NONARCHIMEDEAN DYNAMICAL SYSTEMS AND
FORMAL GROUPS

by

Laurent Berger

Abstract. — We prove two theorems that confirm an observation of Lubin concerning
families of p-adic power series that commute under composition: under certain conditions,
there is a formal group such that the power series in the family are either endomorphisms
of this group, or semiconjugate to endomorphisms of this group.
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Introduction

Let K be a finite extension of Q,, and let Ok be its ring of integers and mg the
maximal ideal of Ok. In [Lub94|, Lubin studied nonarchimedean dynamical systems,
namely families of elements of X -O[X] that commute under composition, and remarked
(page 341 of ibid.) that “experimental evidence seems to suggest that for an invertible
series to commute with a noninvertible series, there must be a formal group somehow in
the background”. Various results in that direction have been obtained (by Hsia, Laubie,
Li, Movahhedi, Salinier, Sarkis, Specter, ...; see for instance [Li96], [Li97a], [Li97b],
[LMSO02], [Sar05], [Sar10], [SS13|, [HL16|, [Berl7], [Spel8]) by using either p-adic
analysis, the theory of the field of norms or, more recently, p-adic Hodge theory. The
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purpose of this article is to prove two theorems that confirm the above observation in
many new cases, using only p-adic analysis.

If g(X) € X - Okg[X], we say that g is invertible if ¢'(0) € O and is noninvertible if
¢'(0) € mg. We say that g is stable if ¢’(0) is neither 0 nor a root of unity. For example,
if S is a formal group of finite height over Ok and if ¢ € Z with p{ ¢ and ¢ # £1, then
f(X) = [p/(X) and u(X) = [¢|(X) are two stable power series, with f noninvertible and
u invertible, having the following properties: the roots of f and all of its iterates are
simple, f £ 0 mod mg and fou =wo f. Our first result is a partial converse of this. If
f(X) € X - Ok[X], let Uy denote the set of invertible power series u(X) € X - Ok [X]
such that fou =wo f, and let U}(0) = {v/(0), u € Uy}. This is a subgroup of O.

Theorem A. — Let K be a finite extension of Q, such that e(K/Q,) < p—1, and let
f(X) € X - Ok[X] be a noninvertible stable series. Suppose that

1. the roots of f and all of its iterates are simple, and f £ 0 mod my;
2. there is a subfield ' of K such that f'(0) € mp and such that U(0) NOF is an open
subgroup of Of.
Then there is a formal group S over O such that f € End(S) and Uy C End(S).

Condition (1) can be checked using the following criterion (proposition 1.5).

Criterion A. — If f(X) € X - Ox[X] is a noninvertible stable series with f # 0 mod
mg, and if f commutes with a stable invertible series u(X) € X - Og[X], then the roots
of f and all of its iterates are simple if and only if f'(X)/f(0) € 1 + X - Ox[X].

If K = Q,, condition (2) of Theorem A amounts to requiring the existence of a stable

invertible series that commutes with f.

Corollary A. — If f(X) € X-Z,[X] is a noninvertible stable series such that the roots
of f and all of its iterates are simple and f # 0 mod p, and if f commutes with a stable

invertible series u(X) € X - Z,[X], then there is a formal group S over Z, such that
f € End(S) and Uy C End(95).

There are examples of commuting power series where f does not have simple roots, for
instance f(X) = 9X + 6X2%+ X? and u(X) = 4X + X? with K = Q3 (more examples
can be constructed following the discussion on page 344 of [Lub94]). It seems reasonable
to expect that if f and u are two stable noninvertible and invertible power series that
commute, with f # 0 mod mg, then there exists a formal group S, two endomorphisms

fs and ug of S, and a nonzero power series h such that foh =ho fg and uoh = houg.
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We then say that f and fg are semiconjugate and that h is an isogeny from fg to f (see
for instance [Li97a]).

The simplest case where this occurs is when m is an integer > 2, and the nonzero roots
of f and all of its iterates are of multiplicity m (for an example of a more complicated

case, see remark 3.3). In this simplest case, we have the following.

Theorem B. — Let K be a finite extension of Q,, let f(X) € X - Ox[X] be a nonin-
vertible stable series and take m > 2. Let h(X) = X™. Suppose that

1. the nonzero roots of f and all of its iterates are of multiplicity m;
2. f #0mod mg.

Then there exists a finite unramified extension L of K and a noninvertible stable series
fo(X) € X-OL[X] with fo Z 0 mod my, such that foh = ho fy, and the roots of fo and
all of its iterates are simple.

