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Abstract. — We ask several questions about substitution maps in the Robba ring. These
questions are motivated by p-adic Hodge theory and the theory of p-adic dynamical sys-
tems. We provide answers to those questions in special cases, thereby generalizing results
of Kedlaya, Colmez, and others.
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Introduction and notation

Let p be a prime number. In this article, K is a finite extension of Qp, or more generally
a finite totally ramified extension of W (k)[1/p] where k is a perfect field of characteristic
p. Let OK denote the integers of K, let mK be the maximal ideal of OK , let k be the
residue field of OK , and let π be a uniformizer of OK . We fix a p-adic norm | · | on K.

In p-adic Hodge theory, the theory of p-adic differential equations, and the theory
of p-adic dynamical systems, several rings of power series with coefficients in K occur.
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There is E+ = OK [[X]][1/π], and various completed localizations of that ring, denoted
by E (Fontaine’s field), E† (the overconvergent elements in E), R+ (the power series
converging on the p-adic open unit disk), and R (the Robba ring). These rings are often
endowed with a substitution map ϕ of the form ϕ : f(X) 7→ f(s(X)), where s(X) is either
a Frobenius lift (for example Xp or (1 +X)p − 1 or πX +Xq where q is a power of p, in
p-adic Hodge theory), or a more general power series (for example the multiplication-by-p
map in a formal group, in the theory of p-adic dynamical systems).

When considering certain questions in the above domains, it is necessary to compute
(FracR)ϕ=µ for µ ∈ K and for certain s(X). This happens for example when considering
questions of descent of morphisms for certain ϕ-modules, or when considering p-adic
dynamical systems on annuli. The computation of (FracR)ϕ=µ for µ ∈ K is particularly
delicate: that computation is carried out (for certain s(X) ∈ X · OK [[X]]) in lemma 3.2.4
of [Ked00] as well as in lemma 32 of [MZ02], but there are mistakes in both proofs.
Those mistakes are discussed in remark 5.8 of [Ked05] and fixed in §5 of that paper (see
also the errata to ibid.).

We compute (FracR)ϕ=µ for all substitutions ϕ that are of finite height, namely those
for which s(X) belongs to X · OK [[X]] and is such that s(X) ∈ k[[X]] is nonzero and
belongs to X2 · k[[X]]. In particular, we do not assume that s(X) is a Frobenius lift.

If s′(0) 6= 0, there exists (see for instance [Lub94]) an element logs(X) ∈ X · R+ such
that ϕ(logs) = s′(0) · logs, so that logks ∈ (R+)ϕ=s′(0)k if k > 1. The following theorem
(theorem 6.8) sums up our main results.

Theorem A. — If ϕ is of finite height, then (FracR)ϕ=1 = K. In addition,

1. (FracR)ϕ=s′(0)k = K · logks if s′(0) 6= 0 and k ∈ Z;
2. (FracR)ϕ=µ = {0} if µ 6= 1 ∈ K and if either s′(0) = 0 or if s′(0) 6= 0 and µ is not

of the form s′(0)k for some k ∈ Z.

We propose a conjecture concerning (FracR)ϕ=1 in a more general setting. We say
that the substitution ϕ is overconvergent if s(X) is in the ring of integers of E† and if
s(X) ∈ k((X)) is nonzero and belongs to X2 · k[[X]]. The following is conjecture 3.1.

Conjecture A. — If ϕ is overconvergent, then (FracR)ϕ=1 = K.

Theorem A implies this conjecture when ϕ is of finite height. We also prove (corollary
7.4) that if R′/R is a finite extension of Robba rings, and if conjecture 3.1 holds for R,
then it holds for R′.
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Finally, we propose a conjecture about those h ∈ R such that ϕ(h) has a large annulus
of convergence, when ϕ is of finite height. Let ρ(s) be the largest norm of a zero of s in
the open unit disk. The following is conjecture 8.1, and we prove it in the cyclotomic
case, namely when s(X) = (1 +X)p − 1 (see proposition 8.2).

Conjecture B. — If ϕ is of finite height and h ∈ R is such that ϕ(h) is convergent on
the annulus {z, ρ(s) 6 |z| < 1}, then h ∈ R+.

The definitions and properties of the rings that occur in this article are given in §1.
Overconvergent substitutions are introduced in §2, and conjecture 3.1 is discussed in §3.
After that, we assume that ϕ is of finite height; these substitutions are discussed in §4.
A generalization of the classical operator ψ is constructed in §5. Theorem A is proved in
§6. The stability of conjecture 3.1 under finite extensions is proved in §7, and conjecture
8.1 is discussed in §8.

1. Rings of power series

We start by defining the rings that occur in this article. There is OK [[X]], the ring
E+ = OK [[X]][1/π], the ring OE of power series ∑n∈Z anX

n with an ∈ OK and a−n → 0
as n→ +∞, and the field E = OE [1/π]. If I is a subinterval of [0; 1[, we have the ring RI

of power series a(X) = ∑
n∈Z anX

n with an ∈ K such that |an| · rn → 0 as n→ ±∞ for
all r ∈ I. We let R+ = R[0;1[ be the ring of power series a(X) = ∑

n>0 anX
n with an ∈ K

such that |an| · rn → 0 as n → +∞ for all 0 6 r < 1. Inside R[r;1[ we have the subring
E [r;1[ of power series with bounded coefficients. The ring E [r;1[ is contained in E . Finally,
we have the field E† = ∪r<1E [r;1[ of overconvergent elements of E , and the Robba ring
R = ∪r<1R[r;1[. We have E† ⊂ E and E† ⊂ R, and R = R+ + E† while R+ ∩ E† = E+.

