THE PERFECTOID COMMUTANT OF LUBIN-TATE POWER SERIES

by

Laurent Berger

Abstract. — Let LT be a Lubin-Tate formal group attached to a finite extension of \mathbf{Q}_p . By a theorem of Lubin-Sarkis, an invertible characteristic p power series that commutes with the elements of $\mathrm{Aut}(\mathrm{LT})$ is itself in $\mathrm{Aut}(\mathrm{LT})$. We extend this result to perfectoid power series, by lifting such a power series to characteristic zero and using the theory of locally analytic vectors in certain rings of p-adic periods. This allows us to recover the field of norms of the Lubin-Tate extension from its completed perfection.

Introduction

Let F be a finite extension of \mathbf{Q}_p , with ring of integers \mathcal{O}_F and residue field k. Let $q = \operatorname{Card}(k)$ and let π be a uniformizer of \mathcal{O}_F . Let LT be the Lubin-Tate formal \mathcal{O}_F module attached to π . Let $F_{\infty} = F(\operatorname{LT}[\pi^{\infty}])$ denote the extension of F generated by the
torsion points of LT, and let $\Gamma_F = \operatorname{Gal}(F_{\infty}/F)$. The Lubin-Tate character χ_{π} gives rise
to an isomorphism $\chi_{\pi} : \Gamma_F \to \mathcal{O}_F^{\times}$.

The field of norms ([Win83]) \mathbf{E}_F of the extension F_{∞}/F is a local field of characteristic p, endowed with an action of Γ_F , that can be explicitly described as follows. We choose a coordinate T on LT, so that for each $a \in \mathcal{O}_F$ we get a power series $[a](T) \in \mathcal{O}_F[T]$. We then have $\mathbf{E}_F = k(Y)$, on which Γ_F acts via the formula $\gamma(f(Y)) = f([\chi_{\pi}(\gamma)](Y))$. In p-adic Hodge theory, we consider the field $\tilde{\mathbf{E}}_F$, which is the Y-adic completion of the maximal purely inseparable extension $\cup_{n\geqslant 0} \mathbf{E}_F^{q^{-n}}$ of \mathbf{E}_F inside an algebraic closure. The action of Γ_F extends to the field $\tilde{\mathbf{E}}_F$. If $f \in \tilde{\mathbf{E}}_F$ and $\gamma \in \Gamma_F$, we still have $\gamma(f(Y)) = f([\chi_{\pi}(\gamma)](Y))$. The question that motivated this paper is the following.

Question. — Can we recover \mathbf{E}_F from the data of the valued field $\tilde{\mathbf{E}}_F$ endowed with the action of Γ_F ?

If $a \in \mathcal{O}_F^{\times}$, then u(Y) = [a](Y) is an element of \mathbf{E}_F of valuation 1 that satisfies the functional equation $u \circ [g](Y) = [g] \circ u(Y)$ for all $g \in \mathcal{O}_F^{\times}$. Conversely, we prove the following theorem, which answers the question, as it allows us to find a uniformizer of \mathbf{E}_F from the data of the valued field $\tilde{\mathbf{E}}_F$ endowed with the action of Γ_F .

Theorem A. — If $u \in \widetilde{\mathbf{E}}_F$ is such that $\operatorname{val}_Y(u) = 1$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$, then there exists $a \in \mathcal{O}_F^{\times}$ such that u(Y) = [a](Y).

