THE PERFECTOID COMMUTANT OF LUBIN-TATE POWER SERIES

by

Laurent Berger

Abstract

Let LT be a Lubin-Tate formal group attached to a finite extension of \mathbf{Q}_{p}. By a theorem of Lubin-Sarkis, an invertible characteristic p power series that commutes with the elements of $\operatorname{Aut}(\mathrm{LT})$ is itself in $\operatorname{Aut}(\mathrm{LT})$. We extend this result to perfectoid power series, by lifting such a power series to characteristic zero and using the theory of locally analytic vectors in certain rings of p-adic periods. This allows us to recover the field of norms of the Lubin-Tate extension from its completed perfection.

Introduction

Let F be a finite extension of \mathbf{Q}_{p}, with ring of integers \mathcal{O}_{F} and residue field k. Let $q=\operatorname{Card}(k)$ and let π be a uniformizer of \mathcal{O}_{F}. Let LT be the Lubin-Tate formal $\mathcal{O}_{F^{-}}$ module attached to π. Let $F_{\infty}=F\left(\operatorname{LT}\left[\pi^{\infty}\right]\right)$ denote the extension of F generated by the torsion points of LT, and let $\Gamma_{F}=\operatorname{Gal}\left(F_{\infty} / F\right)$. The Lubin-Tate character χ_{π} gives rise to an isomorphism $\chi_{\pi}: \Gamma_{F} \rightarrow \mathcal{O}_{F}^{\times}$.

The field of norms ([Win83]) \mathbf{E}_{F} of the extension F_{∞} / F is a local field of characteristic p, endowed with an action of Γ_{F}, that can be explicitly described as follows. We choose a coordinate T on LT, so that for each $a \in \mathcal{O}_{F}$ we get a power series $[a](T) \in \mathcal{O}_{F} \llbracket T \rrbracket$. We then have $\mathbf{E}_{F}=k((Y))$, on which Γ_{F} acts via the formula $\gamma(f(Y))=f\left(\left[\chi_{\pi}(\gamma)\right](Y)\right)$. In p-adic Hodge theory, we consider the field $\widetilde{\mathbf{E}}_{F}$, which is the Y-adic completion of the maximal purely inseparable extension $\cup_{n \geqslant 0} \mathbf{E}_{F}^{q^{-n}}$ of \mathbf{E}_{F} inside an algebraic closure. The action of Γ_{F} extends to the field $\widetilde{\mathbf{E}}_{F}$. If $f \in \widetilde{\mathbf{E}}_{F}$ and $\gamma \in \Gamma_{F}$, we still have $\gamma(f(Y))=$ $f\left(\left[\chi_{\pi}(\gamma)\right](Y)\right)$. The question that motivated this paper is the following.

[^0]Question. - Can we recover \mathbf{E}_{F} from the data of the valued field $\widetilde{\mathbf{E}}_{F}$ endowed with the action of Γ_{F} ?

If $a \in \mathcal{O}_{F}^{\times}$, then $u(Y)=[a](Y)$ is an element of \mathbf{E}_{F} of valuation 1 that satisfies the functional equation $u \circ[g](Y)=[g] \circ u(Y)$ for all $g \in \mathcal{O}_{F}^{\times}$. Conversely, we prove the following theorem, which answers the question, as it allows us to find a uniformizer of \mathbf{E}_{F} from the data of the valued field $\widetilde{\mathbf{E}}_{F}$ endowed with the action of Γ_{F}.

Theorem A. - If $u \in \widetilde{\mathbf{E}}_{F}$ is such that $\operatorname{val}_{Y}(u)=1$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{F}^{\times}$, then there exists $a \in \mathcal{O}_{F}^{\times}$such that $u(Y)=[a](Y)$.

