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Abstract
The role of instantons is investigated in the Lagrangian model for the velocity 
gradient evolution known as the recent fluid deformation approximation. 
After recasting the model into the path-integral formalism, the probability 
distribution function (pdf) is computed along with the most probable path in 
the weak noise limit through the saddle-point approximation. Evaluation of 
the instanton solution is implemented numerically by means of the iteratively 
Chernykh–Stepanov method. In the case of the longitudinal velocity gradient 
statistics, due to symmetry reasons, the number of degrees of freedom can be 
reduced to one, allowing the pdf to be evaluated analytically as well, thereby 
enabling a prediction of the scaling of the moments as a function of Reynolds 
number. It is also shown that the instanton solution lies in the Vieillefosse line 
concerning the RQ-plane. We illustrate how instantons can be unveiled in the 
stochastic dynamics performing a conditional statistics.

Keywords: instantons, large deviation, Lagrangian turbulence

(Some figures may appear in colour only in the online journal)

1.  Introduction

This paper aims at obtaining the stationary probability distribution function and large fluc-
tuations of a stochastic model of turbulence proposed by Chevillard and Meneveau [1]. The 
model, known as recent fluid deformation (RFD) approximation, consists in a set of stochastic 
differential equations describing the evolution of the eight degrees of freedom of the velocity 
gradient tensor of a fluid particle along its Lagrangian trajectory in an incompressible flow. 
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Large deviations of the velocity gradient in turbulent flows are associated with high dissipa-
tion rates and enstrophy and are crucial to the understanding of intermittency phenomena—a 
topic of intense research in turbulence. In order to evaluate the probability distribution func-
tions (pdfs) of the velocity gradients (and also the probability of large fluctuations) we make 
use of the iterative numerical procedure of Chernykh–Stepanov [2] which amounts to solving 
the saddle-point equations that minimize the action. This method provides the most probable 
path leading to a given fluctuation, which will be referred to as the instanton. In the case of 
the longitudinal velocity gradient, the number of degrees of freedom can be reduced to one, 
due to symmetry, allowing the pdf to be obtained analytically as well. These analytically 
obtained pdfs are in excellent agreement with the numerical ones obtained by numerical inte-
gration of the stochastic differential equations. Another result is that the instanton lies along 
the Vieillefosse line in the so-called RQ-plane. For the longitudinal velocity gradient, this 
instanton approach gives unprecedented prediction for the pdf tail and for the dynamics of the 
optimal path, along with a prediction of how the moments scale with the Reynolds number. 
That gives us a theoretical approach to the dynamics leading to these rare events, and thus 
intermittency. This point is the main originality of this work.

Of central interest in the area of turbulence is the behavior of small scale statistics. More 
specifically, scaling and universality at small scales of motion in turbulent flows is a long 
standing problem [3]. Due to the intense fluctuations within small scales, large deviations 
of velocity field differences are very pronounced for high values of Reynolds number. These 
large excursions of the velocity gradient are apparent in the pdf, where drastic departures from 
Gaussian behavior are manifest—and also termed intermittency.

It is clear that a theory of turbulence capable of explaining intermittency and the scaling of 
high order structure functions must rely on a deep understanding of the dynamics of the small 
scales. A natural candidate to probe such scales is the velocity gradient tensor. Nevertheless, 
obtaining the statistics of the velocity gradient tensor is a difficult task. A common approach 
to address the evolution of the velocity gradient is the Lagrangian framework, which can 
drastically reduce the degrees of freedom and lead to a simplified picture of the small scales. 
Turbulence in the Lagrangian frame has some different features to Eulerian turbulence, such 
as a shorter correlation time of the velocity gradient. This property inspired the recent fluid 
deformation [1] approximation, which is a model where the shape of a fluid particle following 
the local velocity field has a short memory. This closure was studied in the last years [4–6] and 
extended to account for passive scalar transport and MHD [7] and was dealt with analytically 
by an effective action approach, based on noise renormalisation [8].

In order to study large deviations of the velocity gradients in this model the path integral 
framework is used, which is particularly suitable to investigate large fluctuations. The rea-
son lies in the fact that for weak noise driven systems, the probability is dominated by the 
action minima. The trajectory which minimizes the action is called instanton. This approach 
is equivalent to the Freidlin–Wentzell theory of large fluctuations [10] and provides a proper 
way to find which is the most probable evolution leading to a large event. It can be, therefore, 
a valuable approach to deal with an important question in hydrodynamic turbulence, that is, 
what are the common structures found at small scale turbulence? Structures related to large 
values of velocity gradient are of vital importance in the study of turbulence, since they are 
responsible for most of dissipation that takes place at the smallest scales of fluid motion, typi-
cally associated with large strain and vorticity. Many works have devoted significant effort 
to the identification of such objects. In particular the use of instanton techniques to achieve 
this goal in Burgers turbulence can be found in [2, 19–21]. Moriconi et al [8] applied the 
path-integral approach to evaluate the pdf in the RFD model. However, the set of saddle-point 
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equations was linearized to obtain an approximate instanton solution. To correct this truncated 
saddle-point equations, a perturbative method was carried out.