The rings RI are studied in [Laz62]. We recall below the results that we use in this
article; the proofs can be found in [Laz62]. If I = [r; s] is a closed interval, then RI is
a PID. For r < 1, the ring R[r;1[ is a Bezout domain, and E [r;1[ is a PID. In particular,
it makes sense to talk about the gcd of two elements of these rings, and to say that two
elements are coprime.

Let C be the completion of an algebraic closureKalg ofK, so that mC is the p-adic open
unit disk. If I is a subinterval of [0; 1[, let A(I) denote the annulus A(I) = {z ∈ C such
that |z| ∈ I}. Special cases include D = A([0; 1[), the open unit disk, D(r) = A([0; r]),
the closed disk of radius r, and C(r) = A([r; r]), the circle of radius r. An element of RI

defines a function on A(I), which can have zeroes.
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Lemma 1.1. — If h ∈ RI , then h is invertible if and only if h has no zeroes in A(I).

If r ∈ I, we have the norm | · |r on RI given by |a|r = supn∈Z |an| · rn. If r ∈ |C|, then
|a|r = supz∈C, |z|=r |a(z)|. The norm | · |r is multiplicative: |ab|r = |a|r · |b|r. The function
s 7→ log |h|s is a log-convex function on I.

Lemma 1.2. — The family of norms {| · |s}r6s<1 defines a Fréchet structure on E [r;1[,
and the Fréchet completion of E [r;1[ is R[r;1[.

Lemma 1.3. — If h ∈ R[r;1[, the following are equivalent:

1. h ∈ E [r;1[;
2. h has finitely many zeroes in A([r; 1[);
3. the function s 7→ |h|s is bounded as s→ 1.

In particular, if h ∈ R and h /∈ E†, then s 7→ |h|s is eventually increasing as s→ 1.

Corollary 1.4. — We have (R+)× = (E+)×.

Proof. — This follows from lemmas 1.1 and 1.3.

Lemma 1.5. — If g/h ∈ FracR+ has no poles, then g/h ∈ R+.

Proof. — We can assume that g and h are coprime, so that h has no zeroes. The function
h is then invertible in R+ by lemma 1.1, so that g/h ∈ R+.

Lemma 1.6. — We have FracR+ ∩ E† = Frac E+.

Proof. — Take g/h ∈ FracR+, and assume that g and h are coprime. If g/h ∈ E†, then
g and h can only have finitely many zeroes, and hence both lie in E+ by lemma 1.3.

Lemma 1.7. — If g ∈ R, there exists g+ ∈ R+ and g† ∈ E† such that g = g+ · g†.

Sketch of proof. — Take g ∈ R[r;1[. There exists g+ ∈ R+ whose divisor (see [Laz62]) is
that of g, so that g+ divides g in R[r;1[, and the quotient is in E [r;1[ by lemma 1.3.

Lemma 1.8. — The field K is algebraically closed inside FracR.

Proof. — Let F be a finite extension of K. We show that F ⊗K FracR → Frac(F ⊗KR)
is injective. If f1, . . . , fn is a basis of F/K, and if∑ fi⊗ai(X)/bi(X) = 0 in Frac(F⊗KR),
then let ci(X) = ∏

j 6=i bi(X). We have ∑ fi⊗ai(X)ci(X) = 0 in Frac(F ⊗KR) and hence
in F ⊗K R so that aici = 0 for all i. The map is therefore injective, so that F ⊗K FracR
is a domain. This would not be the case if there was a K-embedding of F in FracR.

Remark 1.9. — The proof of lemma 1.8 shows that Frac(F ⊗K R) = F ⊗K FracR.
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The ring R]0;1[ is the ring of power series converging on the punctured open unit disk.

Proposition 1.10. — If h(X) ∈ R]0;1[ and |h|r is bounded as r → 0, then h ∈ R+.

Proof. — Write h(X) = ∑
k∈Z hkX

k. We have |h|r = maxk |hk|rk. If |h|r 6 C for r small
enough, then |h−k| 6 Crk as r → 0, so that h−k = 0 if k > 1.

2. Overconvergent substitution maps

If s(X) ∈ OE is such that s(X) ∈ k((X)) is nonzero and belongs to X · k[[X]], then
s(X)−1 ∈ OE and s(X)n → 0 in OE (for the weak topology) as n → +∞, so that if
f(X) ∈ E , then f(s(X)) converges in E . This way, we get a substitution map ϕ : f 7→ f ◦s
that generalizes the Frobenius lifts (corresponding to those s(X) such that s(X) = Xq

where q is a power of p, such as Xq or (1 +X)p− 1 or Xq + πX). Analogous maps ϕ are
studied in p-adic Hodge theory, and in the theory of p-adic dynamical systems.

Let O†E = OE ∩ E†. In this section, we assume that s(X) ∈ O†E and we study the
restriction of ϕ to E† and its extension to R.

Lemma 2.1. — If h(X) ∈ O†E , there exists rh < 1 such that h ∈ E [rh;1[ and |πh|r < 1
for all rh 6 r < 1.

Proof. — Write h = h+ + h− (according to positive and negative powers of X). There
exists s < 1 such that h− ∈ E [s;+∞[. The function r 7→ |h−|r is defined for all r > s and
decreasing and |h−|1 6 1 since hn ∈ OK for all n. Hence there exists 1 > rh > s such
that |πh−|r < 1 for all rh 6 r < 1. Since |πh+|r 6 |π| for all r < 1, the claim follows.

We now assume that our substitution map is given by a series s(X) ∈ O†E such that
s(X) ∈ k((X)) is nonzero and belongs to X2 · k[[X]]. The X-adic valuation of s is the
Weierstrass degree wideg(s) of s. In other words, we can write s(X) = s+(X) +π · s−(X)
with s+ ∈ X · OK [[X]] and wideg(s+) = d for some d > 2, and s− ∈ O†E . Lemma 2.1
implies that we can write s(X)/Xd = sd · (1 + g) where g ∈ O†E and sd ∈ O×K and there
exists rs < 1 such that |g|r < 1 for all rs 6 r < 1.

