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Dynamics of spatial Fourier modes in turbulence
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Abstract. We present the results of an experimental study of the spatial Fourier modes of the vorticity
in a turbulent jet flow. By means of an acoustic scattering setup we have recorded the evolution in time
of Fourier modes of the vorticity field, characterized by well defined wavevectors k. By computing the
auto-correlation of the amplitude of the Fourier modes we evidence that, whatever the length scale (or
equivalently k), the dynamic evolution of the vorticity field involves two well separated time scales. We
have also performed the simultaneous acquisitions of pairs of Fourier modes with two wavevectors k and
k′. Whatever the spectral gap k − k′, any pair of Fourier modes exhibits a significant cross-correlation
over long time delays, indicating a strong statistical dependence between scales.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.32.C- Vortex dynamics – 43.28.+h
Aeroacoustics and atmospheric sound

1 Introduction

Statistical intermittency remains one of the main puz-
zling features of turbulence, still unresolved [1]. At the
experimental level, following Kolmogorov initial predic-
tion [2], the scale evolution of the turbulence statistical
properties can be traced by computing the spatial veloc-
ity increments, δur(x, t) = u(x + r, t) − u(x, t). Usually,
one resorts to hot-wire anemometry providing Eulerian
measurements of the longitudinal velocity component at
one point xo along time t. Scale dependence is then re-
covered by mapping time increments δt of the Eulerian
signal onto spatial increments r = −Uavgδt according to
the Taylor hypothesis of frozen turbulence [1]: δur(t) =
u(xo, t) − u(xo, t − r/Uavg). In this paper, we present an
alternate way to experimentally study statistical scale de-
pendence in turbulent flows, relying on a direct spatial
Fourier analysis of the vorticity field. Since the vorticity
field is the curl of the velocity field, in the Fourier domain
where ω̃ (k, t) = ik × ũ (k, t), one expects similar statis-
tics for the amplitudes of the Fourier modes of vorticity
and velocity [3]. The temporal evolution of spatial Fourier
modes of the turbulent vorticity field ω̃ (k, t) are obtained
by an acoustic scattering technique which allows the di-
rect selection of a well defined spatial wavevector k [3,4].
Indeed, spectral measurements, based on wave scattering
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experiments are commonly used in various domains of re-
search in physics, starting with phase transitions and crit-
ical phenomena in condensed matter physics where light
and neutron scattering techniques are largely widespread.

According to Kolmogorov refined similarity hypothe-
sis [1,5], statistical intermittency of turbulent flows is the
consequence of the strong spatial heterogeneity (possibly
multifractality) of the local energy dissipation rate, re-
lated to some kind of multiplicative cascade process of the
kinetic energy across scales. The energy dissipation rate
is also expected to display strong time fluctuations, pos-
sibly reflecting unavoidable temporal fluctuations of the
large-scale forcing processes [6]. Recently, it has been sug-
gested [7], that the study of dynamical multiscaling (time
dependence of the velocity structure functions) could be
of valuable help for a better comprehension of turbulence
intermittency. Unfortunately, as implicitely stated by the
Taylor hypothesis, the statistics of Eulerian velocity in-
crements are strongly dominated by the spatial features
of the flow and thus, weakly sensitive to its temporal fluc-
tuations. Actually, it is generally accepted that the latter
fact is a direct consequence of the random character of
the advection by the large scale flow, past any Eulerian
probe, of the whole velocity field (the so-called sweeping
effect [8–12]). It is worth noticing that in wave scattering
experiments (whatever sound or light), thanks to the di-
rect spatial Fourier transform involved in the scattering
process, the length scale selection is realized by the choice
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of unique wavevector k (spatial band-pass filtering) with-
out any resort to the Taylor hypothesis.