In particular, $\mathbf{E}_F = k((u))$ for any u as in theorem A. The main difficulty in the proof of theorem A is to prove that if u is as in the statement of theorem A, then there exists $n \ge 0$ such that $u \in \mathbf{E}_F^{q^{-n}}$. If $F = \mathbf{Q}_p$ and $\pi = p$, namely in the cyclotomic situation, this follows from the main result of [BR22]. However, a crucial ingredient in that paper does not generalize to $F \neq \mathbf{Q}_p$. In order to go beyond the cyclotomic case, we instead use a result of Colmez ([Col02]) to lift u to an element \hat{u} of a ring $\tilde{\mathbf{A}}_F^+$ (the Witt vectors over the ring of integers of $\widetilde{\mathbf{E}}_F$, as well as a completion of $\bigcup_{n\geqslant 0}\varphi_q^{-n}(\mathcal{O}_F[\![\widehat{Y}]\!])$, where $\varphi_q(\widehat{Y})=[\pi](\widehat{Y})$, that will satisfy a similar functional equation. In particular, \hat{u} is a locally analytic element of a suitable ring of p-adic periods. By previous results of the author ([Ber16]), \hat{u} belongs to $\varphi_q^{-n}(\mathcal{O}_F[\widehat{Y}])$ for a certain n. This allows us to prove that there exists $n \ge 0$ such that $u \in \mathbf{E}_F^{q^{-n}}$. By replacing u with u^{p^k} for a well chosen k, we are led to the study of elements of $Y \cdot k[Y]$ under composition. We prove that u is invertible for composition, and to conclude we use a theorem of Lubin-Sarkis ([LS07]) saying that if an invertible series commutes with a nontorsion element of Aut(LT), then that series is itself in Aut(LT). We finish this paper with an explanation of why the "Tate traces" on \mathbf{E}_F used in [BR22] don't exist if $F \neq \mathbf{Q}_p$.

1. Locally analytic vectors

We use the notation that was introduced in the introduction. In order to apply lemma 9.3 of [Col02], we assume that the coordinate T on LT is chosen such that $[\pi](T)$ is a monic polynomial of degree q (for example, we could ask that $[\pi](T) = T^q + \pi T$).

Let $F_0 = \mathbf{Q}_p^{\mathrm{unr}} \cap F$. Let $\widetilde{\mathbf{E}}_F^+$ denote the ring of integers of $\widetilde{\mathbf{E}}_F$ and let $\widetilde{\mathbf{A}}_F^+ = \mathcal{O}_F \otimes_{\mathcal{O}_{F_0}} W(\widetilde{\mathbf{E}}_F^+)$ be the \mathcal{O}_F -Witt vectors over $\widetilde{\mathbf{E}}_F^+$.

Proposition 1.1. — If $u \in \tilde{\mathbf{E}}_F^+$ is such that $\gamma(u) = [\chi_{\pi}(\gamma)](u)$ for all $\gamma \in \Gamma_F$, then u has a lift $\hat{u} \in \tilde{\mathbf{A}}_F^+$ such that $\gamma(\hat{u}) = [\chi_{\pi}(\gamma)] \circ \hat{u}$ for all $\gamma \in \Gamma_F$.

Proof. — By lemma 9.3 of [Col02], there is a unique lift $\hat{u} \in \tilde{\mathbf{A}}_F^+$ of u such that $\varphi_q(\hat{u}) = [\pi](\hat{u})$ (in ibid., this element is denoted by $\{u\}$). If $\gamma \in \Gamma_F$, then both $\gamma(\hat{u})$ and $[\chi_{\pi}(\gamma)](\hat{u})$ are lifts of u that are compatible with Frobenius as above. By unicity, they are equal. \square

Let $\log_{\mathrm{LT}}(T)$ and $\exp_{\mathrm{LT}}(T)$ be the logarithm and exponential series for LT. Write $\exp_{\mathrm{LT}}(T) = \sum_{n \geqslant 1} e_n T^n$ and $\exp_{\mathrm{LT}}(T)^j = \sum_{n \geqslant j} e_{j,n} T^n$ for $j \geqslant 1$.

Lemma 1.2. We have $\operatorname{val}_{\pi}(e_{j,n}) \geqslant -n/(q-1)$ for all $j, n \geqslant 1$.