In particular, $\mathbf{E}_{F}=k((u))$ for any u as in theorem A . The main difficulty in the proof of theorem A is to prove that if u is as in the statement of theorem A , then there exists $n \geqslant 0$ such that $u \in \mathbf{E}_{F}^{q^{-n}}$. If $F=\mathbf{Q}_{p}$ and $\pi=p$, namely in the cyclotomic situation, this follows from the main result of [BR22]. However, a crucial ingredient in that paper does not generalize to $F \neq \mathbf{Q}_{p}$. In order to go beyond the cyclotomic case, we instead use a result of Colmez $([\mathbf{C o l 0 2}])$ to lift u to an element \hat{u} of a ring $\tilde{\mathbf{A}}_{F}^{+}$(the Witt vectors over the ring of integers of $\widetilde{\mathbf{E}}_{F}$, as well as a completion of $\cup_{n \geqslant 0} \varphi_{q}^{-n}\left(\mathcal{O}_{F} \llbracket \widehat{Y} \rrbracket\right)$, where $\left.\varphi_{q}(\widehat{Y})=[\pi](\widehat{Y})\right)$, that will satisfy a similar functional equation. In particular, \hat{u} is a locally analytic element of a suitable ring of p-adic periods. By previous results of the author ([Ber16]), \hat{u} belongs to $\varphi_{q}^{-n}\left(\mathcal{O}_{F} \llbracket \widehat{Y} \rrbracket\right)$ for a certain n. This allows us to prove that there exists $n \geqslant 0$ such that $u \in \mathbf{E}_{F}^{q^{-n}}$. By replacing u with $u^{p^{k}}$ for a well chosen k, we are led to the study of elements of $Y \cdot k \llbracket Y \rrbracket$ under composition. We prove that u is invertible for composition, and to conclude we use a theorem of Lubin-Sarkis ([LS07]) saying that if an invertible series commutes with a nontorsion element of $\operatorname{Aut}(L T)$, then that series is itself in $\operatorname{Aut}(L T)$. We finish this paper with an explanation of why the "Tate traces" on $\widetilde{\mathbf{E}}_{F}$ used in [BR22] don't exist if $F \neq \mathbf{Q}_{p}$.

1. Locally analytic vectors

We use the notation that was introduced in the introduction. In order to apply lemma 9.3 of [Col02], we assume that the coordinate T on LT is chosen such that $[\pi](T)$ is a monic polynomial of degree q (for example, we could ask that $[\pi](T)=T^{q}+\pi T$).

Let $F_{0}=\mathbf{Q}_{p}^{\text {unr }} \cap F$. Let $\widetilde{\mathbf{E}}_{F}^{+}$denote the ring of integers of $\widetilde{\mathbf{E}}_{F}$ and let $\tilde{\mathbf{A}}_{F}^{+}=\mathcal{O}_{F} \otimes_{\mathcal{O}_{F_{0}}}$ $W\left(\widetilde{\mathbf{E}}_{F}^{+}\right)$be the \mathcal{O}_{F}-Witt vectors over $\widetilde{\mathbf{E}}_{F}^{+}$.

Proposition 1.1. - If $u \in \widetilde{\mathbf{E}}_{F}^{+}$is such that $\gamma(u)=\left[\chi_{\pi}(\gamma)\right](u)$ for all $\gamma \in \Gamma_{F}$, then u has a lift $\hat{u} \in \tilde{\mathbf{A}}_{F}^{+}$such that $\gamma(\hat{u})=\left[\chi_{\pi}(\gamma)\right] \circ \hat{u}$ for all $\gamma \in \Gamma_{F}$.

Proof. - By lemma 9.3 of [Col02], there is a unique lift $\hat{u} \in \tilde{\mathbf{A}}_{F}^{+}$of u such that $\varphi_{q}(\hat{u})=$ $[\pi](\hat{u})$ (in ibid., this element is denoted by $\{u\}$). If $\gamma \in \Gamma_{F}$, then both $\gamma(\hat{u})$ and $\left[\chi_{\pi}(\gamma)\right](\hat{u})$ are lifts of u that are compatible with Frobenius as above. By unicity, they are equal.