2 Acoustic scattering measurements

2.1 Acoustic scattering amplitude

It is now well established on both theoretical [3,13] and
experimental grounds [4,14–18], that acoustic waves prop-
agating in a turbulent medium can be scattered by vortic-
ity fluctuations. As in any scattering experiments, it may
be shown [13] that, due to the coherent average of the
waves scattered by the vorticity distribution, the overall
scattered amplitude pscatt(t) is linearly related to the spa-
tial Fourier transform of the vorticity field according to:

pscatt(t) ∝ ω̃⊥ (k, t) . p0(t) (1)

where:

ω̃⊥ (k, t) =
∫∫∫

Vscatt

ω⊥ (x, t) e−ik·xd3x (2)

the scattering wavevector k (momentum transfer) being a
function of both the incoming sound frequency ν0 and the
scattering angle θ:

k = 4πν0 sin (θ/2) /c x (3)

with c the sound speed. Equation (1) is derived from a
Born approximation [18,19]. Note that only the compo-
nent of the vorticity vector field, normal to the scattering
plane, is involved in the scattered amplitude (index ⊥).

2.2 Acoustic scattering set-up

Experimentally, the scattering setup consists in a bistatic
configuration (Fig. 2): a plane ultrasound wave p0(t), with
frequency ν0, continuously insonifies the turbulent flow
and the acoustic amplitude pscatt(t), scattered in the di-
rection θ, is recorded by a receiver over several integral
time scales. Both acoustic transmitter and receiver work
in a linear regime (they are phase sensitive). According to
equation (1), a direct image of the spatial Fourier mode of
the vorticity at wavevector k, is obtained by a simple het-
erodyne demodulation providing a complex signal (phase
and amplitude). We will now focus on the time behavior of
the Fourier modes of vorticity ω̃ (k, t), as a function of the
length scale parameter k. Although a Fourier mode is a
complex quantity (as is the demodulated scattered signal),
we will restrict ourselves to the amplitude of the signal:
|ω̃⊥ (k, t) | hereafter noted ω(k, t) for sake of simplicity.

2.3 Turbulent jet flow facility

We have investigated the statistical properties of a
turbulent round air jet at room temperature, emerging

Fig. 1. Log-Log plot of the spatial kinetic energy spectrum
E(k) in the turbulent round jet at Rλ � 600. For the ve-
locity signals obtained by hot-wire anemometry, the usual
Taylor hypothesis has been used, to convert frequencies into
wave-numbers k. Arrows point to the spatial wavenumbers
k and k′, for which the instantaneous enstrophy and modal
cross-correlation are displayed in Figures 3 and 7.

from a nozzle of diameter D = 0.12 m. As sketched in
Figure 2, the direction of the scattering wavevector k is
aligned with the mean flow velocity and the direction of
the probed vorticity component is perpendicular to the
jet axis. Throughout the experiment, the scattering an-
gle is kept at a constant value and different wavevectors
are analysed by varying the incoming sound frequency νo,
according to equation (3). As the scattering angle θ is
constant, one can show that, in our bistatic configura-
tion, the spectral resolution is given by δk ∼ V

−1/3
scatt , in-

dependent of the analysed wavenumber k [18]. The mea-
surement volume Vscatt is defined by the intersection of
the incident and detected acoustic beams and mainly de-
pends on θ and on the size of both acoustic transducers.
In this study, the centre of the measurement volume is lo-
cated 40 nozzle diameters downstream, in a region where
turbulence is reasonably expected to reach a self-similar
regime. With θ = 40o and a diameter of the circular
transducers of 0.14 m, the linear extension of Vscatt is
of the order of the integral length scale of the jet flow,
estimated to L = 0.36 m. The rms of the longitudinal
velocity is u′ = 1.2 m/s, giving an integral time scale
Tint = L/u′ � 0.3 s. Additional flow parameters have been
estimated, using conventional hot-wire anemometry [18]:
the Taylor micro-scale is λT = 7.6×10−3 m (Taylor-based
Reynolds number Rλ � 600) and the Kolmogorov scale is
η = 1.6×10−4 m. Figure 1 displays a loglog representation
of the spatial energy spectrum E(k), versus the spatial
wavenumber k (Taylor hypothesis), computed from longi-
tudinal velocity measurements performed with a hot-wire
located at the centre of the acoustic measurement zone.
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Fig. 2. Sketch of the experimental setup: turbulence is pro-
duced by a turbulent round jet at Rλ � 600. The wavevec-
tor k is parallel to the mean flow axis (x) while the probed
component of the vorticity vector field is perpendicular to the
scattering plane.

Fig. 3. Simultaneous recording, over ten integral time scales,
of the temporal evolution of the instantaneous enstrophy
|ω(k, t)|2 at the two wavenumbers kλT /2π = 0.30 (upper) and
k′λT /2π = 1.44 (lower).