Proof. — Fix $\varpi \in \overline{\mathbb{Q}}_p$ such that $\operatorname{val}_{\pi}(\varpi) = 1/(q-1)$ and let $K = F(\varpi)$. Recall that $\log_{\operatorname{LT}}(T) = \lim_{n \to +\infty} [\pi^n](T)/\pi^n$. If $z \in \mathbb{C}_p$ and $\operatorname{val}_{\pi}(z) \geqslant 1/(q-1)$, then $\operatorname{val}_{\pi}([\pi](z)) \geqslant \operatorname{val}_{\pi}(z) + 1$. This implies that $1/\varpi \cdot \log_{\operatorname{LT}}(\varpi T) \in T + T^2 \mathcal{O}_K[T]$. Its composition inverse $1/\varpi \cdot \exp_{\operatorname{LT}}(\varpi T)$ therefore also belongs to $T + T^2 \mathcal{O}_K[T]$. This implies the claim for j = 1. The claim for $j \geqslant 1$ follows easily.

We use a number of rings of p-adic periods in the Lubin-Tate setting, whose construction and properties were recalled in §3 of $[\mathbf{Ber16}]$. Proposition 1.1 gives us an element $\hat{Y} \in \tilde{\mathbf{A}}_F^+$ (denoted by u in ibid.). Let $\tilde{\mathbf{B}}_F^+ = \tilde{\mathbf{A}}_F^+[1/\pi]$. Given an interval $I = [r; s] \subset [0; +\infty[$, a valuation $V(\cdot, I)$ on $\tilde{\mathbf{B}}_F^+[1/\hat{Y}]$ is constructed in ibid., as well as various completions of that ring. We use $\tilde{\mathbf{B}}_F^I$, the completion of $\tilde{\mathbf{B}}_F^+[1/\hat{Y}]$ for $V(\cdot, I)$ and $\tilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r} = \varprojlim_{s \geqslant r} \tilde{\mathbf{B}}_F^{[r;s]}$. Inside $\tilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r}$, there is the ring $\tilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r}$ of power series $f(\hat{Y})$ with coefficients in F, where f(T) converges on a certain annulus depending on r.

Lemma 1.3. — If $s \geqslant 0$, then $\mathbf{B}_{\mathrm{rig},F}^{\dagger,s} \cap \tilde{\mathbf{A}}_F^+ = \mathbf{A}_F^+$.

Proof. — Take $f(\hat{Y}) \in \mathbf{B}_{\mathrm{rig},F}^{\dagger,s}$, $t \geqslant s$ and let I = [s;t]. We have $V(f,I) \geqslant 0$, so that f is bounded by 1 on the corresponding annulus. This is true for all t, so that $f \in \mathbf{B}_F^{\dagger,s}$. We now have $f \in \mathbf{B}_F^{\dagger,s} \cap \tilde{\mathbf{A}}_F^+ = \mathbf{A}_F^+$.

Let W be a Banach space with a continuous action of Γ_F . The notion of locally analytic vector was introduced in [ST03]. Recall (see for instance §2 of [Ber16]; the definition given there is easily seen to be equivalent to the following one) that an element $w \in W$ is locally F-analytic if there exists a sequence $\{w_k\}_{k\geqslant 0}$ of W such that $w_k \to 0$, and an integer $n\geqslant 1$ such that for all $\gamma\in\Gamma_F$ such that $\chi_\pi(\gamma)=1+p^nc(\gamma)$ with $c(\gamma)\in\mathcal{O}_F$, we have $\gamma(w)=\sum_{k\geqslant 0}c(\gamma)^kw_k$. If $W=\varprojlim_i W_i$ is a Fréchet representation of Γ_F , we say that $w\in W$ is pro-F-analytic if its image in W_i is locally F-analytic for all i.

Proposition 1.4. — If $r \geqslant 0$ and $x \in \tilde{\mathbf{A}}_F^+$ is such that $\operatorname{val}_Y(\overline{x}) > 0$ and $\gamma(x) = [\chi_{\pi}(\gamma)](x)$ for all $\gamma \in \Gamma_F$, then x is a pro-F-analytic element of $\tilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r}$.

