ such that $g(u_n) = y_n$ for all $n \ge 1$. We also have

$$\psi_q g(0) = \frac{1}{q} g(0) + \frac{1}{q} \operatorname{Tr}_{F_1/F_0} g(u_1),$$

and since $q \neq \pi$ (because $F \neq \mathbf{Q}_p$), we can choose g(0) such that

$$\frac{1}{\pi}g(0) = \frac{1}{q}g(0) + \frac{1}{q}\operatorname{Tr}_{F_1/F_0}y_1.$$

This implies that $(\psi_q(g) - 1/\pi \cdot g)(u_n) = 0$ for all $n \ge 0$, so that $\psi_q(g) - 1/\pi \cdot g \in t_\pi \cdot \mathbf{B}_{\mathrm{rig},F}^+$. It is therefore enough to prove that $\psi_q - 1/\pi : t_\pi \cdot \mathbf{B}_{\mathrm{rig},F}^+ \to t_\pi \cdot \mathbf{B}_{\mathrm{rig},F}^+$ is onto. Since $\psi_q(t_\pi f) = 1/\pi \cdot t_\pi \psi_q(f)$, this amounts to proving that $\psi_q - 1 : \mathbf{B}_{\mathrm{rig},F}^+ \to \mathbf{B}_{\mathrm{rig},F}^+$ is onto, which follows from corollary 2.3.4.

Definition 3.4.3. — Let S denote the set of sequences $\{x_n\}_{n\geqslant 1}$ with $x_n \in \mathfrak{m}_{F_n}$ and $\operatorname{Tr}^{\operatorname{LT}}_{F_{n+1}/F_n}(x_{n+1}) = [q/\pi](x_n)$ for $n\geqslant 1$.

The following proposition says that if $F \neq \mathbf{Q}_p$, then S is quite large: for any $k \geqslant 1$, the "k-th component" map $F \otimes_{\mathcal{O}_F} S \to F_k$ is surjective (if $F = \mathbf{Q}_p$, there are restrictions on "universal norms").

Proposition 3.4.4. — Assume that $F \neq \mathbf{Q}_p$. If $z \in \mathfrak{m}_{F_k}$, there exists $\ell \geqslant 0$ and $x \in S$ such that $x_k = [\pi^\ell](z)$.

Proof. — We claim that $\operatorname{Tr}_{F_{n+1}/F_n}(\mathcal{O}_{F_{n+1}}) = \pi \mathcal{O}_{F_n}$. Indeed, let \mathcal{D} denote the different. We have (see for instance proposition 7.11 of [**Iwa86**])

$$\operatorname{val}_{p}(\mathcal{D}_{F_{n+1}/F_{n}}) = \frac{1}{e} \left(n + 1 - \frac{1}{q-1} \right) - \frac{1}{e} \left(n - \frac{1}{q-1} \right) = \operatorname{val}_{p}(\pi).$$

This implies that $\operatorname{Tr}_{F_{n+1}/F_n}(\mathcal{O}_{F_{n+1}}) = \pi \mathcal{O}_{F_n}$ by proposition 7 of Chapter III of [Ser68].

Since π divides q/π , this shows that given $y \in \mathcal{O}_{F_k}$, there exists a sequence $\{y_n\}_{n\geqslant 1}$ with $x_n \in \mathcal{O}_{F_n}$ such that $y_k = y$, and $\operatorname{Tr}_{F_{n+1}/F_n}(y_{n+1}) = q/\pi \cdot y_n$ for $n \geqslant 1$. Take $\ell_1, \ell_2 \geqslant 0$ such that $\pi^{\ell_1}\mathcal{O}_{\mathbf{C}_p}$ is in the domain of \exp_{LT} and such that $\pi^{\ell_2}\log_{\mathrm{LT}}(z) \in \mathcal{O}_{F_k}$. Let $y = \pi^{\ell_2}\log_{\mathrm{LT}}(z)$. Let $\{y_n\}_{n\geqslant 1}$ be a sequence as above, let $x_n = \exp_{\mathrm{LT}}(\pi^{\ell_1}y_n)$ and $\ell = \ell_1 + \ell_2$. The elements $x_k \ominus [\pi^\ell](z)$, as well as $\operatorname{Tr}_{F_{n+1}/F_n}^{\mathrm{LT}}(x_{n+1}) \ominus [q/\pi](x_n)$ for all n, have their \log_{LT} equal to zero and are in a domain in which \log_{LT} is injective. This proves the proposition.