In this work we determine the instanton of the RFD, addressing the question of what is the 
most probable evolution of a Lagrangian particle and also calculating its contribution to the pdf 
in the weak noise limit by solving the full set of non-linear saddle-point equations. For the case  
of a diagonal (longitudinal) component of the velocity gradient, the analytical results can be 
computed for its pdf.

The paper is organized as follows. In section 2 the recent fluid deformation equations are 
reviewed. Section 3 is devoted to the results and is divided into four parts. Part A presents 
the model addressed in the Martin–Siggia–Rose/Janssen/de Dominicis path integral formal-
ism [15–17] and how this approach can be used to address large deviations. Part B displays 
the transverse velocity gradient statistics after solving the instanton equations by means of 
the numerical Chernykh–Stepanov [2] algorithm. In part C it is shown that the longitudinal 
velocity gradient is subject to an analytical solution in addition to the numerical one. In the 
sequel, part D presents how instantons are uncovered by performing conditioned statistics 
with respect to the stochastic dynamics, which are confronted with the previously obtained 
instantons. Final remarks close the paper in section 4.

2. The RFD Lagrangian stochastic model

2.1.  Recent fluid deformation for Lagrangian turbulence

Proposed in [1], the RFD is a scheme for modelling the evolution of velocity gradient of 
a fluid particle along its trajectory in the Lagrangian frame. By taking the gradient of the 
Navier–Stokes equation, we write

ν= − −
∂
∂ ∂

+
∂

∂ ∂

A

t
A A

p

x x

A

x x

d

d
,

ij
ik kj

i j

ij

m m

2 2

� (2.1)

where / td d  is the convective derivative, p stands for pressure divided by fluid density and ν 
corresponds to the kinematical viscosity. In equation (2.1), = ∂A uij j i is the velocity gradient 
tensor in cartesian components. The difficulty in obtaining statistics from the velocity gradi-
ent Navier–Stokes is that the pressure Hessian and the viscous term are not closed in terms 
of a Lagrangian trajectory. A review of different attempts of closures can be found at [9]. 
The simplest closure is achieved by neglecting dissipation and nonlocal effects of the pres
sure Hessian. Although, a solution is available, it can be shown that it develops a divergence 
at finite time [12, 13]. The RFD has the merit of incorporating pressure and viscous effects 
preventing divergences in A. It may be compared to the tetrad model [14], though instead of 
dealing with an equation for the evolution of fluid deformation, it is strongly modelled. The 
rationale goes as follows. Write the pressure Hessian as

∂
∂ ∂

≈
∂
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∂
∂

∂
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where /∂ ∂X xj i denotes the Jacobian of the change of coordinates from Eulerian to Lagrangian 
coordinates. In (2.2), spatial derivatives of the Jacobian were neglected. The Cauchy–Green 
tensor, defined by

=
∂
∂
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X
ij
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� (2.3)
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is assumed to have the form

[ ] [ ]C A Aτ τ= exp exp ,T� (2.4)

where τ corresponds to a short time associated to the correlation time of the velocity gradi-
ent in the Lagrangian frame, assumed to be of the order of the Kolmogorov time scale. The 
idea behind the RFD approximation is that after a short period of time ( τ∼ ) the shape of a 
Lagrangian particle is uncorrelated with its initial shape. Therefore, it is possible to assume an 
isotropic shape for a fluid particle at initial time, which implies an isotropic pressure Hessian 

δ=∂
∂ ∂

∂
∂ ∂

p

X X mn
p

X X

1

3m n l l

2 2

. Taking this into account, (2.2) turns to

∂
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≈
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2 1

1� (2.5)

Similar reasoning can be applied to model the viscous term, yielding

ν
∂
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where T stands for the integral time scale, which comes from dimensional arguments as 
/( ) /ν ∂ ≈X T12 , considering that ∂X is on the order of a typical distance travelled by a particle 

during time τ, which scales with the Taylor microscale length. Therefore, substituting equa-
tions (2.5) and (2.6) in (2.1), the RFD model equation is given by

( )

( ) ( )
( )