Let $\log _{\mathrm{LT}}(T)$ and $\exp _{\mathrm{LT}}(T)$ be the logarithm and exponential series for LT. Write $\exp _{\mathrm{LT}}(T)=\sum_{n \geqslant 1} e_{n} T^{n}$ and $\exp _{\mathrm{LT}}(T)^{j}=\sum_{n \geqslant j} e_{j, n} T^{n}$ for $j \geqslant 1$.

Lemma 1.2. - We have $\operatorname{val}_{\pi}\left(e_{j, n}\right) \geqslant-n /(q-1)$ for all $j, n \geqslant 1$.
Proof. - Fix $\varpi \in \overline{\mathbf{Q}}_{p}$ such that $\operatorname{val}_{\pi}(\varpi)=1 /(q-1)$ and let $K=F(\varpi)$. Recall that $\log _{\mathrm{LT}}(T)=\lim _{n \rightarrow+\infty}\left[\pi^{n}\right](T) / \pi^{n}$. If $z \in \mathbf{C}_{p}$ and $\operatorname{val}_{\pi}(z) \geqslant 1 /(q-1)$, then $\operatorname{val}_{\pi}([\pi](z)) \geqslant$ $\operatorname{val}_{\pi}(z)+1$. This implies that $1 / \varpi \cdot \log _{\mathrm{LT}}(\varpi T) \in T+T^{2} \mathcal{O}_{K} \llbracket T \rrbracket$. Its composition inverse $1 / \varpi \cdot \exp _{\mathrm{LT}}(\varpi T)$ therefore also belongs to $T+T^{2} \mathcal{O}_{K} \llbracket T \rrbracket$. This implies the claim for $j=1$. The claim for $j \geqslant 1$ follows easily.

We use a number of rings of p-adic periods in the Lubin-Tate setting, whose construction and properties were recalled in $\S 3$ of [Ber16]. Proposition 1.1 gives us an element $\hat{Y} \in \tilde{\mathbf{A}}_{F}^{+}$(denoted by u in ibid.). Let $\widetilde{\mathbf{B}}_{F}^{+}=\tilde{\mathbf{A}}_{F}^{+}[1 / \pi]$. Given an interval $I=[r ; s] \subset\left[0 ;+\infty\left[\right.\right.$, a valuation $V(\cdot, I)$ on $\widetilde{\mathbf{B}}_{F}^{+}[1 / \hat{Y}]$ is constructed in ibid., as well as various completions of that ring. We use $\widetilde{\mathbf{B}}_{F}^{I}$, the completion of $\widetilde{\mathbf{B}}_{F}^{+}[1 / \hat{Y}]$ for $V(\cdot, I)$ and $\widetilde{\mathbf{B}}_{\text {rig }, F}^{\dagger, r}=\lim _{\leftrightarrows} \widetilde{\mathbf{B}}_{F}^{[r ; s]}$. Inside $\widetilde{\mathbf{B}}_{\text {rig }, F}^{\dagger, r}$, there is the ring $\mathbf{B}_{\text {rig }, F}^{\dagger, r}$ of power series $f(\hat{Y})$ with coefficients in F, where $f(T)$ converges on a certain annulus depending on r.

Lemma 1.3. - If $s \geqslant 0$, then $\mathbf{B}_{\mathrm{rig}, F}^{\dagger, s} \cap \tilde{\mathbf{A}}_{F}^{+}=\mathbf{A}_{F}^{+}$.
Proof. - Take $f(\hat{Y}) \in \mathbf{B}_{\mathrm{ri}, F}^{\dagger, s}, t \geqslant s$ and let $I=[s ; t]$. We have $V(f, I) \geqslant 0$, so that f is bounded by 1 on the corresponding annulus. This is true for all t, so that $f \in \mathbf{B}_{F}^{\dagger, s}$. We now have $f \in \mathbf{B}_{F}^{\dagger, s} \cap \tilde{\mathbf{A}}_{F}^{+}=\mathbf{A}_{F}^{+}$.