Proof. — We prove that for all $s \ge r$, x is a locally F-analytic vector of $\widetilde{\mathbf{B}}_F^{[r;s]}$. The proposition then follows, since $\widetilde{\mathbf{B}}_F^{\dagger,r} = \varprojlim_{s \ge r} \widetilde{\mathbf{B}}_F^{[r;s]}$ as Fréchet spaces.

Let $S(X,Y) = \sum_{i,j} s_{i,j} X^i Y^j \in \mathcal{O}_F[\![X,Y]\!]$ be the power series that gives the addition in LT. We have $\log_{\mathrm{LT}}(x) \in \tilde{\mathbf{B}}_F^{[r;s]}$. Take $n \geqslant 1$ such that $V(p^{n-1}\log_{\mathrm{LT}}(x),[r;s]) > 0$. We have $[a](T) = \exp_{\mathrm{LT}}(a\log_{\mathrm{LT}}(T))$, so that $[1+p^nc](T) = S(T,\exp_{\mathrm{LT}}(p^nc\log_{\mathrm{LT}}(T)))$. If $\chi_{\pi}(\gamma) = 1 + p^nc(\gamma)$, then

$$\gamma(x) = \sum_{k \geqslant 0} c(\gamma)^k \sum_{j \leqslant k} p^{nk} e_{j,k} \log_{\mathrm{LT}}(x)^k \sum_{i \geqslant 0} s_{i,j} x^i$$
$$= \sum_{k \geqslant 0} c(\gamma)^k \sum_{j \leqslant k} p^k e_{j,k} \cdot (p^{n-1} \log_{\mathrm{LT}}(x))^k \cdot \sum_{i \geqslant 0} s_{i,j} x^i.$$

We have $p^k e_{j,k} \in \mathcal{O}_F$ by lemma 1.2, $V(p^{n-1} \log_{\mathrm{LT}}(x), [r; s]) > 0$ by hypothesis, $s_{i,j} \in \mathcal{O}_F$ and V(x, [r; s]) > 0. This implies the claim.

Proposition 1.5. — If r > 0 and $x \in \tilde{\mathbf{A}}_F^+$ is a pro-F-analytic element of $\tilde{\mathbf{B}}_{rig,F}^{\dagger,r}$, then there exists $n \geqslant 0$ such that $x \in \varphi_q^{-n}(\mathbf{A}_F^+)$.

Proof. — By item (3) of theorem 4.4 of [**Ber16**] (applied with K = F), there exists $n \ge 0$ and s > 0 such that $x \in \varphi_q^{-n}(\mathbf{B}_{\mathrm{rig},F}^{\dagger,s})$. The proposition now follows from lemma 1.3 applied to $\varphi_q^n(x)$.

2. Composition of power series

Recall that a power series $f(Y) \in k[\![Y]\!]$ is separable if $f'(Y) \neq 0$. If $f(Y) \in Y \cdot k[\![Y]\!]$, we say that f is invertible if $f'(0) \in k^{\times}$, which is equivalent to f being invertible for composition (denoted by \circ). We say that $w(Y) \in Y \cdot k[\![Y]\!]$ is nontorsion if $w^{\circ n}(Y) \neq Y$ for all $n \geqslant 1$. If $w(Y) = \sum_{i \geqslant 0} w_i Y^i \in k[\![Y]\!]$ and $m \in \mathbf{Z}$, let $w^{(m)}(Y) = \sum_{i \geqslant 0} w_i^{p^m} Y^i$. Note that $(w \circ v)^{(m)} = w^{(m)} \circ v^{(m)}$.

Proposition 2.1. — Let $w(Y) \in Y + Y^2 \cdot k[\![Y]\!]$ be an invertible nontorsion series, and let $f(Y) \in Y \cdot k[\![Y]\!]$ be a separable power series. If $w^{(m)} \circ f = f \circ w$, then f is invertible.