If in addition v is an element of Uy with v'(0) = 1 mod my, then there exists uy € Uy,
such that wo h = howgy. Finally, if there is a subfield F' of K such that f'(0) € mp and
such that U’t(0) N OF is an open subgroup of Of, then (fg™)'(0) € mp and U’ (0) N OF

is an open subgroup of Op.
Condition (1) can be checked using the following criterion (proposition 3.2).

Criterion B. — If f(X) € X - Ok[X] is a noninvertible stable series with f # 0 mod
my, and if f commutes with a stable invertible series u(X) € X-Ok[X], then the nonzero
roots of f and all of its iterates are of multiplicity m if and only if the nonzero roots of

f are of multiplicity m, and the set of roots of f' is included in the set of roots of f.
We have the following simple corollary of Theorem B when K = Q,,.

Corollary B. — If m > 2 and f(X) € X - Z,[X] is a noninvertible stable series such
that the nonzero roots of f and all of its iterates are of multiplicity m and f % 0 mod p,
and if f commutes with a stable invertible series u(X) € X - Z,[X], then there is an
unramified extension L of Q,, a formal group S over O and fs € End(S) such that
foX™=X"o fs.

Theorem A implies conjecture 5.3 of [HL16]| for those K such that e(K/Q,) < p— 1.
It also provides a new simple proof (that does not use p-adic Hodge theory) of the main
theorem of [Spel8]. Note also that Theorem A holds without the restriction “e(K/Q,) <
p — 17 if f'(0) is a uniformizer of Ok (see [SpelT]). This implies “Lubin’s conjecture”
formulated at the very end of [Sar10] (this conjecture is proved in [Berl7| using p-adic
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Hodge theory, when K is a finite Galois extension of Q,) as well as “Lubin’s conjecture”
on page 131 of [Sar05] over Q,, if f # 0 mod p.

The results of [HL16], [Ber17]| and [Spel8| are proved under strong additional as-
sumptions on wideg(f) (namely that wideg(f) = p in [Spel8], or that wideg(f) = p",
where h is the residual degree of K, in [HL16]| and [Ber17]). Theorem A is the first
general result in this direction that makes no assumption on wideg(f), besides assuming
that it is finite. It also does not assume that f/(0) is a uniformizer of O.

Theorem A and its corollary are proved in section 2 and theorem B and its corollary

are proved in section 3.

1. Nonarchimedean dynamical systems

Whenever we talk about the roots of a power series, we mean its roots in the p-
adic open unit disk mc,. Recall that the Weierstrass degree wideg(g(X)) of a series
g(X) =1 9:X" € X - Ok[X] is the smallest integer i < +o00 such that g; € Ox. We
have wideg(g) = 400 if and only if g = 0 mod my.

If r < 1, let H(r) denote the set of power series in K[X] that converge on the closed
disk {z € mg, such that |z], < r}. If h € H(r), let [[h]|, = sup,| <, [h(2)],. The space
H(r) is complete for the norm ||-||,. Let H = projlim, _, H(r) be the ring of holomorphic
functions on the open unit disk.

Throughout this article, f(X) € X - Ok[X] is a stable noninvertible series such that
wideg(f) < +oo, and Uy denotes the set of invertible power series u(X) € X - Og[X]
such that fou=wuo f.

Lemma 1.1. — A series g(X) € X-K[X] that commutes with f is determined by ¢'(0).
Proof. — This is proposition 1.1 of [Lub94]. O

Proposition 1.2. — If Uy contains a stable invertible series, then there ewists a power
series g(X) € X - Ox[X] and an integer d > 1 such that f(X) = g(X*") mod m.
We have wideg(f) = p? for some d > 1.

Proof. — This is the main result of [Lub94]. See (the proof of) theorem 6.3 and corollary
6.2.1 of ibid. O

Proposition 1.8. — There is a (unique) power series L(X) € X + X2 K[X] such that
Lof=/f(0)-Land Lou=(0) L ifue Us. The series L(X) converges on the open
unit disk, and L(X) = lim, 00 f(X)/f'(0)™ in the Fréchet space H.
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Proof. — See propositions 1.2, 1.3 and 2.2 of [Lub94]. ]

Lemma 1.4. — If f(X) € X-Ok[X] is a noninvertible stable series and if f commutes

with a stable invertible series u, then every root of f' is a root of f°™ for some n > 0.
Proof. — This is corollary 3.2.1 of [Lub94]. O

Proposition 1.5. — If f(X) € X - Og[X] is a noninvertible stable series with f #
0 mod mg, and if f commutes with a stable invertible series u, then the roots of f and
all of its iterates are simple if and only if f'(X)/f'(0) € 14+ X - Og[X].

