SUPER-HÖLDER FUNCTIONS AND VECTORS

by

Laurent Berger

1. Motivation

Let $K_{\infty} = \mathbf{Q}_p(\mu_{p^{\infty}})$ be the cyclotomic extension of \mathbf{Q}_p . The Galois group $\Gamma = \operatorname{Gal}(K_{\infty}/\mathbf{Q}_p)$ is isomorphic to \mathbf{Z}_p^{\times} via the cyclotomic character. The action of Γ on K_{∞} extends to a continuous action of Γ on \widehat{K}_{∞} . How can we recover K_{∞} from the *p*-adic Banach representation \widehat{K}_{∞} of Γ ? The space K_{∞} is the space of smooth vectors $\widehat{K}_{\infty}^{\mathrm{sm}} = \{x \in \widehat{K}_{\infty} \text{ such that Stab}(x) \text{ is open in } \Gamma\}$. The space K_{∞} is also (see [**BC16**]) the space of locally analytic vectors $\widehat{K}_{\infty}^{\mathrm{la}} = \{x \in \widehat{K}_{\infty} \text{ such that the orbit map } \gamma \mapsto \gamma(x)$ is a locally analytic function on $\Gamma\}$.

Let $\mathbf{E} = \mathbf{F}_p((X))$ and $\mathbf{E}_n = \mathbf{F}_p((X^{1/p^n}))$ for $n \ge 0$ and $\mathbf{E}_{\infty} = \bigcup_{n\ge 0} \mathbf{E}_n$ and let $\tilde{\mathbf{E}}$ be the *X*-adic completion of \mathbf{E}_{∞} . The group $\Gamma = \mathbf{Z}_p^{\times}$ acts on \mathbf{E} by $a \cdot f(X) = f((1+X)^a - 1)$, and this action extends to $\tilde{\mathbf{E}}$. The motivation for our work was the following analogue of the above question: how can we recover \mathbf{E}_{∞} from the valued \mathbf{F}_p -representation $\tilde{\mathbf{E}}$ of Γ ? One can prove that $\tilde{\mathbf{E}}^{\text{sm}} = \mathbf{F}_p$, so smooth vectors are not enough. In order to answer the question, we define super-Hölder functions, that seem to be a characteristic p analogue of locally analytic functions.

2. Super-Hölder functions

Let G be a uniform pro-p-group of rank d and let $G_i = G^{p^i}$ for $i \ge 0$ (for example, one could take $G = \mathbf{Z}_p^d$, so that $G_i = p^i \mathbf{Z}_p^d$). Let M be an \mathbf{F}_p -vector space, equipped with a valuation val_M for which it is separated and complete. We say that a function $f: G \to M$ is super-Hölder if there exist constants $\lambda, \mu \in \mathbf{R}$ and e > 0 such that val_M $(f(g) - f(h)) \ge p^{\lambda} \cdot p^{e^i} + \mu$ whenever $gh^{-1} \in G_i$, for all $g, h \in G$ and $i \ge 0$.

LAURENT BERGER

We let $\mathcal{H}_{e}^{\lambda,\mu}(G,M)$ denote the corresponding space of functions. For example, the map $\mathbf{Z}_{p} \to \mathbf{F}_{p}[\![X]\!]$ given by $a \mapsto (1+X)^{a}$ belongs to $\mathcal{H}_{1}^{0,0}(\mathbf{Z}_{p},\mathbf{F}_{p}[\![X]\!])$.

These super-Hölder functions seem to be the analogue in characteristic p of locally analytic functions. As further evidence, take $G = \mathbf{Z}_p$ and let M be as above. If $\{m_n\}_{n\geq 0}$ is a sequence of M with $m_n \to 0$, the map $z \mapsto \sum_{n\geq 0} {z \choose n} m_n$ defines a continuous function $\mathbf{Z}_p \to M$. Conversely, every continuous function $\mathbf{Z}_p \to M$ can be written in this way in one and only one way. Such a function is then in $\mathcal{H}_e^{\lambda,\mu}(\mathbf{Z}_p, M)$ if and only if $\operatorname{val}_M(m_n) \ge p^{\lambda} \cdot p^{ei} + \mu$ whenever $n \ge p^i$, for all $i \ge 0$. This criteria (see §1.3 of [**BR22**]) is the analogue of a criteria of Amice characterizing locally analytic functions in terms of their Mahler expansion.