Proof. — This is a slight generalization of lemma 6.2 of [Lub94]. Write

$$f(Y) = f_n Y^n + O(Y^{n+1})$$

$$f'(Y) = g_k Y^k + O(Y^{k+1})$$

$$w(Y) = Y + w_r Y^r + O(Y^{r+1}),$$

with $f_n, g_k, w_r \neq 0$. Since w is nontorsion, we can replace w by $w^{\circ p^{\ell}}$ for $\ell \gg 0$ and assume that $r \geqslant k+1$. We have

$$w^{(m)} \circ f = f(Y) + w_r^{(m)} f(Y)^r + O(Y^{n(r+1)})$$

= $f(Y) + w_r^{(m)} f_n^r Y^{nr} + O(Y^{nr+1}).$

If k = 0, then n = 1 and we are done, so assume that $k \ge 1$. We have

$$f \circ w = f(Y + w_r Y^r + O(Y^{r+1}))$$

= $f(Y) + w_r Y^r f'(Y) + O(Y^{2r})$
= $f(Y) + w_r g_k Y^{r+k} + O(Y^{r+k+1}).$

This implies that nr = r + k, hence (n - 1)r = k, which is impossible if r > k unless n = 1. Hence n = 1 and f is invertible.

We now prove theorem A. Take $u \in \tilde{\mathbf{E}}_F$ such that $\operatorname{val}_Y(u) = 1$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$. By proposition 1.1, u has a lift $\hat{u} \in \tilde{\mathbf{A}}_F^+$ such that $\gamma(\hat{u}) = [\chi_{\pi}(\gamma)] \circ \hat{u}$ for all $\gamma \in \Gamma_F$. By proposition 1.4, \hat{u} is a pro-F-analytic element of $\tilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r}$. By proposition 1.5, there exists $n \geq 0$ such that $\hat{u} \in \varphi_q^{-n}(\mathbf{A}_F^+)$. This implies that $u \in \varphi_q^{-n}(\mathbf{E}_F^+)$. Hence there is an $m \in \mathbf{Z}$ such that $f(Y) = u(Y)^{p^m}$ belongs to $Y \cdot k[Y]$ and is separable. Note that $\operatorname{val}_Y(f) = p^m$. Take $g \in 1 + \pi \mathcal{O}_F$ such that g is nontorsion, and let w(Y) = [g](Y) so that $u \circ w = w \circ u$. We have $f \circ w = w^{(m)} \circ f$. By proposition 2.1, f is invertible. This implies that $\operatorname{val}_Y(f) = 1$, so that m = 0 and u itself is invertible. Since $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$, theorem 6 of $[\mathbf{LS07}]$ implies that $u \in \mathrm{Aut}(\mathrm{LT})$. Hence there exists $a \in \mathcal{O}_F^{\times}$ such that u(Y) = [a](Y).

3. Tate traces in the Lubin-Tate setting

If $F = \mathbf{Q}_p$ and $\pi = p$ (namely in the cyclotomic situation) the fact that, in the proof of theorem A, there exists $n \geq 0$ such that $u \in \varphi_q^{-n}(\mathbf{E}_F^+)$ follows from the main result of $[\mathbf{B}\mathbf{R}\mathbf{2}\mathbf{2}]$. We now explain why the methods of ibid don't extend to the Lubin-Tate case. More precisely, we prove that there is no Γ_F -equivariant k-linear projector $\widetilde{\mathbf{E}}_F \to \mathbf{E}_F$ if $F \neq \mathbf{Q}_p$. Choose a coordinate T on LT such that $\log_{\mathrm{LT}}(T) = \sum_{n \geq 0} T^{q^n}/\pi^n$, so that $\log'_{\mathrm{LT}}(T) \equiv 1 \mod \pi$. Let $\partial = 1/\log'_{\mathrm{LT}}(T) \cdot d/dT$ be the invariant derivative on LT.

