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Abstract. — We prove two theorems that confirm an observation of Lubin concerning
families of p-adic power series that commute under composition: under certain conditions,
there is a formal group such that the power series in the family are either endomorphisms
of this group, or semiconjugate to endomorphisms of this group.
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Introduction

Let K be a finite extension of Qp, and let OK be its ring of integers and mK the
maximal ideal of OK . In [Lub94], Lubin studied nonarchimedean dynamical systems,
namely families of elements ofX ·OK [[X]] that commute under composition, and remarked
(page 341 of ibid.) that “experimental evidence seems to suggest that for an invertible
series to commute with a noninvertible series, there must be a formal group somehow in
the background”. Various results in that direction have been obtained (by Hsia, Laubie,
Li, Movahhedi, Salinier, Sarkis, Specter, ...; see for instance [Li96], [Li97a], [Li97b],
[LMS02], [Sar05], [Sar10], [SS13], [HL16], [Ber17], [Spe18]) by using either p-adic
analysis, the theory of the field of norms or, more recently, p-adic Hodge theory. The
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purpose of this article is to prove two theorems that confirm the above observation in
many new cases, using only p-adic analysis.

If g(X) ∈ X · OK [[X]], we say that g is invertible if g′(0) ∈ O×K and is noninvertible if
g′(0) ∈ mK . We say that g is stable if g′(0) is neither 0 nor a root of unity. For example,
if S is a formal group of finite height over OK and if c ∈ Z with p - c and c 6= ±1, then
f(X) = [p](X) and u(X) = [c](X) are two stable power series, with f noninvertible and
u invertible, having the following properties: the roots of f and all of its iterates are
simple, f 6≡ 0 mod mK and f ◦ u = u ◦ f . Our first result is a partial converse of this. If
f(X) ∈ X · OK [[X]], let Uf denote the set of invertible power series u(X) ∈ X · OK [[X]]
such that f ◦ u = u ◦ f , and let U′f (0) = {u′(0), u ∈ Uf}. This is a subgroup of O×K .

Theorem A. — Let K be a finite extension of Qp such that e(K/Qp) 6 p − 1, and let
f(X) ∈ X · OK [[X]] be a noninvertible stable series. Suppose that

1. the roots of f and all of its iterates are simple, and f 6≡ 0 mod mK;
2. there is a subfield F of K such that f ′(0) ∈ mF and such that U′f (0)∩O×F is an open

subgroup of O×F .

Then there is a formal group S over OK such that f ∈ End(S) and Uf ⊂ End(S).

Condition (1) can be checked using the following criterion (proposition 1.5).

Criterion A. — If f(X) ∈ X · OK [[X]] is a noninvertible stable series with f 6≡ 0 mod
mK, and if f commutes with a stable invertible series u(X) ∈ X · OK [[X]], then the roots
of f and all of its iterates are simple if and only if f ′(X)/f ′(0) ∈ 1 +X · OK [[X]].

If K = Qp, condition (2) of Theorem A amounts to requiring the existence of a stable
invertible series that commutes with f .

Corollary A. — If f(X) ∈ X ·Zp[[X]] is a noninvertible stable series such that the roots
of f and all of its iterates are simple and f 6≡ 0 mod p, and if f commutes with a stable
invertible series u(X) ∈ X · Zp[[X]], then there is a formal group S over Zp such that
f ∈ End(S) and Uf ⊂ End(S).

There are examples of commuting power series where f does not have simple roots, for
instance f(X) = 9X + 6X2 + X3 and u(X) = 4X + X2 with K = Q3 (more examples
can be constructed following the discussion on page 344 of [Lub94]). It seems reasonable
to expect that if f and u are two stable noninvertible and invertible power series that
commute, with f 6≡ 0 mod mK , then there exists a formal group S, two endomorphisms
fS and uS of S, and a nonzero power series h such that f ◦ h = h ◦ fS and u ◦ h = h ◦ uS.
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We then say that f and fS are semiconjugate and that h is an isogeny from fS to f (see
for instance [Li97a]).

The simplest case where this occurs is when m is an integer > 2, and the nonzero roots
of f and all of its iterates are of multiplicity m (for an example of a more complicated
case, see remark 3.3). In this simplest case, we have the following.