If $x \in S$ and $y_n = \log_{\mathrm{LT}}(x_n)$, then $y_n \in F_n$ and $\mathrm{Tr}_{F_{n+1}/F_n}(y_{n+1}) = q/\pi \cdot y_n$, so that by proposition 3.4.2, there exists $f(T) \in \mathbf{B}^+_{\mathrm{rig},F}$ such that $\psi_q(f(T)) = \pi^{-1} \cdot f(T)$ and $y_n = f(u_n)$ for all $n \ge 1$. If $f(T) \in \mathbf{B}^+_{\mathrm{rig},F}$ is such that $\psi_q(f(T)) = \pi^{-1} \cdot f(T)$, then $\partial f \in (\mathbf{B}^+_{\mathrm{rig},F})^{\psi_q=1}$ and $\partial f \cdot u$ can be seen as an element of $\mathrm{D}^\dagger_{\mathrm{rig}}(V)^{\psi_q=1}$.

Theorem 3.4.5. — If $x \in S$, and if $f(T) \in \mathbf{B}^+_{\mathrm{rig},F}$ is such that $f(u_n) = \log_{\mathrm{LT}}(x_n)$ and $\psi_q(f(T)) = \pi^{-1} \cdot f(T)$, then $h^1_{F_n,V}(\partial f(T) \cdot u) = (q/\pi)^{-n} \cdot \delta(x_n)$ for all $n \ge 1$.

Proof. — Let $y = f(T) \otimes t_{\pi}^{-1}u$, so that $y \in (\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathbf{D}_{\mathrm{cris}}(V))^{\psi_q=1}$. By theorem 3.3.2 applied to y with h = 1, we have $h_{F_n,V}^1(\nabla(y)) = \exp_{F_n,V}(q^{-n}\partial_V(\varphi_q^{-n}(y)))$ if $n \geqslant 1$. Since $\varphi_q^{-n} \circ \partial = \pi^n \cdot \partial \circ \varphi_q^{-n}$, this implies that

$$h^1_{F_n,V}(\partial f(T)\cdot u) = \exp_{F_n,V}(q^{-n}\partial_V(\varphi_q^{-n}(y))) = (q/\pi)^{-n}\cdot \exp_{F_n,V}(\log_{\mathrm{LT}}(x_n)\cdot u).$$

By example 3.10.1 of [**BK90**] and lemma 3.2.2, we have $\delta(x_n) = \exp_{F_n,V}(\log_{LT}(x_n) \cdot u)$. This proves the theorem.

Remark 3.4.6. — If $F = \mathbf{Q}_p$ and $\pi = q = p$ and $x = \{x_n\}_{n \geq 1}$, this theorem says that $\operatorname{Exp}_{\mathbf{Q}_p}^*(\delta(x)) = \partial \log \operatorname{Col}_x(T)$, which is (iii) of proposition V.3.2 of [CC99] (see theorem II.1.3 of ibid for the definition of the map $\operatorname{Exp}_{\mathbf{Q}_p}^* : \operatorname{H}^1_{\operatorname{Iw}}(F, \mathbf{Q}_p(1)) \to \operatorname{D}^{\dagger}_{\operatorname{rig}}(\mathbf{Q}_p(1))^{\psi_q=1}$).

Remark 3.4.7. — If $x \in S$, then by proposition 3.4.2, there is a power series f(T) such that $f(u_n) = \log_{\mathrm{LT}}(x_n)$ for $n \ge 1$. Is there a power series $g(T) \in \mathcal{O}_F[\![T]\!]$ such that $g(u_n) = x_n$, so that $f(T) = \log g(T)$?

If $F = \mathbf{Q}_p$, such a power series is the classical Coleman power series [Col79]. If $F \neq \mathbf{Q}_p$ and $x \in S$ and z is a $[q/\pi]$ -torsion point, and $k \geqslant d-1$ so that $z \in F_k$, then the sequence $x' = \{x'_n\}_{n\geqslant 1}$ defined by $x'_n = x_n$ if $n \neq k$ and $x'_k = x_k \oplus z$ also belongs to S. This means that we cannot naïvely interpolate x.