Table 1. Jet flow characteristics.

Lint Uavg u′
rms Rλ λTayl ηKolm

0.36 m 6.3 m/s 1.2 m/s 600 7.6 × 10−3 m 1.6 × 10−4 m

3 Statistics of spatial Fourier modes

We have recorded, over long periods (typ. ≥ 100Tint), the
evolution of the amplitude of the spatial Fourier modes
ω(k, t), for several scattering wavevectors k in the iner-
tial range of the energy spectrum. Two samples, of the
scattered acoustic intensities (∝ |ω(k, t)|2) recorded si-
multaneously (see also below) for two spatial wavenum-
bers kλT /2π = 0.30 and k′λT /2π = 1.44, at both ends
of the investigated range of length scales, are displayed in
Figure 3 (see Fig. 1 for their respective positions in the
energy spectrum). The figure shows that both signals are
organized in bursts of high enstrophy level, separated by

Fig. 4. Time auto-correlation function Ck(τ ) at wavenumber
kλT /2π = 0.30. The global shape is similar for all analysed
wavenumbers: a short-time decorrelation with characteristic
time τS (see insert for detail), followed by a much slower de-
crease, with characteristic time τL. Here, τS = 7.1 ms and
τL = 45 ms.

periods of lower activity. Note that on this simultaneous
recordings, the bursts with a high enstrophy level appear
at the same time for the two investigated wavenumbers. In
addition to the aforementioned long time behaviour (the
time interval between successive bursts is of the order of
the integral time scale), the two signals also exhibit a spiky
fine structure indicating a short time behaviour associated
to the presence of finite duration events. Contrary to the
long time behaviour, the short time dynamics seems to
be scale dependent: the time duration is smaller for the
larger wavenumber.

In order to investigate more quantitatively the tem-
poral features of the signals, we have computed the time
auto-correlation function of the time signals ω(k, t), col-
lected at a fixed wavevector k, Ck(τ) = 〈ω(k, t)ω(k, t −
τ)〉t (〈.〉t stands for the time average). A typical evolu-
tion of the normalized Ck(τ) (Ck(0) = 1)), with respect
to the time lag τ , is sketched in Figure 4. Whatever the
turbulent scale k, the same global shape is found, exhibit-
ing two different and well separated characteristic times.
For time lags close to zero, one observes a rapid decrease,
with a more or less Gaussian shape. At larger time lags,
a much slower decrease is visible, up to the integral time
Tint, with a roughly exponential behavior.

Although such a Gaussian shape at short times has
been predicted in some theoretical models [20,21], the long
time behaviour does not seem to have ever been reported.
We quantitatively estimate the short time τS , by measur-
ing the half amplitude width (Ck(τS) = 1/2) in the small
lags region (cf. Fig. 5). As usually done for the veloc-
ity auto-correlation, the characteristic time τL of the long
time behaviour is estimated by computing the area under
the correlation, for time lags larger than τS (following an
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Fig. 5. Sketch of the Gaussian fit (long dashed line) and of
the exponential extrapolation (short dashed line) towards the
zero-lag used to compute the short time τS and the long time
τL from modal auto-covariance estimates.

Fig. 6. Log-log plot of the evolution of the two characteristic
time scales of Fourier modes in turbulence.

exponential extrapolation towards the zero-lag, to get rid
of the short time scale contribution, see Fig. 5).

We now turn to the scaling of both characteristic times
with the wavenumber k. By tuning the incoming sound
frequency (15 kHz ≤ νo ≤ 170 kHz), we have successively
probed a decade of wavenumbers k, spanning the inertial
range of the turbulent flow down to the dissipative range
(0.23 < kλT /2π < 2.6). Figure 6 clearly reveals two dif-
ferent behaviours: τS is scale dependent while τL is not.
Systematic studies, performed in various flow configura-
tions (velocity u′ and integral scale L) gave us reliable
results for both times.