If h(X) = ∑
n∈Z hnX

n ∈ R[r;1[ for r > rs, the series

(Φ)
∑
n∈Z

hns
n
dX

dn(1 + g)n =
∑

n∈Z, k>0
hns

n
dX

dn

(
n

k

)
gk

converges in R[r1/d;1[. We let ϕ(h) denote the sum of the series on the right. If h ∈ E [r;1[,
then ϕ(h) ∈ E [r1/d;1[ ⊂ E coincides with ϕ(h) as defined at the beginning of this section.

Proposition 2.2. — If rs < 1 is as above and if r > rs, then
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1. ϕ(R[r;1[) ⊂ R[r1/d;1[

2. if |z| > r1/d and h ∈ R[r;1[, then |s(z)| = |z|d > r, and ϕ(h)(z) = h(s(z))
3. |ϕ(h)|r1/d = |h|r.

Proof. — This is clear from equation (Φ) and the definition of rs.

3. Eigenvalues of ϕ and (FracR)ϕ=1

In §6 below, we prove that (FracR)ϕ=1 = K if we assume that s(X) ∈ X · OK [[X]]
(theorem 6.8). We expect this result to hold for a general overconvergent substitution.

Conjecture 3.1. — We have (FracR)ϕ=1 = K in general.

In the rest of this section, we give some results related to this conjecture. These results
are not used in the rest of the article. We say that λ ∈ R is an eigenvalue of ϕ is there
exists a nonzero h ∈ R such that ϕ(h) = λ · h. This terminology is not quite correct as
ϕ is only a semilinear map on R.

Proposition 3.2. — We have (FracR)ϕ=1 = K iff dimK Rϕ=λ 6 1 for all λ ∈ R.

Proof. — If g, h ∈ Rϕ=λ, then g/h ∈ (FracR)ϕ=1. If (FracR)ϕ=1 = K, then g/h ∈ K
so that dimK Rϕ=λ 6 1. Conversely, take g/h ∈ (FracR)ϕ=1, so that g · ϕ(h) = h · ϕ(g).
Take r < 1 such that g, h, ϕ(g) and ϕ(h) belong to R[r;1[. We can assume that g and h
are coprime in R[r;1[, and then g divides ϕ(g) and h divides ϕ(h) in R[r;1[. The common
quotient λ ∈ R is such that g, h ∈ Rϕ=λ. If dimK Rϕ=λ = 1, then g/h ∈ K.

Proposition 3.3. — If λ ∈ R and Rϕ=λ 6= {0}, then λ ∈ O†E .

Proof. — Take h ∈ Rϕ=λ. If h ∈ E†, we can assume that h ∈ O×E and then λ = ϕ(h)/h ∈
OE ∩ E† = O†E . If h /∈ E†, then r 7→ |h|r is eventually increasing as r → 1 by lemma
1.3. If r < 1 is close enough to 1, then |ϕ(h)|r = |h|rd by proposition 2.2, so that
|λ|r = |h|rd/|h|r 6 1. By lemma 1.3, λ ∈ E†. In addition, if we write λ(X) = ∑

λnX
n,

then |λn|rn 6 1 for all n and all r < 1 close to 1, hence λn ∈ OK for all n.

Proposition 3.4. — We have Rϕ=1 = K.

Proof. — Take g ∈ R such that ϕ(g) = g. Proposition 2.2 implies that |g|s1/d = |g|s if
s is close to 1, so that the function s 7→ |g|s is bounded as s → 1. By lemma 1.3, we
have g ∈ E†. Take r > rs so that by proposition 2.2, ϕ(E [r;1[) ⊂ E [r1/d;1[ and if |y| > r1/d

and h ∈ E [r;1[, then |s(y)| > r, and ϕ(h)(y) = h(s(y)). If |z| > r and s(y) = z, then
|y| > r1/d. Therefore if g(z) = 0, then g(y) = ϕ(g)(y) = g(z) = 0. This implies that if
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g has a zero in A([r; 1[), then it has infinitely many zeroes. By lemma 1.3, this is not
possible if g ∈ E†.

Pick z ∈ A([r; 1[) ∩Kalg. The function g 7→ g(z), from (E [r;1[)ϕ=1 to K(z), is therefore
injective, and hence (E [r;1[)ϕ=1 is a finite dimensional K-vector space. It is also a domain,
and hence a field extension of K. Since K is algebraically closed in E†, we get that
(E [r;1[)ϕ=1 = K. This is true for all r close to 1, so that (E†)ϕ=1 = K.

We say that s(X) is a p-power lift if in k[[X]], we have s(X) ∈ k[[Xp]]. This is equivalent
to saying that s′(X) ∈ πO†E . Frobenius lifts are examples of p-power lifts.

Proposition 3.5. — If s(X) is a p-power lift, and λ ∈ O†E , then dimK Rϕ=λ 6 n(λ)−1
where n(λ) ∈ Z is such that n(λ) > 2 · val(λ)/ val(s′) + 1.

Proof. — Take f ∈ Rϕ=λ, so that f(s(X)) = λ(X) · f(X). We have

f ′(s(X)) · s′(X) = λ(X) · f ′(X) + λ′(X) · f(X)

and hence ϕ(f ′) ∈ f ′ · λ/s′ +R · f . Likewise for all m > 1,

ϕ(f (m)) ∈ f (m) · λ/(s′)m +R · f +R · f ′ + · · ·+R · f (m−1).