3.5. Perrin-Riou's big exponential map. — In this last section, we explain how the explicit formulas of the previous sections can be used to give a Lubin-Tate analogue of Perrin-Riou's "big exponential map" [PR94]. Take $h \ge 1$ such that $\operatorname{Fil}^{-h}\operatorname{D}_{\operatorname{cris}}(V) = \operatorname{D}_{\operatorname{cris}}(V)$. If $f \in \mathbf{B}_{\operatorname{rig},F}^+ \otimes_F \operatorname{D}_{\operatorname{cris}}(V)$, let $\Delta(f)$ be the image of $\bigoplus_{k=0}^h \partial^k(f)(0)$ in $\bigoplus_{k=0}^h \operatorname{D}_{\operatorname{cris}}(V)/(1-\pi^k\varphi_q)$.

Lemma 3.5.1. — There is an exact sequence:

$$0 \to \bigoplus_{k=0}^{h} t_{\pi}^{k} \mathcal{D}_{\mathrm{cris}}(V)^{\varphi_{q}=\pi^{-k}} \to \left(\mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V)\right)^{\psi_{q}=1} \xrightarrow{1-\varphi_{q}}$$

$$\left(\mathbf{B}_{\mathrm{rig},F}^{+}\right)^{\psi_{q}=0} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V) \xrightarrow{\Delta} \bigoplus_{k=0}^{h} \frac{\mathcal{D}_{\mathrm{cris}}(V)}{1-\pi^{k} \varphi_{q}} \to 0.$$

Proof. — Note that the map φ_q acts diagonally on tensor products. It is easy to see that $\ker(1-\varphi_q) = \bigoplus_{k=0}^h t_\pi^k \mathrm{D}_{\mathrm{cris}}(V)^{\varphi_q=\pi^{-k}}$, that Δ is surjective, and that $\mathrm{im}(1-\varphi_q) \subset \ker \Delta$, so we now prove that $\mathrm{im}(1-\varphi_q) = \ker \Delta$.

If $f, g \in \mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V)$ and $f = (1 - \varphi_q)g$, then $\psi_q(f) = 0$ if and only if $\psi_q(g) = g$. It is therefore enough to show that if $f \in \mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V)$ is such that $\Delta(f) = 0$, then $f = (1 - \varphi_q)g$ for some $g \in \mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V)$.

The map $1 - \varphi_q : T^{h+1}\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathbf{D}_{\mathrm{cris}}(V) \to T^{h+1}\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathbf{D}_{\mathrm{cris}}(V)$ is bijective because the slopes of φ_q on $T^{h+1}\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F D$ are > 0. This implies that $1 - \varphi_q$ induces a sequence

$$0 \to \bigoplus_{k=0}^{h} t_{\pi}^{k} \mathcal{D}_{\mathrm{cris}}(V)^{\varphi_{q}=\pi^{-k}} \to \frac{\mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V)}{T^{h+1} \mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V)} \xrightarrow{\overline{1-\varphi_{q}}}$$

$$\frac{\mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V)}{T^{h+1} \mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} \mathcal{D}_{\mathrm{cris}}(V)} \xrightarrow{\Delta} \bigoplus_{k=0}^{h} \frac{\mathcal{D}_{\mathrm{cris}}(V)}{1-\pi^{k} \varphi_{q}}.$$

We have $\ker(\overline{1-\varphi_q}) = \bigoplus_{k=0}^h t_\pi^k \mathcal{D}_{\mathrm{cris}}(V)^{\varphi_q = \pi^{-k}}$ and by comparing dimensions, we see that $\operatorname{coker}(\overline{1-\varphi_q}) = \bigoplus_{k=0}^h \mathcal{D}_{\mathrm{cris}}(V)/(1-\pi^k\varphi_q)$. This and the bijectivity of $1-\varphi_q$ on $T^{h+1}\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathcal{D}_{\mathrm{cris}}(V)$ imply the claim.