3.1 Sweeping decorrelation

As for the short time τS , it decreases with k following
the power law τS ∝ (ku′)−1. In our experiments, the pro-
portionality constant is about 1, and slightly decreases
with the Reynolds number. Such a scaling law, involving
the root mean square velocity (a large scale quantity), is
usually ascribed to a sweeping effect associated with the
random advection of the vorticity field by the large scale
velocity fluctuations. According to the Kolmogorov phe-

nomenology (global scale invariance), one would expect
a dynamic scaling of the modal correlation Ck(τ) of the
form τeddy(k) ∝ (ku(k))−1 ∝ k−2/3, where τeddy(k) is the
characteristic decay time of a turbulent eddy at scale k
(eddy turn over time). Actually, the decay time must be
compared to the sweeping time τsweep(k) ∝ (ku(L))−1

over which any spatial Fourier mode will be distorted by
the random advection term entering the dynamical evolu-
tion of the vorticity field in the Fourier domain [12,25].
For scales in the inertial range: τsweep(k) 	 τeddy(k),
hence the dynamical evolution evolution of the spatial
Fourier modes is dominated by the sweeping, in agree-
ment with our experimental results. Note, however, that
the Kolmogorov scaling τeddy(k) ∝ k−2/3 is recovered for
the time-correlation of the modal amplitudes in the so-
called Shell Models of turbulence, known to be free from
sweeping effects [7].

3.2 Long-time memory and intermittency

Let us now turn to the large time τL: as we have checked
extensively (by varying acoustic as well as flow conditions
separately) τL is constant over the whole range of inves-
tigated scales: τL ∝ (kLu′)−1 (where kL = 2π/L is the
large scale wavenumber). As a whole, the coexistence of
both the scale invariant long-time behaviour and the scale
dependent short time one, implies that it is not possible
to collapse all the correlation functions onto a single one.
From a statistical viewpoint (dynamic multi-scaling [7]),
this result evidences a breaking of self-similarity. We wish
to stress the fact that this feature is a direct consequence
of the existence of a scale invariant long-time behaviour.
Indeed, it is independent of the short time scaling expo-
nent, whether related to sweeping effects (τS ∝ k−1) or
Kolmogorov decay time (τS ∝ k−2/3). It is worth men-
tioning, at this point, that we have also evidenced some
influence of the spatial intermittency of turbulence in the
Fourier domain [27]. Spatial intermittency is manifested
by a significant dependence of the statistics of each spatial
Fourier mode (probability density function of the ampli-
tude) on the spatial extension V

−1/3
scatt of the experimental

setup with respect to the integral length scale L of the
turbulent flow.

4 Non-local interactions

The scattering technique allows simultaneous recordings
of two distinct spatial Fourier modes k and k′. By com-
puting the time cross-correlation function between two
distinct modes, we investigate the dynamics of more or
less non-local (in the Fourier domain) interactions between
spatial Fourier modes. Since local interactions have been
analysed in a previous experiment [17], we focus here on
non-local interactions (finite spectral gap k−k′). Provided
the spectral gap k−k′ is large enough, such measurements
can be performed by driving a single transmitter with the
sum of two sine waves with the appropriate frequencies νo



C. Poulain et al.: Dynamics of spatial Fourier modes in turbulence 223

Fig. 7. plots of time correlation functions: (a) auto-correlation
Ck(τ ) for kη = 0.04 (as in Fig. 4); (b) auto-correlation Ck′(τ )
for k′η = 0.19; (c) cross-correlation Ckk′(τ ) between the two
foregoing Fourier modes.

and ν′
o (Eq. (3)). The scattered pressure signals, around

each incoming frequency, can be easily separated by means
of two simple band-pass filtering operations. To avoid spu-
rious interference effects, the same investigation could also
be performed by using a second pair of transducers defin-
ing a second independent scattering channel as in [17].
However, the single pair configuration presents the ad-
vantages of a better wavevectors alignment as well as the
best possible measurement volumes matching. Actually,
we have carefully checked that both setups give the same
results.