( )
A V A F

V A A C A
C

C A

= +

= − + −
−

−

−

g

T

˙ , with

Tr

Tr

Tr

3
.2

1 2

1

1� (2.7)

A random force F was supplemented to the model equation  (2.7) to provide stationary 
statistics. In (2.7), g is the strength of the stochastic force, related to energy injection rate, and 
will play an important role in the discussion. F is a zero average white noise tensor such that

⟨ ( ) ( )⟩ ( )δ= −′ ′F t F t G t t ,ij kl ijkl� (2.8)

with

 δ δ δ δ δ δ= − −G 2
1

2

1

2
.ijkl ik jl il jk ij kl� (2.9)

The force correlator Gijkl is the general 4th-order tensor which respects isotropy and also 
ensures incompressibility, i.e. A =Tr 0. It can be shown that Gjjkl  =  0 and =G Gijkl klij, which 
follow immediately from equation (2.8).

Throughout the paper all calculations will be carried out with ( )V A  truncated at order ( )τO 2  
[8], hence

( ) ( )( )V A V A∑=
=

,
p

p

1

4

� (2.10)

( )    ( ) A A= −V ,1� (2.11)

( ) ( ) ( )    ( ) A A I A A Aτ
= − + +V

3
Tr

2

3
Tr ,2 2 2� (2.12)
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( ) ( ) ( ) ( ) ( )    ( ) A A A I A A A A A A A⎜ ⎟
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The model possesses two non-dimensional parameters, /τ T  which scales as /−Re 1 2 and 
g/T3/2. Without loss of generality, time units can be chosen to set T equal to 1. We continue to 
call these parameters τ and g by abuse of notation in the remainder of the paper. All numer-
ics have been performed with τ = 0.1, which corresponds to a low Reynolds number regime.

3.  Results

3.1.  Instantons in the Martin–Siggia–Rose path integral

As in many applications of large deviations, it is customary to evaluate the probability to reach 
a final state ( )A A=t2 2 at time t  =  t2 starting from time t1, with ( )A A=t1 1. The initial con-
figuration A1 is usually taken to be at, or close to, an attractor of the deterministic dynamics, 
whilst the initial time is assumed to be = −∞t1 , such that the stationary transition probability 
will depend solely on ( )A t2 . In this work, we want to evaluate the probability of finding a large 
value of one component ( )αβA t2 , either longitudinal, or transverse, which can be accomplished 
with the auxiliary of the Martin–Siggia–Rose/Janssen/de Dominicis path integral [15–17]. 
We are interested in the case when a large velocity gradient αβA  occurs, so it is convenient to 
evaluate the following generating functional

[ [ ( )/ ]] [ ] [ ˆ ] [ [ ( ) ˆ ( )]] ( )/E A A A A∫λ = −αβ
λ αβA t g D D S t texp exp , e ,A t g

2
2

MSR
2

2

� (3.1)

with the Martin–Siggia–Rose action,

[ ˆ ] ˆ ˆ [ ˆ ( ( ))]∫= − −
⎡
⎣⎢

⎤
⎦⎥

A A A A V AS
g

A G A,
2

i Tr ˙ ,
t

t

ij ijkl klMSR

2
T

1

2

� (3.2)

By rescaling the auxiliary variable ˆ → ˆ ˆA A A=′ g2  the action changes as A AS ,MSR[ ˆ ] → 
˜ [ ˆ ]/′A AS g,MSR

2.
For small g, the sum over all paths in the above equation is dominated by the action min-

ima, so that it can approximated by

λ ≈ ′
αβ

λ− − αβ
− ∗ ∗ ∗E A AA t gexp e ,g S A t

2
2 ,2

MSR 2[ [ ( )/ ]] ( ˜ [ ˆ ] ( ))� (3.3)

where A∗ and Â′∗ stand for the minimizers of the action supplemented by the term 
( )/λ αβ

∗A t g2
2. The usefulness of this functional is made clear by the large deviation theory [10]. 

Owing to the Varadhan’s theorem [11] if αβA  obeys a large deviation principle with rate func-
tion ( ) ( )ρ= − αβS a g aln2 , where ( )ραβ a  is the probability to find ( ) =αβA t a2  starting from 

( )A = −∞ =t 01 , the so-called scaled cumulant generating functional

( ) [ [ ( )/ ]]Eλ λ= αβG g A t gln exp2
2

2� (3.4)
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may be expressed for large /λ g2 as

( )

[ ]

( )

( ) { ( ) }

⎡
⎣⎢

⎤
⎦⎥∫λ =

≈

λ

λ− −

− −

−

G g a

g

ln d e e

ln e ,

g S a g a

g S a a

2

2 min
a

2 2

2
� (3.5)

where the integration was carried out by the Laplace method. As a consequence ( )λG  and S(a) 
are related by a Legendre–Fenchel transform