Let W be a Banach space with a continuous action of Γ_{F}. The notion of locally analytic vector was introduced in [ST03]. Recall (see for instance $\S 2$ of [Ber16]; the definition given there is easily seen to be equivalent to the following one) that an element $w \in W$ is locally F-analytic if there exists a sequence $\left\{w_{k}\right\}_{k \geqslant 0}$ of W such that $w_{k} \rightarrow 0$, and an integer $n \geqslant 1$ such that for all $\gamma \in \Gamma_{F}$ such that $\chi_{\pi}(\gamma)=1+p^{n} c(\gamma)$ with $c(\gamma) \in \mathcal{O}_{F}$, we have $\gamma(w)=\sum_{k \geqslant 0} c(\gamma)^{k} w_{k}$. If $W=\lim _{\varliminf_{i}} W_{i}$ is a Fréchet representation of Γ_{F}, we say that $w \in W$ is pro- F-analytic if its image in W_{i} is locally F-analytic for all i.

Proposition 1.4. - If $r \geqslant 0$ and $x \in \tilde{\mathbf{A}}_{F}^{+}$is such that $\operatorname{val}_{Y}(\bar{x})>0$ and $\gamma(x)=$ $\left[\chi_{\pi}(\gamma)\right](x)$ for all $\gamma \in \Gamma_{F}$, then x is a pro- F-analytic element of $\widetilde{\mathbf{B}}_{\mathrm{rig}, F}^{\dagger, r}$.

Proof. - We prove that for all $s \geqslant r, x$ is a locally F-analytic vector of $\widetilde{\mathbf{B}}_{F}^{[r ; s]}$. The proposition then follows, since $\widetilde{\mathbf{B}}_{\text {rig }, F}^{\dagger, r}=\lim _{\leftrightarrows \geqslant r} \widetilde{\mathbf{B}}_{F}^{[r ; s]}$ as Fréchet spaces.

Let $S(X, Y)=\sum_{i, j} s_{i, j} X^{i} Y^{j} \in \mathcal{O}_{F} \llbracket X, Y \rrbracket$ be the power series that gives the addition in LT. We have $\log _{\mathrm{LT}}(x) \in \widetilde{\mathbf{B}}_{F}^{[r ; s]}$. Take $n \geqslant 1$ such that $V\left(p^{n-1} \log _{\mathrm{LT}}(x),[r ; s]\right)>0$. We have $[a](T)=\exp _{\mathrm{LT}}\left(a \log _{\mathrm{LT}}(T)\right)$, so that $\left[1+p^{n} c\right](T)=S\left(T, \exp _{\mathrm{LT}}\left(p^{n} c \log _{\mathrm{LT}}(T)\right)\right)$. If $\chi_{\pi}(\gamma)=1+p^{n} c(\gamma)$, then

$$
\begin{aligned}
\gamma(x) & =\sum_{k \geqslant 0} c(\gamma)^{k} \sum_{j \leqslant k} p^{n k} e_{j, k} \log _{\mathrm{LT}}(x)^{k} \sum_{i \geqslant 0} s_{i, j} x^{i} \\
& =\sum_{k \geqslant 0} c(\gamma)^{k} \sum_{j \leqslant k} p^{k} e_{j, k} \cdot\left(p^{n-1} \log _{\mathrm{LT}}(x)\right)^{k} \cdot \sum_{i \geqslant 0} s_{i, j} x^{i} .
\end{aligned}
$$

We have $p^{k} e_{j, k} \in \mathcal{O}_{F}$ by lemma 1.2, $V\left(p^{n-1} \log _{\text {LT }}(x),[r ; s]\right)>0$ by hypothesis, $s_{i, j} \in \mathcal{O}_{F}$ and $V(x,[r ; s])>0$. This implies the claim.