Lemma 3.1. — We have $d\gamma(Y)/dY \equiv \chi_{\pi}(\gamma)$ in \mathbf{E}_F for all $\gamma \in \Gamma_F$.

Proof. — Since $\log'_{LT} \equiv 1 \mod \pi$, we have $\partial = d/dY$ in \mathbf{E}_F . Applying $\partial \circ \gamma = \chi_{\pi}(\gamma)\gamma \circ \partial$ to Y, we get the claim.

Lemma 3.2. — If $\gamma \in \Gamma_F$ is nontorsion, then $\mathbf{E}_F^{\gamma=1} = k$.

Proposition 3.3. — If $F \neq \mathbf{Q}_p$, there is no Γ_F -equivariant map $R : \mathbf{E}_F \to \mathbf{E}_F$ such that $R(\varphi_a(f)) = f$ for all $f \in \mathbf{E}_F$.

Proof. — Suppose that such a map exists, and take $\gamma \in \Gamma_F$ nontorsion and such that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$. We first show that if $f \in \mathbf{E}_F$ is such that $(1 - \gamma)f \in \varphi_q(\mathbf{E}_F)$, then $f \in \varphi_q(\mathbf{E}_F)$. Write $f = f_0 + \varphi_q(R(f))$ where $f_0 = f - \varphi_q(R(f))$, so that $R(f_0) = 0$ and $(1 - \gamma)f_0 = \varphi_q(g) \in \varphi_q(\mathbf{E}_F)$. Applying R, we get $0 = (1 - \gamma)R(f_0) = g$. Hence g = 0 so that $(1 - \gamma)f_0 = 0$. Since $\mathbf{E}_F^{\gamma=1} = k$ by lemma 3.2, this implies $f_0 \in k$, so that $f \in \varphi_q(\mathbf{E}_F)$. However, lemma 3.1 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$ imply that $\gamma(Y) = Y + f_{\gamma}(Y^p)$

However, lemma 3.1 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$ imply that $\gamma(Y) = Y + f_{\gamma}(Y^p)$ for some $f_{\gamma} \in \mathbf{E}_F$, so that $\gamma(Y^{q/p}) = Y^{q/p} + \varphi_q(g_{\gamma})$. Hence $(1 - \gamma)(Y^{q/p}) \in \varphi_q(\mathbf{E}_F)$ even though $Y^{q/p}$ does not belong to $\varphi_q(\mathbf{E}_F)$. Therefore, no such map R can exist. \square

Corollary 3.4. — If $F \neq \mathbf{Q}_p$, there is no Γ_F -equivariant k-linear projector $\varphi_q^{-1}(\mathbf{E}_F) \rightarrow \mathbf{E}_F$. A fortiori, there is no Γ_F -equivariant k-linear projector $\widetilde{\mathbf{E}}_F \rightarrow \mathbf{E}_F$.

Proof. — Given such a projector T, we could define R as in prop 3.3 by $R = T \circ \varphi_q^{-1}$. \square

Acknowledgements. I thank Juan Esteban Rodríguez Camargo for asking me the question that motivated both this paper and [BR22].

References

- [Ber16] L. Berger "Multivariable (φ, Γ) -modules and locally analytic vectors", *Duke Math.* J. **165** (2016), no. 18, p. 3567–3595.
- [BR22] L. Berger & S. Rozensztajn "Decompletion of cyclotomic perfectoid fields in positive characteristic", preprint, 2022.
- [Col02] P. Colmez "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331–439.
- [LS07] J. Lubin & G. Sarkis "Extrinsic properties of automorphism groups of formal groups", J. Algebra 315 (2007), no. 2, p. 874–884.
- [Lub94] J. Lubin "Nonarchimedean dynamical systems", Compositio Math. 94 (1994), no. 3, p. 321–346.
- [ST03] P. Schneider & J. Teitelbaum "Algebras of *p*-adic distributions and admissible representations", *Invent. Math.* **153** (2003), no. 1, p. 145–196.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

February 4, 2022