Proof. — We have (f°")'(X) = f/(f"=1(X)) - f/(f(X)) - f/(X). I f/(X)/f'(0) € 1 +
X - Ok[X], then the derivative of f°"(X) belongs to f'(0)"- (1 + X - Og[X]) and hence
has no roots. The roots of f°"(X) are therefore simple.

By lemma 1.4, any root of f/(X) is also a root of f°" for some n > 0. If the

roots of f°"(X) are simple for all n > 1, then f’(X) cannot have any root, and hence
f(X)/1(0) € 1+ XOk[X]. -

2. Formal groups

We now prove theorem A. Let S(X,Y) = L°"}L(X) + L(Y)) € K[X,Y]. By propo-
sition 1.3, S is a formal group law over K such that f and all v € U; are endomor-
phisms of S. In order to prove theorem A, we show that S(X,Y) € Og[X,Y]. Write
S(X,Y) = X0 55(X)Y7.

Lemma 2.1. — IfL/(X) € Ok[X], then s;(X) € jI=' - Ox[X] for all j = 0.
Proof. — This is lemma 3.2 of [Li96]. O
Lemma 2.2. — If the roots of f°"(X) are simple for allm > 1, then L'(X) € Ox[X].

Proof. — This is sketched in the proof of theorem 3.6 of [Li96]. We give a complete
argument for the convenience of the reader.

We have (f)(X) = f/(fYX))---f(f(X)) - f(X), and by proposition 1.5,
F(X)/f(0) € 1+ XOk[X]. We have L(X) = lim, 1 f°(X)/f'(0)" by proposition
1.3, so that

e TV P PR F)
S T T S () ZONMNION
and hence L'(X) € 1 + XOk[X]. O

Theorem 2.3. — If e(K/Q,) < p—1, then s;(X) € Og[X] for all 7 > 0.
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Proof. — For all n > 1, the power series u,(X) = S(X, f°*(X)) belongs to X - K[X]
and satisfies u, o f = fowu,. Since U}(0) N OF is an open subgroup of OF, there exists ng
such that if n > ng, then u, (0) = 1 + f/(0)" € U%(0). We then have u, € Uy by lemma
1.1.

In order to prove the theorem, we therefore prove that if S(X, f"(X)) € Ok[X] for
all n > ng, then s;(X) € Og[X] foralli > 0. If j > 1, let

a;(X) = f7(X) %%Sm(X)fO”(X)i = 55(X) f(X) + 55 (X)X + -
We prove by induction on j that so(X),...,s;-1(X) as well as a;(X) belong to Ox[X].
This holds for 7 = 1; suppose that it holds for j.

We claim that if A € H(r) and ||A]|, < p~Y®=Y then 3,50 s54:(X)h(X)® converges in
H(r). Indeed, if s,(j + ) denotes the sum of the digits of j + ¢ in base p, then
:j+i_3p(j+i)< i i J ‘

p—1 p—1 p-1
Let 7 be a uniformizer of O and let e = e(K/Q,) so that |7|, = p~

val, (j + )

1/¢. By proposition

1.2, we have

X)) enX - Og[X]+ X" - O [ X7,
where ¢ = p? = wideg(f), so that ||f°*(X)||, < max(rp=/¢ r?"). If p, = p~/(ea" 1)
then

LF () < pm@ AT < pmie L pm/ 07D

and the series 3 ;50 $j44(X) f°"(X)" therefore converges in H(p,,).

We have fo(X) € 71X - Og[X] + X7 - Ox[X "], as well as wideg(f°") = ¢™. By the
theory of Newton polygons, all the zeroes z of fo*(X) satisfy val,(z) > 1/(e(¢" — 1)),
and hence |z|, < p,. The equation a;(X) = f°(X) YXis0 $j+:(X) fo(X)" holds in H(p,),
and this implies that a;(z) = 0 for all z such that f°"(z) = 0. Since all the zeroes of

f°(X) are simple and f°"(X) # 0 mod 7, the Weierstrass preparation theorem implies
that f°"(X) divides a;(X) in Ox[X], and hence that

550 4 8731 () f(X) + 842X S (X) 4 -+ € Ox[X].

Choose some 0 < p < 1 and take n > ng such that p, > p. We have
X)) = f(FrHX) € mf X)) Ok[X] + f7H (X)) Ok [X].

Therefore || f°"(X)|, = 0 as n = 400, and ||sj41(X) [ (X)+s;12(X) fo(X) 2+ ||, —
0 as n — 4o00. The series s;(X) is therefore in the closure of Ok [X] inside H(p) for
|1, which is Ox[X].
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This proves that s;(X) as well as s;.1(X) (X)) + sj12(X) f"(X)? + - - belong to
Ok[X]. This finishes the induction and hence the proof of the theorem. O

Theorem A now follows: S is a formal group over Ok such that f € End(S). Any
power series u(X) € X - Og[X] that commutes with f also belongs to End(S), since
w(X) = [¢/(0)](X) by lemma 1.1. In particular, U; C End(S).