If $f \in ((\mathbf{B}_{\mathrm{rig},F}^+)^{\psi_q=0} \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\Delta=0}$, then by lemma 3.5.1 there exists $y \in (\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\psi_q=1}$ such that $f = (1-\varphi_q)y$. Since $\nabla_{h-1} \circ \cdots \circ \nabla_0$ kills $\bigoplus_{k=0}^{h-1} t_\pi^k \mathrm{D}_{\mathrm{cris}}(V)^{\varphi_q=\pi^{-k}}$ we see that $\nabla_{h-1} \circ \cdots \circ \nabla_0(y)$ does not depend upon the choice of such a y (unless $\mathrm{D}_{\mathrm{cris}}(V)^{\varphi_q=\pi^{-k}} \neq 0$).

Definition 3.5.2. — Let $h \ge 1$ be such that $\operatorname{Fil}^{-h}\operatorname{D}_{\operatorname{cris}}(V) = \operatorname{D}_{\operatorname{cris}}(V)$ and such that $\operatorname{D}_{\operatorname{cris}}(V)^{\varphi_q = \pi^{-h}} = 0$. We deduce from the above construction a well-defined map:

$$\Omega_{V,h}: ((\mathbf{B}_{\mathrm{rig}}^+F)^{\psi_q=0} \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\Delta=0} \to \mathrm{D}_{\mathrm{rig}}^\dagger(V)^{\psi_q=1},$$

given by $\Omega_{V,h}(f) = \nabla_{h-1} \circ \cdots \circ \nabla_0(y)$ where the element $y \in (\mathbf{B}_{rig,F}^+ \otimes_F \mathbf{D}_{cris}(V))^{\psi_q=1}$ is such that $f = (1 - \varphi_q)y$ and is provided by lemma 3.5.1.

If $D_{cris}(V)^{\varphi_q=\pi^{-h}} \neq 0$, we get a map

$$\Omega_{V,h}: ((\mathbf{B}_{\mathrm{rig},F}^+)^{\psi_q=0} \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\Delta=0} \to \mathrm{D}_{\mathrm{rig}}^\dagger(V)^{\psi_q=1}/V^{G_F=\chi_\pi^h}.$$

Let u be a basis of $F(\chi_{\pi})$ as above, and let $e_j = u^{\otimes j}$ if $j \in \mathbf{Z}$.

Theorem 3.5.3. — Take $y \in (\mathbf{B}_{\mathrm{rig},F}^+ \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\psi_q=1}$ and let $h \geqslant 1$ be such that $\mathrm{Fil}^{-h}\mathrm{D}_{\mathrm{cris}}(V) = \mathrm{D}_{\mathrm{cris}}(V)$. Let $f = (1 - \varphi_q)y$ so that $f \in ((\mathbf{B}_{\mathrm{rig},F}^+)^{\psi_q=0} \otimes_F \mathrm{D}_{\mathrm{cris}}(V))^{\Delta=0}$. If $j \in \mathbf{Z}$ and $h + j \geqslant 1$, then

$$h_{F_{n},V(\chi_{\pi}^{j})}^{1}(\Omega_{V,h}(f)\otimes e_{j}) = (-1)^{h+j-1}(h+j-1)! \times \begin{cases} \exp_{F_{n},V(\chi_{\pi}^{j})}(q^{-n}\partial_{V(\chi_{\pi}^{j})}(\varphi_{q}^{-n}(\partial^{-j}y\otimes t_{\pi}^{-j}e_{j}))) & \text{if } n \geqslant 1 \\ \exp_{F,V(\chi_{\pi}^{j})}((1-q^{-1}\varphi_{q}^{-1})\partial_{V(\chi_{\pi}^{j})}(\partial^{-j}y\otimes t_{\pi}^{-j}e_{j})) & \text{if } n = 0. \end{cases}$$