From two synchronous time series (at k and k′), with
a well controlled spectral gap k − k′, we have computed
the cross-correlation function Ck,k′ (τ) = 〈ω(k, t)ω(k′, t −
τ)〉t. A typical example of this cross-correlation is dis-
played in Figure 7c. We have also represented in Fig-
ure 7a (resp b), the auto-correlation function of the two
spatial Fourier modes with wavenumbers k (resp. k′).
As an illustration of the scale independence of the long
time τL, Figure 7a (resp b) shows the identity of the
long time part of the correlation (even superposable). The
cross-correlation displayed in Figure 7c, is also identical
to both auto-correlations, as regards the long time part.
The only difference lies in the absence of the rapid decay
at small time (previously ascribed to sweeping effects).
Note that we have shown in a previous study [17] that
significant cross-correlation levels are recovered, even at
small time lags, for small enough spectral gaps (typ. for
k − k′ = O(2π/Lint)). The significant cross-correlation
level (about 20%) between two spatial Fourier modes k
and k′, irrespective of the spectral gap k − k′, implies a
strong statistical dependence between scales, correspond-
ing to non-local interactions. A similar result has been
recently reported, in a direct numerical simulation (DNS)
of the so called turbulent Taylor-Green vortex flow, with
comparable Reynolds numbers (Rλ � 800) [26]. Actually,
in their DNS investigation, these authors focused on statis-
tics of the average energy transfer rate T2(k, k′) between
Fourier modes in wavenumber shells k and k′. Whatever
the scale k, they observe that it predominantly exchanges
energy with modes k′ lying in a band of constant width
ko around k. They conclude that, as the integral length
scale k−1

o is remembered even deep inside the constant
flux inertial range, the energy transfer processes are not

self-similar. In some way, our experimental results, well
agree with the results of the DNS, albeit in the time do-
main: the temporal fluctuations of the large scales affect
the time dynamic of all scales in the inertial range accord-
ing to some kind of memory effect. Moreover, as far as
this long time driving process is concerned, the significant
cross-correlation level suggests that all scales are instan-
taneously driven by the same large-scale process.

5 Conclusions

To summarize, acoustic scattering allows the direct spec-
tral probing, continuously in time, of spatial Fourier
modes of one component of the vorticity vector field.
Thanks to a good spectral resolution, the proper selec-
tion of a well defined wavevector k of the turbulent flow
results in an unambiguous separation of the spatial and
time features of the turbulent vorticity dynamic. As a first
result, the short time scaling of the modal correlation is
consistent with sweeping effects. This short time scaling,
involving the fluctuating velocity, can be understood as
the consequence of the differential advection between dif-
ferent parts of spatially extended vorticity structures (co-
herent structure). This differential advection, resulting in
strong deformations of the coherent structure (bending
and strain), is expected to be responsible for significant
redistribution of the enstrophy amplitude over neighbour-
ing spatial wavevectors. Actually, this process, involving
large scale velocity gradients, is very similar and remi-
niscent of the turbulent dispersion of a passive scalar.
Second, a long-time correlation, over time lags up to
the integral time scale, indicates a significant statistical
dependency between scales. In recent numerical investi-
gations [6], relying on Direct Numerical Simulations of
modulated turbulence, A.K. Kuczaj and co-workers have
clearly demonstrated that large scale modulations of the
energy injection rate can significantly affect the time evo-
lution of both large and small scale quantities (eg. total en-
ergy and Taylor Reynolds number). Accordingly, the per-
sistent long time behaviour of the amplitudes of Fourier
modes (whatever the wave vector), reported here, could
possibly be the signature of some kind of memory of the
temporal fluctuations of the rate of energy injection at
large scale. Our results, suggest that the turbulent Fourier
modes are driven by two distinct processes, a rapid one
which is local in k-space and a much slower one, involving
non-local interactions. As far as coherent structures are
concerned, it has been reported in various turbulent flow
situations (jet, closed flow between rotating disks) that
coherent vorticity structures exhibit a filamentary shape
with a sharp space localization (implying some kind of
delocalization in the Fourier domain), with axial dimen-
sions of order the integral scale and life time of order the
integral time scale. Thus, such spatio-temporal features
of the coherent structures, observed in both experiments
and numerical simulations, could account for the complex
behaviour of the modal auto and cross correlations. We
propose to interpret the lack of self-similarity of the modal
time correlations as the signature of some kind of temporal
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intermittency (in addition to the usual small scale spatial
intermittency [27]). Note that, as we have observed similar
statistical behaviours at smaller Reynolds numbers (in a
grid turbulence at Reλ � 100), as well as at much higher
Reynolds numbers (up to Reλ � 6000, in a cryogenic He-
lium jet facility at CERN [28]), we believe that they could
correspond to generic features of turbulence.
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