Given n elements f1, . . . , fn of R, let W (f1, . . . , fn) denote their Wronskian

W (f1, . . . , fn) = det


f1 · · · fn
f ′1 · · · f ′n
... ...

f
(n−1)
1 · · · f (n−1)

n


If f1, . . . , fn ∈ Rϕ=λ, then W (f1, . . . , fn) belongs to Rϕ=λn/(s′)n(n−1)/2 by the above. Take
n = n(λ) ∈ Z such that n > 2 ·val(λ)/ val(s′) + 1. By proposition 3.3, Rϕ=λn/(s′)n(n−1)/2 =
{0}, and hence W (f1, . . . , fn) = 0, so that f1, . . . , fn are linearly dependent over K.

Therefore, dimK Rϕ=λ 6 n(λ)− 1.

Remark 3.6. — If s(X) is a p-power lift, and λ = 1, we can take n(λ) = 2, and we get
a new proof that Rϕ=1 = K in this case.

Proposition 3.7. — If there exists C ∈ Z>1 such that dimK Rϕ=λ 6 C for all λ ∈ O†E ,
then dimK Rϕ=λ 6 1 for all λ ∈ O†E .

Proof. — Take g, h ∈ Rϕ=λ, and m > 1. The m + 1 functions {gihm−i}06i6m all belong
to Rϕ=λm . If m > C, they are linearly dependent over K. Hence g/h is algebraic over K
in FracR. Therefore, g/h ∈ K by lemma 1.8.
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We finish this section with some additional motivation for conjecture 3.1. Suppose that
s(X) ∈ X · OK [[X]] with s′(0) 6= 0, and that u(X) ∈ X · OK [[X]] is such that u ◦ s = s ◦ u.
Let ũ ∈ R+ be the Lie logarithm of u, as defined in §4 of [Lub94]. We have (lemma
4.4.2 of ibid.) ũ ◦ s = s′ · ũ. Hence ũ is an eigenvector of ϕ for the eigenvalue s′. If
v(X) ∈ X · OK [[X]] is another series such that v ◦ s = s ◦ v, then ũ and ṽ are both
eigenvectors of ϕ for the eigenvalue s′, and conjecture 3.1 (which holds, by theorem 6.8,
if s(X) ∈ X · OK [[X]]) along with proposition 3.2 then implies that ṽ = c · ũ for some
c ∈ K. We can use this to show that u and v commute with each other for composition.
If s(X) ∈ X · OK [[X]] with s′(0) 6= 0, there is a much simpler proof of this, but knowing
conjecture 3.1 in greater generality would allow us to prove similar results for p-adic
dynamical systems on annuli, where they are currently not known.

4. Substitutions of finite height

In this section (and in the rest of this article), we assume that s(X) is of finite height,
namely that it belongs to OK [[X]], and that s(0) = 0. Recall that wideg(s) = d is finite
and that d > 2. In other words, s(X) = ∑

k>1 skX
k with s1, . . . , sd−1 ∈ mK and sd ∈ O×K .

Remark 4.1. — If s(X) ∈ OK [[X]] and wideg(s) = d > 2, there exists a ∈ mK such
that s(a) = a, so that s(X) is conjugate to the power series sa(X) = s(X + a)− a which
is such that wideg(sa) = d and sa(X) = 0. Hence the condition that s(0) = 0 can be
achieved by a simple conjugation.

Proof. — Let val(·) = − logp | · |. Since wideg(s) > 2, the Newton polygon of s(X)−X
starts with a segment of length 1 and slope − val(s(0)), which gives us such an a with
val(a) = val(s(0)).

Recall that if r < 1, D(r) is the closed disk of radius r and C(r) is the circle of radius
r. Define a function λ : [0; 1]→ [0; 1] by λ(r) = maxk |sk|rk.

Lemma 4.2. — We have λ(r) = rd if r is close enough to 1, λ(r) < r for all r > 0, and
λ(r) 6 |π|r if r is close enough to 0.

Proof. — These all follow easily from the formula λ(r) = maxk |sk|rk.

Proposition 4.3. — If r < 1, then s(D(r)) = D(λ(r)) and s(C(r)) contains C(λ(r)).

Proof. — That s(D(r)) ⊂ D(λ(r)) follows from the definition λ(r) = maxk |sk|rk. For
the second assertion, it is better to use valuations. Let val(·) = − logp | · |. Define λ∗(v) =
mink val(sk) + kv. If val(z) = λ∗(v), choose an index j such that val(z) = val(sj) + jv.
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The line with equation y = val(sj) + v · (j − x) passes through (0, val(z)), lies below the
Newton polygon of s, and touches it at the point (j, val(sj)). Hence the equation s(X)−z
has a root of valuation v.

Corollary 4.4. — If h(X) ∈ R+, then |ϕ(h)|r = |h|λ(r) for all r < 1.

Proposition 4.5. — We have (R+)ϕ=1 = K.

Proof. — Take g ∈ R+ such that ϕ(g) = g. We have g(z) = g(s(z)) for all z ∈ D. Since
s◦n(z)→ 0 as n→ +∞, we have g(z) = g(0) for all z ∈ D and hence g ∈ K.

Proposition 4.6. — If µ ∈ K, and f ∈ (FracR+)ϕ=µ, then f±1 ∈ R+.

Proof. — Write f = g/h ∈ (FracR+)ϕ=µ. Let z be a nonzero zero (or pole) of g/h. We
have µ · (g/h)(z) = ϕ(g/h)(z) = (g/h)(s(z)) so that s(z) is itself a zero (or pole) of g/h.
Likewise s◦n(z) is a zero (or pole) of g/h for all n > 0. Since |s(x)| < |x| if x 6= 0, and
since the zeroes and poles of g/h cannot accumulate towards 0, we must have s◦n(z) = 0
for n� 0. Therefore 0 is a zero (or pole) of g/h. Consequently, either 0 is a zero of g/h
and g/h only has zeroes, or 0 is a pole of g/h and g/h only has poles. By lemma 1.5,
either g/h or h/g belongs to R+.