( ) { ( ) }λ λ= − −G S a amin ,
a� (3.6)

with /λ = ∂ ∂S a. By comparing (3.3) and (3.6) one can identify the rate function with the 
action minima. After substituting ˆ ( )A− ti  by ( )P t  in (3.2), the action minimization leads to

( )A= +A V g G P˙ij ij ijkl kl
2� (3.7)

( )A= − ∇P P V˙ ,ij kl ij kl� (3.8)

subject to boundary conditions ( ) λ δ δ= = − α βP t 0ij i j2  and ( )= −∞ =αβA t 01 .
We refer the reader to the appendix where it is shown how the term ( )λ αβA t2  implies a 

final condition for the auxiliary variable P. The set of mixed initial–final condition equa-
tions (3.7) and (3.8) naturally suggests that P should be integrated backwards in time whereas 
A is integrated forwards in time. This kind of problem was tackled numerically by Chernyk 
and Stepanov [2] and by [20, 21] in the context of the Burgers equation, where they were 
interested in how strong values of the velocity gradient develop. It was found that instantons 
were shock-like, which are known to play an important role in the underlying dynamics of 
the system. See also [22] for a review of applications of this approach, including the study of 
instantons in the stochastic Navier–Stokes equation.

For the sake of clarity, we split the cases where the fixed final value of the velocity gradient 
is either one of the diagonal (longitudinal) or off-diagonal (transverse) components.

3.2. Transverse gradient statistics

This section shows the results regarding the stationary statistics ( )ρ a12  of the transverse veloc-
ity gradient. Due to numerical reasons we should use a finite but large initial time t1. In our 
implementation we chose t1  =  −6T whereas t2  =  0, that is, the evolution is carried out through 
six integral time scales. It was also checked numerically that this value suffices for stationarity 
by examining the time series of the original SDE, integrated according to [24]. The algorithm 
is an iterative procedure to obtain the solution of the set of equations (3.7) and (3.8).

Before we apply the method treating the eight independent degrees of freedom encoded 
in A, it is convenient to take advantage of the symmetries of the problem in order to reduce 
the number of degrees of freedom, lowering thus the computational cost. First, recall the 
functional (3.1). The lambda term can be understood as another term in the action of the form 

( ) ( )λδ − αβt t A t2  (in this section ( ) ( )α β =, 1, 2 ). This additional term, which manifests itself 
in the equations of motion (3.7) and (3.8) as a final condition for P, breaks the parity sym-
metry →−x xi i and →−v vi i for i  =  1,2, therefore only the symmetry →−x x3 3 and →−v v3 3 
remains. If the action exhibits this symmetry so does the solution to the equations of motion, 
provided the final/initial conditions keep the same symmetry, which is the case. Hence A must 
be a velocity gradient tensor with reflection symmetry in the x3 direction, whose only possible 
form is

L S Grigorio et alJ. Phys. A: Math. Theor. 50 (2017) 055501
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( )
( ) ( )
( ) ( )

( ) ( )
A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

− −
t

A t A t
A t A t

A t A t

0
0

0 0
.

11 12

21 22

11 22

� (3.9)

We are left with four independent variables instead of eight, which simplifies the computation 
considerably.

Now, the Chernyk–Stepanov method can be performed. The idea is to decouple ( )P t  and 
( )A t  for the first iteration. For instance, we set ( )A =t 0 and solve (3.8) backwards in time 

for an arbitrarily chosen λ. In the next step, we substitute the time series of ( )P t  obtained 
in (3.7), which is integrated forward in time to obtain ( )A t . This is performed recursively 
until the solutions converge. Both equations are solved by the 4th order Runge–Kutta scheme 
with time step = −td 10 3 and a piecewise cubic interpolation is performed to obtain the 
intermediate time steps required by the method. The criteria used for convergence is that 

( ) ( ) / ( ) δ| − | | | <A A A0 0 012 12
old

12
old , i.e. the relative error of the obtained instanton in comparison 

with the (old) instanton calculated in the previous iteration should be smaller than a quantity 
δ (we set δ = −10 7 and δ = −10 10 for the longitudinal case). With the instanton solution, the 
probability of arriving at a final value A12  =  a is determined by ( ) ( )/ρ ≈ −a e S a g

12
2
. Spanning a 

set o λ’s we can generate the pdf ( )ρ a12 , since each value of λ leads to a different final value 
of the longitudinal velocity gradient a. Figure 1(a) displays pdfs obtained by this approach 
for different values of forcing amplitude. Pdfs from numerical integration of the SDE are also 
plotted for comparison, showing good agreement between the results. The collapse depicted 
in figure 1(b) corresponds to a rescaling of the vertical axis, ( ( ( ) ))ρ =g A t aln2

12 2  and shows 
that the pdfs calculated obey the large deviation principle. The curve is minus the rate function 
(action minima) as a function of the final value A12.