If $j \in \mathbf{Z}$ and $h + j \leq 0$, then

$$\exp_{F_{n},V^{*}(1-j)}^{*}(h_{F_{n},V(\chi_{\pi}^{j})}^{1}(\Omega_{V,h}(f)\otimes e_{j})) = \frac{1}{(-h-j)!} \begin{cases} q^{-n}\partial_{V(\chi_{\pi}^{j})}(\varphi_{q}^{-n}(\partial^{-j}y\otimes t_{\pi}^{-j}e_{j})) & \text{if } n\geqslant 1\\ (1-q^{-1}\varphi_{q}^{-1})\partial_{V(\chi_{\pi}^{j})}(\partial^{-j}y\otimes t_{\pi}^{-j}e_{j}) & \text{if } n=0. \end{cases}$$

Proof. — If $h + j \ge 1$, the following diagram is commutative:

$$\begin{array}{ccc}
& D_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1} & \xrightarrow{\otimes e_{j}} & D_{\mathrm{rig}}^{\dagger}(V(\chi_{\pi}^{j}))^{\psi_{q}=1} \\
& \nabla_{h-1} \circ \cdots \circ \nabla_{0} & \nabla_{h+j-1} \circ \cdots \circ \nabla_{0} & \\
& \left(\mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} D_{\mathrm{cris}}(V) \right)^{\psi_{q}=1} & \xrightarrow{\partial^{-j} \otimes t^{-j} e_{j}} & \left(\mathbf{B}_{\mathrm{rig},F}^{+} \otimes_{F} D_{\mathrm{cris}}(V(\chi_{\pi}^{j})) \right)^{\psi_{q}=1}, \\
\end{array}$$

and the theorem is a straightforward consequence of theorem 3.3.2 applied to $\partial^{-j} y \otimes t^{-j} e_j$, h + j and $V(\chi^j_{\pi})$ (which are the j-th twists of y, h and V).

If $h+j \leq 0$, and Γ_{F_n} is torsion free, then theorem 3.3.1 shows that

$$\exp_{F_n,V^*(1-j)}^*(h_{F_n,V(\chi_\pi^j)}^1(\nabla_{h-1}\circ\cdots\circ\nabla_0(y)\otimes e_j))$$

$$=q^{-n}\partial_{V(\chi_\pi^j)}(\varphi_q^{-n}(\nabla_{h-1}\circ\cdots\circ\nabla_0(y)\otimes e_j))$$

in $D_{cris}(V(\chi^j_{\pi}))$, and a short computation involving Taylor series shows that

$$\partial_{V(\chi_{\pi}^{j})}(\varphi_{q}^{-n}(\nabla_{h-1}\circ\cdots\circ\nabla_{0}(y)\otimes e_{j}))=(-h-j)!^{-1}\partial_{V(\chi_{\pi}^{j})}(\varphi_{q}^{-n}(\partial^{-j}y\otimes t_{\pi}^{-j}e_{j})).$$

To get the other n, we corestrict.

Corollary 3.5.4. We have $\Omega_{V,h}(x) \otimes e_j = \Omega_{V(\chi^j_\pi),h+j}(\partial^{-j}x \otimes t^{-j}_\pi e_j)$ and $\nabla_h \circ \Omega_{V,h}(x) = \Omega_{V,h+1}(x)$.

Remark 3.5.5. — The notation ∂^{-j} is somewhat abusive if $j \ge 1$ as ∂ is not injective on $\mathbf{B}_{\mathrm{rig},F}^+$ (it is surjective as can be seen by "integrating" directly a power series) but the reader can check that this leads to no ambiguity in the formulas of theorem 3.5.3 above.

If $F = \mathbf{Q}_p$ and $\pi = p$, definition 3.5.2 and theorem 3.5.3 are given in §II.5 of [**Ber03**]. They imply that $\Omega_{V,h}$ coïncides with Perrin-Riou's exponential map (see theorem 3.2.3 of [**PR94**]) after making suitable identifications (theorem II.13 of [**Ber03**]).

Our definition therefore generalizes Perrin-Riou's exponential map to the F-analytic setting. We hope to use the results of [Fou05] and [Fou08] to relate our constructions to suitable Iwasawa algebras as in the cyclotomic case.