Corollary 4.7. — We have (FracR+)ϕ=1 = K.

Proof. — This follows from propositions 4.6 and 4.5.

Remark 4.8. — We have ϕ(R+) ⊂ R+ and ϕ(R[r;1[) ⊂ R[r1/d;1[ if r > rs.

1. If the only zero of s in D is 0, then ϕ(R[r;1[) ⊂ R[r1/d;1[ for all 0 6 r < 1.
2. It is not true in general that ϕ preserves R]0;1[. For example, 1/X ∈ R]0;1[ but
ϕ(1/X) = 1/s(X), and that series belongs to R[r;1[ only if r is larger than the norm
of all the zeroes of s(X). See §8 for a precise conjecture regarding this.

Proof. — We prove (1). An element of R[r;1[ is the sum of an element of R+ and of∑
n>1 hn/X

n where |hn|r−n → 0. We have s(X) = sdX
d ·u(X) with u(X) ∈ 1+XOK [[X]]

and sd ∈ O×K . The claim now follows since 1/s(X)n = 1/Xnd · u(X)−n and u(X)−n ∈
1 +XOK [[X]], and since ϕ(R+) ⊂ R+.

Proposition 4.9. — If a(X) ∈ E+ and a(0) = 1, the product ∏∞i=0 a(s◦i(X)) converges
in R+ to an element ma(X) ∈ R+ such that ϕ(ma) · a = ma.

If in addition a(X) ∈ 1 +X · OK [[X]], then ma(X) ∈ 1 +X · OK [[X]] as well.
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Proof. — The second claim follows from the first, since a(s◦i(X)) ∈ 1 + X · OK [[X]] for
all i in this case. The first claim follows from lemma 1.2 and the fact that for a given
r < 1, we have |a(s◦i(X))− 1|r → 0 as i→ +∞.

Remark 4.10. — Compare with remark 4.5 of [Ked05].

5. The operator ψ

We have OE/πOE = k((X)). Since wideg(s) = d, k((X)) is a free k((s(X)))-vector space
of dimension d. Hence OE is a free ϕ(OE)-module of rank d, and we get a “trace” map
ψ : OE → OE defined on OE by ϕ(ψ(h)) = TrOE/ϕ(OE) h(X). This map extends to E . We
have ψ(1) = d and ψ(f · ϕ(g)) = ψ(f) · g.

Remark 5.1. — In p-adic Hodge theory, the operator ψ is usually defined as either 1/d
or 1/π times our ψ defined above. See for instance §I.2 of [Col10].

In the rest of this section, we assume that s(X) is of finite height. The ring k[[X]] is a
free k[[s(X)]]-module of rank d. Hence OK [[X]] is a free ϕ(OK [[X]])-module of rank d, and
if h(X) ∈ OK [[X]], then ϕ(ψ(h)) = TrOK [[X]]/ϕ(OK [[X]]) h(X). This shows that ψ preserves
E+. We next study the restriction of ψ to E†.

Lemma 5.2. — If 0 < r < 1 and n > 1, then ψ(1/Xn) ∈ E [λ(r);1[, and |ψ(1/Xn)|λ(r) 6

r1−n/λ(r).

Proof. — Let q(X) = s(X)/X = s1 + s2X + · · · ∈ OK [[X]]. The formula

ψ
( 1
Xn

)
= ψ

(
q(X)n
s(X)n

)
= ψ(q(X)n)

Xn

shows that ψ(1/Xn) ∈ E+[1/X] ⊂ E [λ(r);1[. We now prove the bound on |ψ(1/Xn)|λ(r).
By corollary 4.4, we have maxk |sk|rk = |s|r = |X|λ(r). This implies that |sj/X|λ(r) 6

r−j for all j > 1. In addition, |s/X · ψ(Xk)|λ(r) 6 1/λ(r) for all s ∈ OK and k > 0.
We can write

ψ
( 1
Xn

)
= ψ

(
q(X)

s(X)Xn−1

)
= 1
X
ψ
( 1
Xn−1 (s1 + s2X + · · · )

)
=
∑
j>1

sj
X
ψ
( 1
Xn−j

)
.

If n = 1, this formula and the above observations imply that |ψ(1/X)|λ(r) 6 1/λ(r). If
n > 2 and 1 6 j 6 n− 1, then by induction, we get∣∣∣∣sjXψ

( 1
Xn−j

)∣∣∣∣
λ(r)

6 r−j · r1−n+j/λ(r) 6 r1−n/λ(r).

If j > n, then |sj/X · ψ(Xj−n)|λ(r) 6 1/λ(r) 6 r1−n/λ(r). This implies the claim.
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Remark 5.3. — Slightly different estimates for certain r are proved in lemma I.9 of
[Col10] for s(X) = (1 +X)p− 1 and in proposition 2.2 of [FX13] for s(X) = π ·X+Xq.

Proposition 5.4. — We have ψ(E [r;1[) ⊂ E [λ(r);1[ for r < 1.

Proof. — An element of E [r;1[ is the sum of an element of E+ and of ∑n>1 hn/X
n where

|hn|r−n → 0. We have ψ(E+) ⊂ E+, and |ψ(hn/Xn)|λ(r) → 0 as n→ +∞ by lemma 5.2.
The claim follows.

Remark 5.5. — Since ψ(ϕ(h)) = d · h, we recover, when s(X) is a Frobenius lift, the
(unproved) corollary 5.3 of [Ked05].

We now show that ψ extends from E+ to R+. Recall (lemma 1.2) that the family of
norms {| · |r}r<1 defines a Fréchet structure on E+, and that the completion of E+ is R+.