In this paper, for simplicity we have solved the Euler–Lagrange equations  using a 4th 
order Runge–Kutta method. The reason for this lies in fact that the instanton equations share 
the same form of the stochastic equations, so the numerical integration method used to solve 
the stochastic equations could be easily adapted to the instanton case. We have checked the 

Figure 1.  (a) Semilog plot of the transverse velocity gradient pdf. Dots: numerical 
instanton evaluation. Solid lines: pdfs from SDE (2.7). The range of A12 lies between 
five and six standard deviations. The forcing values are =g 0.2, 0.3, 0.4 and 0.5, where 
darker colours correspond to higher values of g. (b) Rescaled pdfs corresponding to 
vertical axis ( )ρg aln2  showing collapse.

L S Grigorio et alJ. Phys. A: Math. Theor. 50 (2017) 055501
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stability of the results with respect to the resolution. However, as we seek to minimize a 
time dependent action, by analogy to classical approaches in optimal control theory, it may 
have been wiser and more precise to first discretize the action, then obtain the corresponding 
time discrete evolution, in order to insure that the time discretized evolution equations cor-
respond to the critical points of the discrete action. That way the discretized version of the 
time derivative for the auxiliary equation would have been the adjoint version of the forward 
equation one.

A last comment on the numerical scheme concerns the convergence issues that may arise. 
In fact, in the original reference of the method [2] it was reported that, for a critical value 
of λ, the numerical convergence becomes problematic. In our case, it is noticed that as λ| | 
increases, so does the number of iterations to reach convergence. In the transverse case, where 
the number of degrees of freedom cannot be as reduced as in the longitudinal case (see next 
section), convergence may fail completely. In order to circumvent this issue we performed the 
following strategy. Let αA  and αP  be the α-th step in the iteration procedure of the numerical 
integration. The direct approach would be to use the series αA  and αP  in the saddle-point equa-
tion (3.8) to obtain α+P 1 and α+A 1 and so on. However, when the iteration ceases to converge, 
we modify α+A 1 by → ( )β β+ −α α α+ +A A A11 1, with β arbitrarily chosen on the interval [0,1], 
that is, the next iteration is a weighted average of the old and the new ones. Although not 
systematic, since we do not know a priori which is the optimal β value, this procedure dumps 
large variations in each step and tends to keep iterations inside the converge radii. Values as 
big as β = 0.8 may be needed to capture the tail of the distributions.

3.3.  Longitudinal gradient statistics

In this section we show the results concerning the longitudinal velocity gradient. In order to 
calculate the instanton we make use of the even higher degree of symmetry of this case, which 
reduces the number of degrees of freedom to only one. We invoke the same rationale of the 
previous section. The difference is that imposing A11(0)  =  a consequently adds to the action 
a term that respects parity symmetry →−x xi i, →−v vi i in all directions and hence implies 
that the instanton velocity gradient must be diagonal. This term breaks thr rotation symmetry 
though, by selecting the x1 direction, but the action is still invariant under rotations around the 
x1 axis. So, the action makes no preference between the x2 or x3 directions, implying =A A22 33 
for the solution. Moreover, incompressibility leads to ( ( ) ( )/ ( )/ )A = − −A t A t A tdiag , 2, 2 , i.e. 
the velocity gradient depends on a single degree of freedom. Within this simplification the 
saddle-point equations become much faster and stable to be integrated numerically.

Apart from the numerical solution to the saddle-point equations, the high degree of sym-
metry enables us to derive an analytical solution in the case of longitudinal velocity gradi-
ent. With the velocity gradient given by a diagonal form ( ( ) ( )/ ( )/ )A = − −A t A t A tdiag , 2, 2 , a 
reduced MSR action for the single degree of freedom A(t) can be written as

[ ] ( [ ])
⎡
⎣⎢

⎤
⎦⎥∫= − −

−∞
S A p t p A b A

g
p, d ˙

2
,red

0 2
2� (3.10)

where A(t) is a scalar, equivalent to the A11 of the original system and [ ] [ ]A=b A V11 . Due 
to this drastic reduction of degrees of freedom, it is possible to write b[A] as a gradient of a 
function h[a]

[ ] [ ] [ ] ( ) ( )τ
τ

τ
τ= −∇ = + + + − +Ob A h A h A

A A
A A,

2 6 4
1

10
.