3. Super-Hölder vectors

We now assume that M is endowed with an \mathbf{F}_p -linear action of G by isometries. We say that $m \in M$ is a super-Hölder vector if the orbit map $g \mapsto g(m)$ is a super-Hölder function $G \to M$. We denote by $M^{G\text{-}e\text{-sh},\lambda,\mu}$ the elements for which the orbit map is in $\mathcal{H}_e^{\lambda,\mu}(G,M)$. Let $M^{G\text{-}e\text{-sh},\lambda} = \bigcup_{\mu} M^{G\text{-}e\text{-sh},\lambda,\mu}$ and $M^{G\text{-}e\text{-sh}} = \bigcup_{\lambda} M^{G\text{-}e\text{-sh},\lambda}$. If H is an open uniform subgroup of G, note that $M^{G\text{-}e\text{-sh}} = M^{H\text{-}e\text{-sh}}$.

We can now answer the above question. Let $M = \tilde{\mathbf{E}}$, with $\operatorname{val}_M = \operatorname{val}_X$, and let $G = 1 + p^k \mathbf{Z}_p$ with $k \ge 1$ (or $k \ge 2$ if p = 2). Theorem 2.9 of [**BR22**] now says that $\tilde{\mathbf{E}}^{1+p^k \mathbf{Z}_p - 1 - \operatorname{sh}} = \mathbf{E}_{\infty}$. More precisely, $\tilde{\mathbf{E}}^{1+p^k \mathbf{Z}_p - 1 - \operatorname{sh}, k-n} = \mathbf{E}_n$ for $n \ge 0$. The proof of this result in [**BR22**] uses Colmez' analogue in $\tilde{\mathbf{E}}$ of Tate's normalized trace maps. In [**BR23**], we prove a more general result that implies the above one: see §5 of this report.

4. (φ, Γ) -modules

Let $\Gamma = \mathbf{Z}_p^{\times}$. In this report, a (φ, Γ) -module is a finite dimensional $\mathbf{F}_p((X))$ -vector space \mathbf{D} , endowed with a semilinear injective Frobenius map $\varphi : \mathbf{D} \to \mathbf{D}$ (acting by $f(X) \mapsto f(X^p)$ on $\mathbf{F}_p((X))$), and a compatible action of Γ . These objects correspond, via Fontaine's equivalence (see [Fon90]), to \mathbf{F}_p -linear representations of $\operatorname{Gal}(\mathbf{Q}_p^{\operatorname{alg}}/\mathbf{Q}_p)$. Such an object has a Γ -stable lattice, which allows us to define an X-adic valuation on \mathbf{D} . Proposition 3.9 of [**BR22**] says that $\mathbf{D} = \mathbf{D}^{1+p^k \mathbf{Z}_p\text{-}1\text{-sh},k}$.

Let ψ be the usual map on **D**, defined by $\psi(y) = y_0$ if one writes $y \in \mathbf{D}$ as $y = \sum_{i=0}^{p-1} (1 + X)^i \varphi(y_i)$ with $y_i \in \mathbf{D}$. Following Colmez (see [Col10]), let \mathbf{D}^+ be the set of $x \in \mathbf{D}$ such that $\{\varphi^i(x)\}_{i\geq 0}$ is bounded, and let \mathbf{D}^{\sharp} be the largest sub $\mathbf{F}_p[X]$ -module of finite rank of **D** that is stable under ψ and on which ψ is surjective. For example, if $\mathbf{D} = \mathbf{F}_p(X)$,

then $\mathbf{F}_p((X))^+ = \mathbf{F}_p[\![X]\!]$ and $\mathbf{F}_p((X))^{\sharp} = X^{-1} \cdot \mathbf{F}_p[\![X]\!]$. Let $M = \varprojlim_{\psi} \mathbf{D}^{\sharp} = \{(y_0, y_1, \ldots)$ where $y_i \in \mathbf{D}^{\sharp}$ and $\psi(y_{i+1}) = y_i$ for all $i \ge 0\}$.

The space M is an $\mathbf{F}_p[\![X]\!]$ -module; we can define an X-adic valuation on it. The group Γ acts on M by isometries (note: the X-adic topology on M is not the natural topology of M, and the action of Γ on M is not continuous for the X-adic topology). There is a map i: $\mathbf{D}^+ \to M$ given by $y \mapsto (y, \varphi(y), \varphi^2(y), \ldots)$. We then have $M^{1+p^k \mathbf{Z}_{p^{-1}-\mathrm{sh},k}} = i(\mathbf{D}^+)$. When $\mathbf{D} = \mathbf{F}_p(X)$, this result is proved in §3.4 of [**BR22**]. The $\mathbf{D} \mapsto \lim_{\leftarrow \to \psi} \mathbf{D}^{\sharp}$ construction is an important part of the construction of the p-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$, and the previous result shows that we can "invert" this construction using super-Hölder vectors.