Proposition 5.6. — The map ψ : E+ → E+ is uniformly continuous for the family of
norms {| · |r}r<1, and extends to a map ψ : R+ → R+.

Proof. — We have OK [[X]] = ⊕d−1
j=0OK [[s(X)]] ·Xj. If h(X) ∈ E+, we can therefore write

it as h(X) = ∑
i>0

∑d−1
j=0 hi,js(X)iXj with {hi,j} a bounded sequence of K.

By lemma 4.2, there exists r0 < 1 such that if r0 6 r < 1, then |s|r = rd. In this case,
|h|r = maxi,j |hi,j|rdi+j. We then have ψ(h) = ∑d−1

j=0 ψ(Xj)∑i>0 hi,jX
i. This implies that

if r > r0, there exists a constant C(r) such that |ψ(h)|rd 6 C(r) · |h|r. The map ψ is
therefore uniformly continuous, and extends from E+ to R+.

Since ψ is defined on E† and on R+, it extends to ψ : R → R, and we have ψ(R[r;1[) ⊂
R[λ(r);1[ by proposition 5.4. We finish this section with a few results that are not used in
the rest of the paper.

Proposition 5.7. — Let e1, . . . , ed be a basis of OK [[X]] over OK [[s(X)]].
There exists δ(X) 6= 0 ∈ E+ and e∗1, . . . , e∗d ∈ δ(X)−1 · E+ such that ψ(e∗i ej) = δij.

Proof. — Let δ(X) = det(TrE+/ϕ(E+)(eiej))i,j ∈ E+. The set e1, . . . , ed is a basis of k((X))
over k((s(X))), and hence of E over ϕ(E), so that TrE+/ϕ(E+)(eiej) = TrE/ϕ(E)(eiej). The
field extension E/ϕ(E) is separable, hence δ(X) 6= 0. We have e∗i = ∑

k ϕ(gi,k)ek where
(gi,k)i,k = (ψ(emen)m,n)−1, so that e∗i ∈ δ(X)−1 · E+.

Corollary 5.8. — We have R+ = ⊕di=1ϕ(R+) · ei.

Proof. — We have E+ = ⊕di=1ϕ(E+) · ei, and if h = ∑
ϕ(hi) · ei, then hi = ψ(he∗i ). All

the underlying maps extend by uniform continuity to R+.
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Remark 5.9. — In the cyclotomic and Lubin-Tate cases, δ(X) ∈ (E+)×. However, if
s(X) = Xd, then δ(X) is a multiple of Xd(d−1). In general, the discriminant δ(X) is equal
to NE+/ϕ(E+) s

′(X) since E = ϕ(E)[X].

Remark 5.10. — Corollary 5.8 cannot be pushed too far. For example, if s′(0) 6= 0
(which holds in the cyclotomic and Lubin-Tate cases), then K[[X]] = K[[s(X)]].

6. The space (FracR)ϕ=µ

In this section, we prove theorems A and B. Recall that s(X) is of finite height.

Proposition 6.1. — If µ ∈ K and h ∈ Rϕ=µ, then h ∈ R+.

Proof. — By applying ψ to ϕ(h) = µ · h, we get ψ(h) = d/µ · h. Repeatedly applying
proposition 5.4 shows that h ∈ R]0;1[. If g ∈ R, write g = g−+g+ with g− ∈ 1/X ·K[[1/X]]
and g+ ∈ R+. We have ψ(h)− = d/µ ·h−. Lemma 5.2 implies that there exists a constant
C, depending only on µ/d and K, such that

|h−|λ(r) = |µ/d · ψ(h)−|λ(r) 6 C · r/λ(r) · |h−|r.

Iterating this gives |h−|λ◦k(r) 6 Ck · r/λ◦k(r) · |h−|r. If r is small enough, then λ(r) 6 |π|r
by lemma 4.2. Fix such an r. If n > 1, then

|Xnh−|λ◦k(r) 6 Ck · r/λ◦k(r) · λ◦k(r)n/rn · |Xnh−|r 6 (C|π|n−1)k · |Xnh−|r.

If n > 1 is large enough so that C|π|n−1 6 1, proposition 1.10 implies that Xnh− ∈ R+.
Hence if ψ(h) = d/µ · h, then h(X) ∈ X−n · R+ for some n > 0.

If in addition ϕ(h) = µ · h, then h(s(X)) ∈ s(X)−n · R+. If h has a pole at 0, then it
has poles at the zeroes of s. So unless h ∈ R+, the only zeroes of s are at 0, and 0 is
then a zero of order d of s. In this case, if h has a pole of order n at 0, then ϕ(h) has a
pole of order dn. We therefore have h ∈ R+.

Remark 6.2. — This gives us another proof that Rϕ=1 = K (proposition 3.4).

Proof. — If h ∈ Rϕ=1, then h ∈ R+ by proposition 6.1, and therefore h ∈ K by propo-
sition 4.5.

If s′(0) 6= 0, there exists an element logs(X) ∈ X · R+ such that ϕ(logs) = s′(0) · logs
(see for instance proposition 2.2 of [Lub94]; if r(X) = s(X)/(s′(0) ·X), and mr is as in
proposition 4.9, then logs(X) = X ·mr(X)). Therefore logks ∈ (R+)ϕ=s′(0)k if k > 1.

Theorem 6.3. — If µ 6= 1 ∈ K and h 6= 0 ∈ Rϕ=µ, then s′(0) 6= 0, and there exists
k > 1 such that µ = s′(0)k and h ∈ K · logks .
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Proof. — If there exists µ 6= 1 ∈ K and h ∈ R such that ϕ(h) = µh, then h ∈ R+ by
proposition 6.1, and h(0) = µh(0) so that h(0) = 0. If h(X) = hkX

k + O(Xk+1) and
s(X) = sjX

j + O(Xj+1), with hk, sj 6= 0, then the order of vanishing at 0 of µh is k and
that of ϕ(h) is jk, so that j = 1. This shows that s′(0) 6= 0. In this case, ϕ(h) = µh

implies that µ = sk1 = s′(0)k where s1, k are as above. Corollary 4.7 now implies that
h = c · logks with c ∈ K.