References

- [Ber02] L. BERGER "Représentations p-adiques et équations différentielles", Invent. Math. 148 (2002), no. 2, p. 219–284.
- [Ber03] _____, "Bloch and Kato's exponential map: three explicit formulas", *Doc. Math.* (2003), no. Extra Vol., p. 99–129 (electronic), Kazuya Kato's fiftieth birthday.
- [Ber08] _____, "Construction de (φ, Γ) -modules: représentations p-adiques et B-paires", Algebra Number Theory 2 (2008), no. 1, p. 91–120.
- [Ber16] _____, "Multivariable (φ, Γ) -modules and locally analytic vectors", *Duke Math. J.* **165** (2016), no. 18, p. 3567–3595.
- [BK90] S. Bloch & K. Kato "L-functions and Tamagawa numbers of motives", in *The Grothendieck Festschrift, Vol. I*, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, p. 333–400.
- [CC98] F. Cherbonnier & P. Colmez "Représentations p-adiques surconvergentes", Invent. Math. 133 (1998), no. 3, p. 581–611.
- [CC99] F. CHERBONNIER & P. COLMEZ "Théorie d'Iwasawa des représentations p-adiques d'un corps local", J. Amer. Math. Soc. 12 (1999), no. 1, p. 241–268.
- [Col79] R. F. Coleman "Division values in local fields", *Invent. Math.* **53** (1979), no. 2, p. 91–116.
- [Col02] P. Colmez "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331–439.
- [Col16] _____, "Représentations localement analytiques de $GL_2(\mathbf{Q}_p)$ et (φ, Γ) -modules", Represent. Theory **20** (2016), p. 187–248.
- [Fon90] J.-M. FONTAINE "Représentations p-adiques des corps locaux. I", in *The Grothendieck Festschrift, Vol. II*, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.
- [Fon94] _____, "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Fou05] L. FOURQUAUX "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", Ph.D. Thesis, Université Paris 6, 2005.
- [Fou08] _____, "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", preprint, 2008.
- [FW79a] J.-M. FONTAINE & J.-P. WINTENBERGER "Extensions algébriques et corps des normes des extensions APF des corps locaux", C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, p. A441–A444.
- [FW79b] _____, "Le "corps des normes" de certaines extensions algébriques de corps locaux", C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, p. A367–A370.
- [FX13] L. FOURQUAUX & B. XIE "Triangulable \mathcal{O}_F -analytic (φ_q, Γ) -modules of rank 2", Algebra Number Theory 7 (2013), no. 10, p. 2545–2592.
- [Iwa86] K. Iwasawa Local class field theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Mathematical Monographs.
- [Kat93] K. KATO "Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via $B_{\rm dR}$. I", in Arithmetic algebraic geometry (Trento, 1991), Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, p. 50–163.
- [KR09] M. Kisin & W. Ren "Galois representations and Lubin-Tate groups", *Doc. Math.* 14 (2009), p. 441–461.

- [Laz62] M. LAZARD "Les zéros des fonctions analytiques d'une variable sur un corps valué complet", *Inst. Hautes Études Sci. Publ. Math.* (1962), no. 14, p. 47–75.
- [LT65] J. Lubin & J. Tate "Formal complex multiplication in local fields", Ann. of Math. (2) 81 (1965), p. 380–387.
- [Mat95] S. Matsuda "Local indices of p-adic differential operators corresponding to Artin-Schreier-Witt coverings", Duke Math. J. 77 (1995), no. 3, p. 607–625.
- [PR94] B. Perrin-Riou "Théorie d'Iwasawa des représentations *p*-adiques sur un corps local", *Invent. Math.* **115** (1994), no. 1, p. 81–161, With an appendix by Jean-Marc Fontaine.
- [Ser68] J.-P. Serre Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l'Université de Nancago, No. VIII.
- [Ser94] _____, Cohomologie galoisienne, fifth ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994.
- [SV17] P. Schneider & O. Venjakob "Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions", in *Elliptic Curves, Modular Forms and Iwasawa Theory. In Honour of John H. Coates' 70th Birthday*, Springer Verlag, 2017.
- [Tam15] G. Tamme "On an analytic version of Lazard's isomorphism", Algebra Number Theory 9 (2015), no. 4, p. 937–956.
- [Tsu04] T. Tsuji "Explicit reciprocity law and formal moduli for Lubin-Tate formal groups", J. Reine Angew. Math. **569** (2004), p. 103–173.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

LAURENT BERGER LIONEL FOURQUAUX