Proposition 1.5. - If $r>0$ and $x \in \tilde{\mathbf{A}}_{F}^{+}$is a pro-F-analytic element of $\widetilde{\mathbf{B}}_{\mathrm{ri}, F}^{\dagger, r}$, then there exists $n \geqslant 0$ such that $x \in \varphi_{q}^{-n}\left(\mathbf{A}_{F}^{+}\right)$.

Proof. - By item (3) of theorem 4.4 of [Ber16] (applied with $K=F$), there exists $n \geqslant 0$ and $s>0$ such that $x \in \varphi_{q}^{-n}\left(\mathbf{B}_{\text {rig }, F}^{\dagger, s}\right)$. The proposition now follows from lemma 1.3 applied to $\varphi_{q}^{n}(x)$.

2. Composition of power series

Recall that a power series $f(Y) \in k \llbracket Y \rrbracket$ is separable if $f^{\prime}(Y) \neq 0$. If $f(Y) \in Y \cdot k \llbracket Y \rrbracket$, we say that f is invertible if $f^{\prime}(0) \in k^{\times}$, which is equivalent to f being invertible for composition (denoted by o). We say that $w(Y) \in Y \cdot k \llbracket Y \rrbracket$ is nontorsion if $w^{\circ n}(Y) \neq Y$ for all $n \geqslant 1$. If $w(Y)=\sum_{i \geqslant 0} w_{i} Y^{i} \in k \llbracket Y \rrbracket$ and $m \in \mathbf{Z}$, let $w^{(m)}(Y)=\sum_{i \geqslant 0} w_{i}^{p^{m}} Y^{i}$. Note that $(w \circ v)^{(m)}=w^{(m)} \circ v^{(m)}$.

Proposition 2.1. - Let $w(Y) \in Y+Y^{2} \cdot k \llbracket Y \rrbracket$ be an invertible nontorsion series, and let $f(Y) \in Y \cdot k \llbracket Y \rrbracket$ be a separable power series. If $w^{(m)} \circ f=f \circ w$, then f is invertible.

Proof. - This is a slight generalization of lemma 6.2 of [Lub94]. Write

$$
\begin{aligned}
f(Y) & =f_{n} Y^{n}+\mathrm{O}\left(Y^{n+1}\right) \\
f^{\prime}(Y) & =g_{k} Y^{k}+\mathrm{O}\left(Y^{k+1}\right) \\
w(Y) & =Y+w_{r} Y^{r}+\mathrm{O}\left(Y^{r+1}\right)
\end{aligned}
$$

with $f_{n}, g_{k}, w_{r} \neq 0$. Since w is nontorsion, we can replace w by $w^{\circ p^{\ell}}$ for $\ell \gg 0$ and assume that $r \geqslant k+1$. We have

$$
\begin{aligned}
w^{(m)} \circ f & =f(Y)+w_{r}^{(m)} f(Y)^{r}+\mathrm{O}\left(Y^{n(r+1)}\right) \\
& =f(Y)+w_{r}^{(m)} f_{n}^{r} Y^{n r}+\mathrm{O}\left(Y^{n r+1}\right)
\end{aligned}
$$

If $k=0$, then $n=1$ and we are done, so assume that $k \geqslant 1$. We have

$$
\begin{aligned}
f \circ w & =f\left(Y+w_{r} Y^{r}+\mathrm{O}\left(Y^{r+1}\right)\right) \\
& =f(Y)+w_{r} Y^{r} f^{\prime}(Y)+\mathrm{O}\left(Y^{2 r}\right) \\
& =f(Y)+w_{r} g_{k} Y^{r+k}+\mathrm{O}\left(Y^{r+k+1}\right) .
\end{aligned}
$$

This implies that $n r=r+k$, hence $(n-1) r=k$, which is impossible if $r>k$ unless $n=1$. Hence $n=1$ and f is invertible.