Proposition 6.4. — Take a, b ∈ E+ such that a(0), b(0) 6= 0.
If h ∈ R is such that ϕ(h)/h = a/b, then h ∈ FracR+.

Proof. — We can replace a by a/a(0) and b by b/a(0) so that a(0) = 1. Let ma ∈ R+ be
as in proposition 4.9, so that ϕ(ma) · a = ma. We have ϕ(hma)/(hma) = 1/b, so we only
need to prove the claim when a = 1.

Assume therefore that ϕ(h) = h/b. Recall that ρ(s) is the largest norm of a zero of s
in the open unit disk. Fix r > ρ(s) such that h ∈ R[r;1[. If b has no zero in A([r; 1[), then
h/b ∈ R[r;1[ and ϕ(h/b) = (h/b)/ϕ(b). If y is a zero of ϕ(b), then z = s(y) is a zero of b,
and we have |y| > min(|z|1/d, |z|/|π|). We can therefore keep doing this until ϕ◦n(b) has
a zero in A([r; 1[). So assume that ϕ(h) = h/b and that b has a zero in A([r; 1[). Let c be
a full isoclinic factor of b whose zeroes are in A([r; 1[) and such that c(0) = 1. We have
ϕ(h) · b = h so that c divides h in R+. If h(z) = 0 and s(y) = z, then ϕ(h)(y) = 0. Since
|y| > |z| and c is isoclinic, we get that ϕ(c) divides h. By iterating this, we get that, if
mc is the element attached to c by proposition 4.9, then mc divides h in R+. We then
have ϕ(h/mc) · b/c = h/mc. This way, we can get rid of all the factors of b corresponding
to zeroes in A([r; 1[).

By iterating the above two steps, we eventually get that ϕ(h) · b = h where b has no
zeroes in D. Indeed, let N(b) ⊂ ]0; 1[ denote the set of all the norms of the zeroes of b
(recall that b(0) 6= 0). Each time we divide b by a full isoclinic factor, cardN(b) strictly
decreases. And each time we replace b by ϕ(b), the elements of N(b) strictly increase.
Past the bound rs (see proposition 2.2), we have that if |z| > rs and s(y) = z, then
|y| = |z|1/d. Therefore, past that point, replacing b by ϕ(b) will not increase cardN(b),
while dividing b by a full isoclinic factor will strictly decrease cardN(b). Hence eventually
cardN(b) = 0.

The resulting element b is therefore of the form b(0) · c where c ∈ 1 + XOK [[X]].
Applying proposition 4.9 to c, we get mc ∈ 1+XOK [[X]] such that ϕ(h/mc) ·b(0) = h/mc.
Proposition 6.1 now implies that h/mc ∈ R+, and we are done.

Remark 6.5. — If in addition h ∈ E†, then h ∈ FracR+ ∩ E† = Frac E+ by lemma 1.6.
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Now compare proposition 6.4 with lemma 5.4 of [Ked05].

Theorem 6.6. — If µ ∈ K and f ∈ (FracR)ϕ=µ, then f±1 ∈ R+.

Proof. — Take f/g ∈ (FracR)ϕ=µ. By lemma 1.7, we can assume that g = g+ ∈ R+ and
that f = f+h with f+ ∈ R+ and h ∈ E†. We get

ϕ(h)
h

= µ · f
+ · ϕ(g+)
ϕ(f+) · g+ ∈ FracR+ ∩ E† = Frac E+

where the last equality follows from lemma 1.6. Hence we can write ϕ(h)/h = a/b with
a, b ∈ E+. In addition, we can divide f+ and g+ by powers of X, and assume that
f+(0), g+(0) 6= 0, and then that a(0), b(0) 6= 0.

By proposition 6.4, h ∈ FracR+. Therefore, f/g = f+h/g+ belongs to FracR+. The
claim now follows from proposition 4.6.

Remark 6.7. — 1. Compare with lemma 5.6 of [Ked05] (or rather its corrected ver-
sion, see the errata to ibid.)

2. In the cyclotomic case, namely when s(X) = (1 +X)p− 1, the computations of §3.2
of [Col14] give a different proof of the fact that (FracR)ϕ=µ = (FracR+)ϕ=µ.

We can now state theorem A.

Theorem 6.8. — If ϕ is of finite height, then (FracR)ϕ=1 = K. In addition,

1. (FracR)ϕ=s′(0)k = K · logks if s′(0) 6= 0 and k ∈ Z;
2. (FracR)ϕ=µ = {0} if µ 6= 1 ∈ K and if either s′(0) = 0 or if s′(0) 6= 0 and µ is not

of the form s′(0)k for some k ∈ Z.

Proof. — This follows from theorem 6.6, proposition 4.5 and theorem 6.3.

7. Application to ϕ-modules

In this section, we assume that (FracR)ϕ=1 = K, and we give some applications to
ϕ-modules. A ϕ-module over FracR is a finite dimensional FracR-vector space, with a
semi-linear map ϕ : M→ M.

Proposition 7.1. — If M is a ϕ-module over FracR, then Mϕ=1 ⊗K FracR → M is
injective. In particular, Mϕ=1 is a finite dimensional K-vector space.