To prove corollary A, note that we can replace u by u°?~! and therefore assume that
W' (0) € 1+ pZ,. In this case, u™ is defined for all m € Z, by proposition 4.1 of [Lub94|
and U%(0) is therefore an open subgroup of Z.

3. Semiconjugation

We now prove theorem B. Assume therefore that the nonzero roots of f and all of its
iterates are of multiplicity m. Let h(X) = X™.

Since ¢ = wideg(f) is finite, we can write f(X) = X - g(X) - v(X) where g(X) €
Ok[X] is a distinguished polynomial and v(X) € Og[X] is a unit. If the roots of
g(X) are of multiplicity m, then g(X) = go(X)™ for some go(X) € Og[X]. Write
v(X) = [¢]-(1+w(X)) where ¢ € ki (and [c] is its Teichmiiller lift) and w(X) € (mg, X).
Since m - deg(g) = g — 1, m is prime to p and there exists a unique wg(X) € (mg, X)
such that 1+ w(X) = (1 +wo(X))™. If fo(X) = [c/™] - X - go(X™) - (1 4+ wo(X™)), then

foh(X)=fX") =]d - X" go(X™)™ - (1 +wo(X™))™ = fo(X)™ = ho fo(X).
It is clear that fy # 0 mod my,. If we write f°"(X) = X - [[,(X — @)™ - v,(X) with v, a
unit of Ok [X], and where a runs through the nonzero roots of f°, then

X =X I = o)™ v (X,

so that all the roots of f°"(X™) have multiplicity m. Since fo"(X™) = f5"(X)™, the
roots of fp and all of its iterates are simple. This finishes the proof of the first part of
the theorem, with L = K ([c"/™]).

If u € Us and «/(0) € 1 + mg, then there is a unique uo(X) € 1+ (mg, X) such that
up(X)™ = w(X™). We have u)(0) = «/(0)"/™ and (fy o ug)™ = (ug o fo)™ as well as
(fo oup)'(0) = (up o fo)'(0), so that uy € Uy,. This proves the existence of ug. Since
FX™) = fo(X)™, we have f/(0) = f4(0)™. We then have (fg)'(0) = f4(0)" = f/(0) €
mp. This finishes the proof of the last claim of theorem B.

Corollary B follows from theorem B in the same way that corollary A followed from
theorem A.
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Ezample 3.1. — If p=3 and f(X) =9X +6X? + X? and u(X) = 4X + X?, so that
fou=wof then f(X)= X(X+3)*and f'(X) = 3(X +3)(X +1). The nonzero roots
of f and all of its iterates are therefore of multiplicity 2. We have f(X?) = (X (X?+3))?
so that fo(X) = 3X + X3, and the corresponding formal group is G, (this is a special
case of the construction given on page 344 of [Lub94]).

Proposition 3.2. — If f(X) € X - Og[X] is a noninvertible stable series with f #
0 mod m, and if f commutes with a stable invertible series uw(X) € X -Og[X], then the
nonzero roots of f and all of its iterates are of multiplicity m if and only if the nonzero

roots of f are of multiplicity m and the set of roots of f' is included in the set of roots of

f.

Proof. — If the nonzero roots of f and all of its iterates are of multiplicity m, then the
nonzero roots of f are of multiplicity m. Hence if v is a root of f°"(X) with f(«) # 0, the
equation f(X) = f(«) has simple roots. Since « is one of these roots, we have f'(«) # 0.
By lemma 1.4, any root of f/(X) is also a root of f° for some n > 1. This implies that
the set of roots of [ is included in the set of roots of f.

Conversely, suppose that the nonzero roots of f are of multiplicity m, and that f'(5) #
0 for any S that is not a root of f. If « is a nonzero root of f°* for some n > 1, then this
implies that the equation f(X) = « has simple roots, so that the nonzero roots of f and

all of its iterates are of multiplicity m. m

Remark 3.3. — If p = 2 and f(X) = 4X + X? and u(X) = 9X + 6X? + X3, then
fou=mwuo f. The roots 0 and —4 of f are simple, but f°?(X) = X(X + 4)(X + 2)? has
a double root. In this case, f is still semiconjugate to an endomorphism of G,,, but via
the more complicated map h(X) = X?/(1 + X) (see the discussion after corollary 3.2.1
of [Lub94], and example 2 of [Li96]).
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