We now prove theorem A. Take $u \in \widetilde{\mathbf{E}}_{F}$ such that $\operatorname{val}_{Y}(u)=1$ and $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{F}^{\times}$. By proposition 1.1, u has a lift $\hat{u} \in \tilde{\mathbf{A}}_{F}^{+}$such that $\gamma(\hat{u})=\left[\chi_{\pi}(\gamma)\right] \circ \hat{u}$ for all $\gamma \in \Gamma_{F}$. By proposition 1.4, \hat{u} is a pro- F-analytic element of $\widetilde{\mathbf{B}}_{\text {rig }, F}^{\dagger, r}$. By proposition 1.5, there exists $n \geqslant 0$ such that $\hat{u} \in \varphi_{q}^{-n}\left(\mathbf{A}_{F}^{+}\right)$. This implies that $u \in \varphi_{q}^{-n}\left(\mathbf{E}_{F}^{+}\right)$. Hence there is an $m \in \mathbf{Z}$ such that $f(Y)=u(Y)^{p^{m}}$ belongs to $Y \cdot k \llbracket Y \rrbracket$ and is separable. Note that $\operatorname{val}_{Y}(f)=p^{m}$. Take $g \in 1+\pi \mathcal{O}_{F}$ such that g is nontorsion, and let $w(Y)=[g](Y)$ so that $u \circ w=w \circ u$. We have $f \circ w=w^{(m)} \circ f$. By proposition 2.1, f is invertible. This implies that $\operatorname{val}_{Y}(f)=1$, so that $m=0$ and u itself is invertible. Since $u \circ[g]=[g] \circ u$ for all $g \in \mathcal{O}_{F}^{\times}$, theorem 6 of $[\mathbf{L S 0 7}]$ implies that $u \in \operatorname{Aut}(\mathrm{LT})$. Hence there exists $a \in \mathcal{O}_{F}^{\times}$ such that $u(Y)=[a](Y)$.

3. Tate traces in the Lubin-Tate setting

If $F=\mathbf{Q}_{p}$ and $\pi=p$ (namely in the cyclotomic situation) the fact that, in the proof of theorem A, there exists $n \geqslant 0$ such that $u \in \varphi_{q}^{-n}\left(\mathbf{E}_{F}^{+}\right)$follows from the main result of [BR22]. We now explain why the methods of ibid don't extend to the Lubin-Tate case. More precisely, we prove that there is no Γ_{F}-equivariant k-linear projector $\widetilde{\mathbf{E}}_{F} \rightarrow \mathbf{E}_{F}$ if $F \neq \mathbf{Q}_{p}$. Choose a coordinate T on LT such that $\log _{\mathrm{LT}}(T)=\sum_{n \geqslant 0} T^{q^{n}} / \pi^{n}$, so that $\log _{\mathrm{LT}}^{\prime}(T) \equiv 1 \bmod \pi$. Let $\partial=1 / \log _{\mathrm{LT}}^{\prime}(T) \cdot d / d T$ be the invariant derivative on LT.

Lemma 3.1. - We have $d \gamma(Y) / d Y \equiv \chi_{\pi}(\gamma)$ in \mathbf{E}_{F} for all $\gamma \in \Gamma_{F}$.
Proof. - Since $\log _{\text {LT }}^{\prime} \equiv 1 \bmod \pi$, we have $\partial=d / d Y$ in \mathbf{E}_{F}. Applying $\partial \circ \gamma=\chi_{\pi}(\gamma) \gamma \circ \partial$ to Y, we get the claim.

Lemma 3.2. - If $\gamma \in \Gamma_{F}$ is nontorsion, then $\mathbf{E}_{F}^{\gamma=1}=k$.
Proposition 3.3. - If $F \neq \mathbf{Q}_{p}$, there is no Γ_{F}-equivariant map $R: \mathbf{E}_{F} \rightarrow \mathbf{E}_{F}$ such that $R\left(\varphi_{q}(f)\right)=f$ for all $f \in \mathbf{E}_{F}$.