2 3
4

2
5 3� (3.11)
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In that case, instantons may be obtained as the reverse of the relaxation path from A(0) to 
( )−∞A  [23]. Nevertheless, the pdf can be computed in a more straightforward manner by 

solving the corresponding Fokker–Planck equation. First, we write an effective SDE which 
leads to the above reduced action (3.10)

[ ] ( )= +A b A gf t˙ ,� (3.12)

where ⟨ ( ) ( )⟩ ( )δ= −′ ′f t f t t t  is the correlation of the reduced noise f(t). A straightforward 
calculation shows that the MSR action related to the SDE (3.12) is given by (3.10). The 
Fokker–Planck equation can be easily derived from (3.12), whose stationary solution reads

( ) ( [ ]/ )ρ = −a N h a gexp 2 ,2� (3.13)

with h[A] given by (3.11) and N is normalization factor. This important result validates the 
numerical procedure, as one can see in figure 2(a), where a good agreement between the ana-
lytical and numerical instanton contribution to the pdf is achieved.

With respect to the domain of validity of the weak noise approximation, we expect it to be 
valid for /λ �g 12  (see for instance [21]). After (3.11) and (3.13) and using ( )/λ = ∂ ∂S a a we 
have ( / ) /τ�a g 1 2 as a condition for the instanton to be a good approximation.

Once the pdf ( )ρ a  is obtained analytically, it is possible to evaluate the moments of the 
velocity gradient as a power series of the noise g along with the scaling with Reynolds num-
ber, which is another original result of this paper. A straightforward computation yields for the 
first central moments of the longitudinal velocity gradient,

[ ] ( ( ))τ τ= + − +a
g g

var
2 96

29 180 1 ,
2 4

� (3.14)

[( [ ]) ]
[ ]/

E E ⎛
⎝
⎜

⎞
⎠
⎟τ
τ

−
= − + − + +

a a

a

g
g

var 2

25

24 2

15

2
9 2 ,

3

3 2
3 2� (3.15)

Figure 2.  (a) Semilog plot of the longitudinal velocity gradient pdf. Dots: numerical 
instanton evaluation. Solid lines: pdfs from SDE (2.7). Dashed lines: analytical (3.13). 
The range of A11 lies between five and six standard deviations. The forcing values are 
=g 0.2, 0.3, 0.4, 0.5 and 0.6 where darker plots correspond to higher g values. (b) 

Rescaled pdfs corresponding to vertical axis ( )ρg aln2  showing collapse.
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[( [ ]) ]
[ ]

( ( ))E E
τ τ

−
= + − +

a a

a
g

var
3

1

16
19 60 1 .

4

2
2� (3.16)

We highlight the fact that this is a novel result specially considering there are few analyti-
cal results concerning velocity gradient models available. Let us make a connection with the 
phenomenology of turbulence. Equations (3.14)–(3.16) have been obtained in the asymptotic 
limit →g 0. Equations  (3.14) says that in this limit, the variance of a is given by g2. The 
expected Reynolds number dependence, as predicted by Kolmogorov (i.e. ( )∝avar Re), is not 
reproduced here. Only at fourth order in g a Reynolds number dependence appears (through 
τ), which is negative and of order /1 Re as →∞Re  (if we assume that / /τ ∝T 1 Re). Thus, in 
this asymptotic limit →g 0, the RFD closure (2.7) is not realistic for fully developed turbulent 
flows. When g is of order unity, numerical simulations of equation (2.7) (see for instance [25]) 
show indeed very different behaviors when →τ 0. Nonetheless, still in the asymptotic limit 

→g 0, equation  (3.15) shows that the RFD closure exhibits skewness for the longitudinal 
velocity gradient, of order g. This shows clearly that the RFD closure, and in particular the 
self-stretching term, can reproduce some aspects of turbulence phenomenology. In particular, 
this skewness of derivatives remains independent of the Reynolds number at first order in g, 
as expected in a non-intermittent turbulence. A slight dependence on the Reynolds number 
appears (of order τ2) at third order in g. Similar interpretations can be done where flatness is 
concerned (equation (3.16)): in the asymptotics →g 0, flatness is independent on Reynolds 
number and equal to three, reminiscent of non-intermittent Gaussian turbulence, and only at 
second order in g appears a (negative) Reynolds number dependence.