Proof. — Let m1 ⊗ f1 + · · ·+ mr ⊗ fr be in the kernel of the map, with r minimal. We
can assume that f1 = 1. Applying ϕ and subtracting gives a shorter relation, which is
zero by minimality, so that ϕ(fi) = fi for all i. Hence fi ∈ (FracR)ϕ=1 = K.
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A ϕ-module over R is a free R-module D of finite rank, with a semi-linear map ϕ :
D→ D (one usually assumes in addition that ϕ∗(D) = D, but we do not use this).

Corollary 7.2. — If D is a ϕ-module over R, then Dϕ=1 ⊗K R → D is injective. In
particular, Dϕ=1 is a finite dimensional K-vector space.

Proof. — This follows from proposition 7.1 applied to M = FracR⊗R D.

Remark 7.3. — This gives a proof of the unproved assertion “Note that Dϕq=1 is finite-
dimensional over L” on page 2571 of [FX13].

We say that R′/R is a finite extension of Robba rings if R′ itself is a Robba ring with
coefficients in a finite extension L of K, and in a variable Y , and if R′ is a free R-module
of finite rank. We also assume that ϕ extends to R′. These objects occur for instance in
p-adic Hodge theory, when R is attached to a p-adic field F , and we are given a finite
extension F ′/F . In this case there is a corresponding finite extension R′/R of Robba
rings as defined above (see for instance §I.2 of [Ber08]). For example, take K = L = Qp

and s(X) = (1 +X)p− 1 (the cyclotomic case). If Y = X1/n with n > 1, then R′/R is a
finite extension of Robba rings of degree n, and if p - n we can set

ϕ(Y ) = ((1 +X)p − 1)1/n = Y p ·
(

1 + p

Y n
+ · · ·+ p

Y n(p−1)

)1/n
∈ (E ′)†.

Corollary 7.4. — Let R′/R be a finite extension of Robba rings, with coefficients in L
and K, such that ϕ extends to R′. If (FracR)ϕ=1 = K, then (FracR′)ϕ=1 = L.

Proof. — The hypotheses on R′/R imply that FracR′ is a finite extension of FracR,
and therefore also a ϕ-module over FracR. By proposition 7.1, (FracR′)ϕ=1 is a finite
dimensional K-vector space. It is also a field extension of L. The corollary now results
from lemma 1.8 applied to R′.

8. Convergence close to the origin

We still assume s(X) to be of finite height. Recall (see remark 4.8) that it is not true
in general that ϕ preserves R]0;1[. For example, 1/X ∈ R]0;1[ but ϕ(1/X) = 1/s(X), that
belongs to R[r;1[ only if r > ρ(s). We propose the following conjecture.

Conjecture 8.1. — If h ∈ R is such that ϕ(h) ∈ R[ρ(s);1[, then h ∈ R+.

Proposition 8.2. — Conjecture 8.1 is true in the cyclotomic case, namely when s(X) =
(1 +X)p − 1.
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Lemma 8.3. — Let S be the set of sequences {xk}k>0 with xk ∈ K. Define an operator
T : S → S by the formula (Tx)` = ∑`

k=0(−1)k
(
`
k

)
xk. If both sequences x and Tx converge

to 0, then x = 0.

Proof. — Suppose that x converges to 0, and let f : Zp → K be given by the formula
f(z) = ∑

k>0(−1)k
(
z
k

)
xk. The function f is continuous and (Tx)` = f(`). If f(`)→ 0 as

`→ +∞, then f = 0 by continuity, and hence x = 0.

Proof of proposition 8.2. — Let ε be a primitive p-th root of 1. Since s(X) = (1+X)p−1,
we have ρ(s) = ρ = |ε − 1|. Take r > ρ and g(X) = ∑

n>1 gn/X
n ∈ E [r;1[. We have

g((1 +X)ε− 1) = g(Xε+ ε− 1) ∈ E [r;1[ and we expand it as follows:
∑
n>1

gn
(Xε+ ε− 1)n =

∑
n>1

gn
Xn

ε−n
(

1 + ε− 1
Xε

)−n
=
∑
n>1

gn
Xn

ε−n
∑
j>0

(
−n
j

)(
ε− 1
Xε

)j

By settingm = n+j and using the fact that
(
−n
j

)
= (−1)j

(
n+j−1

j

)
, we get g((1+X)ε−1) =∑

m>1 bm/X
m where bm = ε−m

∑m
n=1(−1)n−m

(
m−1
n−1

)
gn(ε−1)n−m. This gives us an explicit

formula for the coefficients of g((1 +X)ε− 1) ∈ E [r;1[.
We now prove that if g(X) ∈ R[ρ;1[ is such that g((1+X)ε−1) ∈ R[ρ;1[, then g(X) ∈ R+.

It is enough to prove that the negative part ∑n>1 gn/X
n of g is zero, so we assume that

g(X) = ∑
n>1 gn/X

n as above. If we let xk = gk+1(ε− 1)k+1 and y` = (−1)`ε`+1b`+1(ε−
1)`+1 for k, ` > 0, then y` = ∑`

k=0(−1)k
(
`
k

)
xk. The fact that g(X) ∈ E [ρ;1[ is equivalent

to xk → 0 as k → +∞, and likewise the fact that g((1 + X)ε − 1) ∈ E [ρ;1[ is equivalent
to y` → 0 as `→ +∞. The claim now results from lemma 8.3, applied to {xk}k>0, since
y = Tx in the notation of that lemma.

We now prove the proposition. If g(X) = ϕ(h)(X) ∈ R[ρ;1[, then ϕ(h)(X) = ϕ(h)((1 +
X)ε−1) so that by the above claim ϕ(h)(X) ∈ R+. Therefore h = 1/p ·ψϕ(h) ∈ R+.

Remark 8.4. — The method of proof of proposition 8.2 is reminiscent of the Amice-
Fresnel theorem (see [AF72], Théorème 1 or [Rob00], §4.4 of chapter 6).
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