Proof. - Suppose that such a map exists, and take $\gamma \in \Gamma_{F}$ nontorsion and such that $\chi_{\pi}(\gamma) \equiv 1 \bmod \pi$. We first show that if $f \in \mathbf{E}_{F}$ is such that $(1-\gamma) f \in \varphi_{q}\left(\mathbf{E}_{F}\right)$, then $f \in \varphi_{q}\left(\mathbf{E}_{F}\right)$. Write $f=f_{0}+\varphi_{q}(R(f))$ where $f_{0}=f-\varphi_{q}(R(f))$, so that $R\left(f_{0}\right)=0$ and $(1-\gamma) f_{0}=\varphi_{q}(g) \in \varphi_{q}\left(\mathbf{E}_{F}\right)$. Applying R, we get $0=(1-\gamma) R\left(f_{0}\right)=g$. Hence $g=0$ so that $(1-\gamma) f_{0}=0$. Since $\mathbf{E}_{F}^{\gamma=1}=k$ by lemma 3.2, this implies $f_{0} \in k$, so that $f \in \varphi_{q}\left(\mathbf{E}_{F}\right)$.

However, lemma 3.1 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \bmod \pi$ imply that $\gamma(Y)=Y+f_{\gamma}\left(Y^{p}\right)$ for some $f_{\gamma} \in \mathbf{E}_{F}$, so that $\gamma\left(Y^{q / p}\right)=Y^{q / p}+\varphi_{q}\left(g_{\gamma}\right)$. Hence $(1-\gamma)\left(Y^{q / p}\right) \in \varphi_{q}\left(\mathbf{E}_{F}\right)$ even though $Y^{q / p}$ does not belong to $\varphi_{q}\left(\mathbf{E}_{F}\right)$. Therefore, no such map R can exist.

Corollary 3.4. - If $F \neq \mathbf{Q}_{p}$, there is no Γ_{F}-equivariant k-linear projector $\varphi_{q}^{-1}\left(\mathbf{E}_{F}\right) \rightarrow$ \mathbf{E}_{F}. A fortiori, there is no Γ_{F}-equivariant k-linear projector $\widetilde{\mathbf{E}}_{F} \rightarrow \mathbf{E}_{F}$.

Proof. - Given such a projector T, we could define R as in prop 3.3 by $R=T \circ \varphi_{q}^{-1}$.

Acknowledgements. I thank Juan Esteban Rodríguez Camargo for asking me the question that motivated both this paper and [BR22].

References

[Ber16] L. Berger - "Multivariable (φ, Γ)-modules and locally analytic vectors", Duke Math. J. 165 (2016), no. 18, p. 3567-3595.
[BR22] L. Berger \& S. Rozensztajn - "Decompletion of cyclotomic perfectoid fields in positive characteristic", preprint, 2022.
[Col02] P. Colmez - "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331-439.
[LS07] J. Lubin \& G. Sarkis - "Extrinsic properties of automorphism groups of formal groups", J. Algebra 315 (2007), no. 2, p. 874-884.
[Lub94] J. Lubin - "Nonarchimedean dynamical systems", Compositio Math. 94 (1994), no. 3, p. 321-346.
[ST03] P. Schneider \& J. Teitelbaum - "Algebras of p-adic distributions and admissible representations", Invent. Math. 153 (2003), no. 1, p. 145-196.
[Win83] J.-P. Wintenberger - "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59-89.

February 4, 2022
Laurent Berger, UMPA de l'ENS de Lyon, UMR 5669 du CNRS
E-mail : laurent.berger@ens-lyon.fr - Url: perso.ens-lyon.fr/laurent.berger/

[^0]: 2020 Mathematics Subject Classification. - 11S; 12J; 13J.
 Key words and phrases. - Lubin-Tate group; field of norms; p-adic period; locally analytic vector; p-adic dynamical system; perfectoid field.