5. The field of norms

We now explain how super-Hölder vectors allow us to recover the field of norms of certain extensions by decompleting their tilt. This material is in [**BR23**]. Let K be a finite extension of \mathbf{Q}_p , and let K_∞ be an almost totally ramified Galois extension of K, whose Galois group Γ is a p-adic Lie group of dimension ≥ 1 . Such an extension is then deeply ramified (equivalently, \widehat{K}_∞ is perfected) and also strictly arithmetically profinite (see [**Win83**]). One can then attach two objects to K_∞/K . The first object is the field $\widetilde{\mathbf{E}}_{K_\infty}$, the fraction field of $\varprojlim_{x\mapsto x^p} \mathcal{O}_{K_\infty}/p$ (now called the tilt of \widehat{K}_∞). This is a perfect valued field of characteristic p, on which Γ acts by isometries.

The second object is the field of norms. Let $\mathcal{E} = \{E/K \text{ such that } E/K \text{ is finite}$ and $E \subset K_{\infty}\}$. Let $X_K(K_{\infty}) = \varprojlim_{N_{F/E}} E = \{(x_E)_{E \in \mathcal{E}} \text{ with } x_E \in E \text{ and such that}$ $N_{F/E}(x_F) = x_E$ whenever $E \subset F\}$. The set $X_K(K_{\infty})$ can be given (see [Win83]) a natural structure of a valued field of characteristic p, on which Γ acts by isometries. It is then isomorphic to $k_{K_{\infty}}((\pi))$ where $k_{K_{\infty}}$ is the residue field of K_{∞} and π is a norm compatible sequence of uniformizers. Furthermore (see ibid), there is a natural map $X_K(K_{\infty}) \to \tilde{\mathbf{E}}_{K_{\infty}}$, and $\tilde{\mathbf{E}}_{K_{\infty}}$ is the completion of the perfection $\cup_{n\geq 0} X_K(K_{\infty})^{1/p^n}$ of $X_K(K_{\infty})$.

Theorem A of [**BR23**] says that $\bigcup_{n\geq 0} X_K(K_\infty)^{1/p^n} = \widetilde{\mathbf{E}}_{K_\infty}^{\Gamma \cdot d \cdot \mathrm{sh}}$. In the "cyclotomic" case, with $K_\infty = \mathbf{Q}_p(\mu_{p^\infty})$, we have d = 1 and $X_K(K_\infty) = \mathbf{F}_p((X))$ and $\widetilde{\mathbf{E}}_{K_\infty} = \widetilde{\mathbf{E}}$ and the action of Γ on $\widetilde{\mathbf{E}}$ is the one coming from $a \cdot f(X) = f((1+X)^a - 1)$. Hence the result above implies the answer to the question formulated at the beginning.

LAURENT BERGER

6. Examples

Here are two examples of super-Hölder functions with interesting properties.

6.1. A locally analytic function that has a nonisolated zero is locally constant at this point. Here is a function $f : \mathbb{Z}_p \to \mathbb{F}_p[\![X]\!]$ that is super-Hölder and has a nonisolated zero but is nowhere locally constant.

Set f(0) = 0 and if $a \in \mathbb{Z}_p^{\times}$ and $i \ge 0$, let $f(p^i a) = ((1+X)^a - (1+X))^{p^i}$.

6.2. If $\alpha \in \mathbf{Z}_{\geq 1}$, then $\sum_{n\geq 0} X^{p^{n\alpha}+p^{-n}} \in \mathbf{F}_p[\![X]\!]$ is a super-Hölder vector for the action of $1+2p\mathbf{Z}_p$ on $\mathbf{F}_p[\![X]\!]$ with $e = \alpha/(1+\alpha)$, but not for $e > \alpha/(1+\alpha)$.

References

- [BC16] L. Berger & P. Colmez, Théorie de Sen et vecteurs localement analytiques, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, p. 947–970.
- [BR22] L. Berger & S. Rozensztajn, Decompletion of cyclotomic perfectoid fields in positive characteristic, Ann. H. Lebesgue 5 (2022), p. 1261–1276.
- [BR23] L. Berger & S. Rozensztajn, Super-Hölder vectors and the field of norms, Preprint (2023).
- [Col10] P. Colmez, (φ, Γ) -modules et représentations du mirabolique de $\operatorname{GL}_2(\mathbf{Q}_p)$, Astérisque (2010), no. 330, p. 61–153.
- [Fon90] J.-M. Fontaine, Représentations p-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249– 309.
- [Win83] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

June 2023

LAURENT BERGER