Theorem B. — Let K be a finite extension of Qp, let f(X) ∈ X · OK [[X]] be a nonin-
vertible stable series and take m > 2. Let h(X) = Xm. Suppose that

1. the nonzero roots of f and all of its iterates are of multiplicity m;
2. f 6≡ 0 mod mK.

Then there exists a finite unramified extension L of K and a noninvertible stable series
f0(X) ∈ X ·OL[[X]] with f0 6≡ 0 mod mL, such that f ◦h = h ◦ f0, and the roots of f0 and
all of its iterates are simple.

If in addition u is an element of Uf with u′(0) ≡ 1 mod mK, then there exists u0 ∈ Uf0

such that u ◦ h = h ◦ u0. Finally, if there is a subfield F of K such that f ′(0) ∈ mF and
such that U′f (0) ∩ O×F is an open subgroup of O×F , then (f ◦m0 )′(0) ∈ mF and U′f0(0) ∩ O×F
is an open subgroup of O×F .

Condition (1) can be checked using the following criterion (proposition 3.2).

Criterion B. — If f(X) ∈ X · OK [[X]] is a noninvertible stable series with f 6≡ 0 mod
mK, and if f commutes with a stable invertible series u(X) ∈ X ·OK [[X]], then the nonzero
roots of f and all of its iterates are of multiplicity m if and only if the nonzero roots of
f are of multiplicity m, and the set of roots of f ′ is included in the set of roots of f .

We have the following simple corollary of Theorem B when K = Qp.

Corollary B. — If m > 2 and f(X) ∈ X · Zp[[X]] is a noninvertible stable series such
that the nonzero roots of f and all of its iterates are of multiplicity m and f 6≡ 0 mod p,
and if f commutes with a stable invertible series u(X) ∈ X · Zp[[X]], then there is an
unramified extension L of Qp, a formal group S over OL and fS ∈ End(S) such that
f ◦Xm = Xm ◦ fS.

Theorem A implies conjecture 5.3 of [HL16] for those K such that e(K/Qp) 6 p− 1.
It also provides a new simple proof (that does not use p-adic Hodge theory) of the main
theorem of [Spe18]. Note also that Theorem A holds without the restriction “e(K/Qp) 6
p − 1” if f ′(0) is a uniformizer of OK (see [Spe17]). This implies “Lubin’s conjecture”
formulated at the very end of [Sar10] (this conjecture is proved in [Ber17] using p-adic
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Hodge theory, when K is a finite Galois extension of Qp) as well as “Lubin’s conjecture”
on page 131 of [Sar05] over Qp if f 6≡ 0 mod p.

The results of [HL16], [Ber17] and [Spe18] are proved under strong additional as-
sumptions on wideg(f) (namely that wideg(f) = p in [Spe18], or that wideg(f) = ph,
where h is the residual degree of K, in [HL16] and [Ber17]). Theorem A is the first
general result in this direction that makes no assumption on wideg(f), besides assuming
that it is finite. It also does not assume that f ′(0) is a uniformizer of OK .

Theorem A and its corollary are proved in section 2 and theorem B and its corollary
are proved in section 3.

1. Nonarchimedean dynamical systems

Whenever we talk about the roots of a power series, we mean its roots in the p-
adic open unit disk mCp . Recall that the Weierstrass degree wideg(g(X)) of a series
g(X) = ∑

i>1 giX
i ∈ X · OK [[X]] is the smallest integer i 6 +∞ such that gi ∈ O×K . We

have wideg(g) = +∞ if and only if g ≡ 0 mod mK .
If r < 1, let H(r) denote the set of power series in K[[X]] that converge on the closed

disk {z ∈ mCp such that |z|p 6 r}. If h ∈ H(r), let ‖h‖r = sup|z|p6r |h(z)|p. The space
H(r) is complete for the norm ‖·‖r. Let H = proj limr<1H(r) be the ring of holomorphic
functions on the open unit disk.

Throughout this article, f(X) ∈ X · OK [[X]] is a stable noninvertible series such that
wideg(f) < +∞, and Uf denotes the set of invertible power series u(X) ∈ X · OK [[X]]
such that f ◦ u = u ◦ f .