Comparison with the numerical solution of the SDE, figure 3, shows compatibility between 
analytical and numerical moments for small values of forcing. As g increases though, the ana-
lytical result disagrees with the numerical evaluation since for finite g the instanton approx
imation is not sufficient to estimate the pdf. Moreover, it can be also noted that the agreement 
between numerical and analytical moments decreases for higher moments, which is expected 
considering the analytical pdfs are a mismatch with the numerical ones in the tails (in par
ticular the right tail), figure 2.

The skewness and flatness, though, show an incorrect scaling with respect to the 
Reynolds number, which points to a drawback of the model. This drawback, appearing at 
high Reynolds numbers, was already recognized in [25]. The new analytical results pro-
vided in equations (3.14)–(3.16) shed a new light on the numerical results obtained in [25]. 

Figure 3.  Statistical moments of the longitudinal velocity gradient as a function of 
the forcing g. Circles: numerical integration. Solid lines: instanton analytical results 
(equations (3.14)–(3.16)). (a) Variance. (b) Skewness. (c) Flatness.
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Indeed, this underlined that the variance of the gradients does not behave in a consistent 
way with with the free parameter of the model, i.e. the Reynolds number, in line with the 
dimensional approach of Kolmogorov. To circumvent this issue, it was proposed instead in 
[25] to study the relative scaling of the logarithm of higher order moments of the gradients 
with respect to the variance of the gradients. To interpret the departure of the observed scal-
ings seen in [25] from non intermittent scalings, it is then tempting to interpret them, based 
on the theoretical results of equations (3.14)–(3.16), as also being reminiscent of the forc-
ing. Future works will be devoted to improve the RFD approximation in order to include 
genuine intermittent scalings, at the cost, perhaps, of introducing a further free parameter 
that quantifies in an appropriate way intermittent corrections. We leave these perspectives 
for future investigations.

Regarding the so-called RQ plane, the velocity gradient instanton starts at A = 01  evolv-
ing to a final configuration such that A11(0)  =  a. If we keep track of the trajectory on the 
RQ plane it is noticed that it lies entirely in the Vieillefosse line ( + =Q R4 27 03 2 , with 

/A= −Q Tr 22  and /A= −R Tr 33 ) [12], although this is not a consequence of the model 
dynamics. Actually, this is simply due to kinematics since for a velocity gradient tensor taking 
the form ( ( ) ( )/ ( )/ )A = − −A t A t A tdiag , 2, 2 , which in turn is a consequence of symmetry, the 
Vieillefosse line is satisfied identically.

3.4.  Filtering and interpretation of instanton solution

In this section we try to assess the relevance of instantons in a fluid dynamical model sharing 
many non-trivial properties with real turbulence, as it is the case for the RFD approximation, 
following [20]. An ensemble with trajectories of the original SDE without any constraints 
was built. With this ensemble we perform conditioned statistics selecting those paths ending 
within a small neighborhood of a, that is, ( ) [ ]∈ − +A a a a a0 d , d11  ( ( ) [ ]∈ − +A a a a a0 d , d12  
if we are looking at transverse gradients). To increase the ensemble sizes, if the searched value 
a is crossed by any component, we perform frame rotations over the entire trajectory so that 
it always corresponds to component A11 (in the diagonal case) or A12 (off-diagonal). What is 
seen is that these paths concentrate around the instanton solution and after being averaged 
they tend to superpose with it as depicted in figure 4. Figure 4(a) shows several components 
of velocity gradients from conditionally averaged trajectories compared to the instanton solu-
tion with final value A12(0)  =  −0.8. Figure 4(b) depicts how the unconditioned component 
A22(t) evolves for different final values of the conditioned A12(0) in comparison with instanton 
solution. The agreement is better as the constrained final value gets larger, as expected by 
instanton theory. This trend has been found in the context of Burgers equation  in [20] and 
[21]. After all it is clearly obtained that typical trajectories of the stochastic dynamics fluctu-
ate around but not far from the instanton trajectory provided g is small in accordance with the 
large deviation principle.

Conversely, the most probable trajectory leading to a certain value of longitudinal veloc-
ity gradient is such that the velocity gradient is diagonal, as claimed in section 3.2 by sym-
metry arguments. This statement is indeed confirmed by the filtering procedure as presented 
in figure  5. Figure  5(a) shows the average behaviour of velocity gradient conditioned to 
A11(0)  =  1.0 in comparison with instanton trajectories. All off-diagonal components vanish, 
as illustrated by A12(t) and A21(t) (others not shown). In figure 5(b) three different constrained 
values are exhibited. In contrast to the previous case the agreement does not improve for larger 
values of A11(0), another manifestation of the mismatch observed on the tails of the diagonal 
pdf (figure 2).
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4.  Conclusion