Lemma 1.1. — A series g(X) ∈ X ·K[[X]] that commutes with f is determined by g′(0).

Proof. — This is proposition 1.1 of [Lub94].

Proposition 1.2. — If Uf contains a stable invertible series, then there exists a power
series g(X) ∈ X · OK [[X]] and an integer d > 1 such that f(X) ≡ g(Xpd) mod mK.
We have wideg(f) = pd for some d > 1.

Proof. — This is the main result of [Lub94]. See (the proof of) theorem 6.3 and corollary
6.2.1 of ibid.

Proposition 1.3. — There is a (unique) power series L(X) ∈ X+X2 ·K[[X]] such that
L ◦ f = f ′(0) · L and L ◦ u = u′(0) · L if u ∈ Uf . The series L(X) converges on the open
unit disk, and L(X) = limn→+∞ f

◦n(X)/f ′(0)n in the Fréchet space H.
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Proof. — See propositions 1.2, 1.3 and 2.2 of [Lub94].

Lemma 1.4. — If f(X) ∈ X ·OK [[X]] is a noninvertible stable series and if f commutes
with a stable invertible series u, then every root of f ′ is a root of f ◦n for some n� 0.

Proof. — This is corollary 3.2.1 of [Lub94].

Proposition 1.5. — If f(X) ∈ X · OK [[X]] is a noninvertible stable series with f 6≡
0 mod mK, and if f commutes with a stable invertible series u, then the roots of f and
all of its iterates are simple if and only if f ′(X)/f ′(0) ∈ 1 +X · OK [[X]].

Proof. — We have (f ◦n)′(X) = f ′(f ◦n−1(X)) · · · f ′(f(X)) · f ′(X). If f ′(X)/f ′(0) ∈ 1 +
X · OK [[X]], then the derivative of f ◦n(X) belongs to f ′(0)n · (1 +X · OK [[X]]) and hence
has no roots. The roots of f ◦n(X) are therefore simple.

By lemma 1.4, any root of f ′(X) is also a root of f ◦n for some n � 0. If the
roots of f ◦n(X) are simple for all n > 1, then f ′(X) cannot have any root, and hence
f ′(X)/f ′(0) ∈ 1 +XOK [[X]].

2. Formal groups

We now prove theorem A. Let S(X, Y ) = L◦−1(L(X) + L(Y )) ∈ K[[X, Y ]]. By propo-
sition 1.3, S is a formal group law over K such that f and all u ∈ Uf are endomor-
phisms of S. In order to prove theorem A, we show that S(X, Y ) ∈ OK [[X, Y ]]. Write
S(X, Y ) = ∑

j>0 sj(X)Y j.

Lemma 2.1. — If L′(X) ∈ OK [[X]], then sj(X) ∈ j!−1 · OK [[X]] for all j > 0.

Proof. — This is lemma 3.2 of [Li96].

Lemma 2.2. — If the roots of f ◦n(X) are simple for all n > 1, then L′(X) ∈ OK [[X]].

Proof. — This is sketched in the proof of theorem 3.6 of [Li96]. We give a complete
argument for the convenience of the reader.

We have (f ◦n)′(X) = f ′(f ◦n−1(X)) · · · f ′(f(X)) · f ′(X), and by proposition 1.5,
f ′(X)/f ′(0) ∈ 1 + XOK [[X]]. We have L(X) = limn→+∞ f

◦n(X)/f ′(0)n by proposition
1.3, so that

L′(X) = lim
n→+∞

(f ◦n)′(X)
f ′(0)n = lim

n→+∞

f ′(f ◦n−1(X))
f ′(0) · · · f

′(f(X))
f ′(0) · f

′(X)
f ′(0) ,

and hence L′(X) ∈ 1 +XOK [[X]].

Theorem 2.3. — If e(K/Qp) 6 p− 1, then sj(X) ∈ OK [[X]] for all j > 0.
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Proof. — For all n > 1, the power series un(X) = S(X, f ◦n(X)) belongs to X · K[[X]]
and satisfies un ◦f = f ◦un. Since U′f (0)∩O×F is an open subgroup of O×F , there exists n0

such that if n > n0, then u′n(0) = 1 + f ′(0)n ∈ U′f (0). We then have un ∈ Uf by lemma
1.1.

In order to prove the theorem, we therefore prove that if S(X, f ◦n(X)) ∈ OK [[X]] for
all n > n0, then si(X) ∈ OK [[X]] for all i > 0. If j > 1, let

aj(X) = f ◦n(X)
∑
i>0

sj+i(X)f ◦n(X)i = sj(X)f ◦n(X) + sj+1(X)f ◦n(X)2 + · · · .

We prove by induction on j that s0(X), . . . , sj−1(X) as well as aj(X) belong to OK [[X]].
This holds for j = 1; suppose that it holds for j.

We claim that if h ∈ H(r) and ‖h‖r < p−1/(p−1), then ∑
i>0 sj+i(X)h(X)i converges in

H(r). Indeed, if sp(j + i) denotes the sum of the digits of j + i in base p, then

valp((j + i)!) = j + i− sp(j + i)
p− 1 6

i

p− 1 + j

p− 1 .

Let π be a uniformizer of OK and let e = e(K/Qp) so that |π|p = p−1/e. By proposition
1.2, we have

f ◦n(X) ∈ πX · OK [[X]] +Xqn · OK [[Xqn ]],

where q = pd = wideg(f), so that ‖f ◦n(X)‖r 6 max(rp−1/e, rq
n). If ρn = p−1/(e(qn−1)),

then
‖f ◦n(X)‖ρn 6 p−q

n/(e(qn−1)) < p−1/e 6 p−1/(p−1)

and the series ∑
i>0 sj+i(X)f ◦n(X)i therefore converges in H(ρn).

We have f ◦n(X) ∈ πX · OK [[X]] +Xqn · OK [[Xqn ]], as well as wideg(f ◦n) = qn. By the
theory of Newton polygons, all the zeroes z of f ◦n(X) satisfy valp(z) > 1/(e(qn − 1)),
and hence |z|p 6 ρn. The equation aj(X) = f ◦n(X) ∑

i>0 sj+i(X)f ◦n(X)i holds in H(ρn),
and this implies that aj(z) = 0 for all z such that f ◦n(z) = 0. Since all the zeroes of
f ◦n(X) are simple and f ◦n(X) 6≡ 0 mod π, the Weierstrass preparation theorem implies
that f ◦n(X) divides aj(X) in OK [[X]], and hence that

sj(X) + sj+1(X)f ◦n(X) + sj+2(X)f ◦n(X)2 + · · · ∈ OK [[X]].

Choose some 0 < ρ < 1 and take n > n0 such that ρn > ρ. We have

f ◦n(X) = f(f ◦n−1(X)) ∈ πf ◦n−1(X) · OK [[X]] + f ◦n−1(X)q · OK [[X]].

Therefore ‖f ◦n(X)‖ρ → 0 as n→ +∞, and ‖sj+1(X)f ◦n(X)+sj+2(X)f ◦n(X)2 + · · · ‖ρ →
0 as n → +∞. The series sj(X) is therefore in the closure of OK [[X]] inside H(ρ) for
‖·‖ρ, which is OK [[X]].
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This proves that sj(X) as well as sj+1(X)f ◦n(X) + sj+2(X)f ◦n(X)2 + · · · belong to
OK [[X]]. This finishes the induction and hence the proof of the theorem.

Theorem A now follows: S is a formal group over OK such that f ∈ End(S). Any
power series u(X) ∈ X · OK [[X]] that commutes with f also belongs to End(S), since
u(X) = [u′(0)](X) by lemma 1.1. In particular, Uf ⊂ End(S).

To prove corollary A, note that we can replace u by u◦p−1 and therefore assume that
u′(0) ∈ 1 + pZp. In this case, u◦m is defined for all m ∈ Zp by proposition 4.1 of [Lub94]
and U′f (0) is therefore an open subgroup of Z×p .

3. Semiconjugation

We now prove theorem B. Assume therefore that the nonzero roots of f and all of its
iterates are of multiplicity m. Let h(X) = Xm.

Since q = wideg(f) is finite, we can write f(X) = X · g(X) · v(X) where g(X) ∈
OK [X] is a distinguished polynomial and v(X) ∈ OK [[X]] is a unit. If the roots of
g(X) are of multiplicity m, then g(X) = g0(X)m for some g0(X) ∈ OK [X]. Write
v(X) = [c] ·(1+w(X)) where c ∈ kK (and [c] is its Teichmüller lift) and w(X) ∈ (mK , X).
Since m · deg(g) = q − 1, m is prime to p and there exists a unique w0(X) ∈ (mK , X)
such that 1 +w(X) = (1 +w0(X))m. If f0(X) = [c1/m] ·X · g0(Xm) · (1 +w0(Xm)), then

f ◦ h(X) = f(Xm) = [c] ·Xm · g0(Xm)m · (1 + w0(Xm))m = f0(X)m = h ◦ f0(X).

It is clear that f0 6≡ 0 mod mL. If we write f ◦n(X) = X ·∏α(X − α)m · vn(X) with vn a
unit of OK [[X]], and where α runs through the nonzero roots of f ◦n, then

f ◦n(Xm) = Xm ·
∏
α

(Xm − α)m · vn(Xm),

so that all the roots of f ◦n(Xm) have multiplicity m. Since f ◦n(Xm) = f ◦n0 (X)m, the
roots of f0 and all of its iterates are simple. This finishes the proof of the first part of
the theorem, with L = K([c1/m]).

If u ∈ Uf and u′(0) ∈ 1 + mK , then there is a unique u0(X) ∈ 1 + (mK , X) such that
u0(X)m = u(Xm). We have u′0(0) = u′(0)1/m and (f0 ◦ u0)m = (u0 ◦ f0)m as well as
(f0 ◦ u0)′(0) = (u0 ◦ f0)′(0), so that u0 ∈ Uf0 . This proves the existence of u0. Since
f(Xm) = f0(X)m, we have f ′(0) = f ′0(0)m. We then have (f ◦m0 )′(0) = f ′0(0)m = f ′(0) ∈
mF . This finishes the proof of the last claim of theorem B.

Corollary B follows from theorem B in the same way that corollary A followed from
theorem A.
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Example 3.1. — If p = 3 and f(X) = 9X + 6X2 + X3 and u(X) = 4X + X2, so that
f ◦ u = u ◦ f , then f(X) = X(X + 3)2 and f ′(X) = 3(X + 3)(X + 1). The nonzero roots
of f and all of its iterates are therefore of multiplicity 2. We have f(X2) = (X(X2 + 3))2

so that f0(X) = 3X + X3, and the corresponding formal group is Gm (this is a special
case of the construction given on page 344 of [Lub94]).

Proposition 3.2. — If f(X) ∈ X · OK [[X]] is a noninvertible stable series with f 6≡
0 mod mK, and if f commutes with a stable invertible series u(X) ∈ X ·OK [[X]], then the
nonzero roots of f and all of its iterates are of multiplicity m if and only if the nonzero
roots of f are of multiplicity m and the set of roots of f ′ is included in the set of roots of
f .

Proof. — If the nonzero roots of f and all of its iterates are of multiplicity m, then the
nonzero roots of f are of multiplicity m. Hence if α is a root of f ◦n(X) with f(α) 6= 0, the
equation f(X) = f(α) has simple roots. Since α is one of these roots, we have f ′(α) 6= 0.
By lemma 1.4, any root of f ′(X) is also a root of f ◦n for some n > 1. This implies that
the set of roots of f ′ is included in the set of roots of f .

Conversely, suppose that the nonzero roots of f are of multiplicity m, and that f ′(β) 6=
0 for any β that is not a root of f . If α is a nonzero root of f ◦n for some n > 1, then this
implies that the equation f(X) = α has simple roots, so that the nonzero roots of f and
all of its iterates are of multiplicity m.

Remark 3.3. — If p = 2 and f(X) = 4X + X2 and u(X) = 9X + 6X2 + X3, then
f ◦ u = u ◦ f . The roots 0 and −4 of f are simple, but f ◦2(X) = X(X + 4)(X + 2)2 has
a double root. In this case, f is still semiconjugate to an endomorphism of Gm, but via
the more complicated map h(X) = X2/(1 + X) (see the discussion after corollary 3.2.1
of [Lub94], and example 2 of [Li96]).
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