The role of rare events can be revealed by means of the Martin–Siggia–Rose path integral 
formulation. In this work we apply this technique to a model of Lagrangian turbulence called 
the recent fluid deformation (RFD). This closure comprises a stochastic model of the velocity 
gradient based on short time correlations in the Lagrangian frame. Within the path integral 
formalism the most probable trajectory that leads to a certain event is calculated numerically 
and, for the longitudinal velocity gradient case, also analytically. We showed the use of sym-
metries can rule out unnecessary degrees of freedom allowing less numerical effort in order 
to compute the instanton. Apart from the benefited numerical computation, the symmetries 

Figure 4.  (a) Different components from conditionally averaged trajectories (symbols) 
compared to the instanton (solid) for the case where A12 is set to  −0.8 at the endpoint. 
Components A13, A23, A31, A32 (not all shown) are negligible, in agreement with our 
symmetry argument. (b) Component A22 both from filtering (dashed) and instanton 
(solid) for the case where A12 is set to 0.5, 1.0 and 1.5 at the endpoint. In both 
figures g  =  0.5.

Figure 5.  (a) Different components from conditionally averaged trajectories (symbols) 
compared to the instanton (solid) for the case where A11 is set to 1.0 at the endpoint. 
Components A21, A12 are negligible (as well as other off-diagonal components not 
shown), in agreement with our symmetry argument. (b) Component A11 both from 
filtering (dashed) and instanton (solid) for the case where A11 is set to 0.5, 1.0 and 1.5 
at the endpoint. In both figures g  =  0.5.
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let us evaluate an analytical approximated solution for the longitudinal velocity gradient pdf, 
enabling us to unveil its central moments dependence on the Reynolds number.

Both longitudinal and transverse cases present the instanton satisfying the Vielleifosse line. 
We believe that the rationale for that lies in the dominance of the non deviatoric terms figur-
ing the model equation (2.7). That is, when →τ 0, the RFD approximation approaches the 
restricted Euler equation.

Regarding vorticity alignment, instanton solutions for transverse gradients shows a com-
plete alignment with the intermediate strain eigenvalue, which can be seen computing the 
normalized product of the three rate of strain eigenvalues /( ) /λ λ λ λ λ λ= − + +∗s 3 6 1 2 3 1

2
2
2

3
2 3 2 

[26], resulting s*  =  1, where λi, =i 1, 2, 3, are the referred eigenvalues. Since the instanton 
corresponds to the most probable trajectory leading to a certain value of the velocity gradi-
ent, our result agrees with [26] which showed that the pdf of s* develops a sharp peak around 
s*  =  1.

The longitudinal velocity gradient pdf has a weaker agreement in comparison with the 
transverse one as the forcing increases, showing the instanton approximation is not enough to 
account for the full statistics even for moderately low values of g. It means that fluctuations 
around the instanton solution may play an essential role, which could be hopefully analyzed 
by perturbative methods. Perturbative corrections to the instanton pdf can be dealt with the 
effective action approach [8] and is currently under study. The issue of whether the instanton 
approach suffices and perturbative methods are fit for more complex fluid dynamical systems 
is an important matter and deserves further investigation.

As a final remark, the application of the instanton study to this Lagrangian model allowed 
us to understand the scaling of the statistical moments with the Reynolds numbers. This opens 
new possibilities in the direction of refinement of the RFD approximation in order to grasp 
more aspects of the phenomenology of turbulence. Moreover we expect that the use of sym-
metries as in this work, which led to a reduction of the degrees of freedom, can be applied to 
other stochastic systems allowing more efficient optimal path computation.
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Appendix

We shall present a pedagogical derivation of the instanton boundary conditions. For this pur-
pose it is more convenient to use the Onsager–Machlup SOM action [18] rather than Martin–
Siggia–Rose SMSR. To change from SMSR to SOM one needs to integrate over the auxiliary 
variable Â. For the RFD, in particular, one should notice that the tensor Gijkl is not invertible, 
so the trace free property of the velocity gradient and the stochastic force should be taken into 
account. After a straightforward computation the cumulant generating function (3.1) may be 
rewritten as

[ ( )/ ] [ ] [ ( [ ] ( ))/ ]E A A∫λ λ= − −αβ αβA t g D S A t gexp ,2
2

OM 2
2� (A.1)
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where the Onsager–Machlup action [ ]ASOM  reads

[ ] ( ) ( ) [ ]A A A V
⎡
⎣⎢

⎤
⎦⎥∫= − − − −−S t A V Q A V, ˙ 1

2
d ˙ ˙ 1

5
Tr ˙ ,

t

t

ij ij ijkl kl klOM
1 2

1

2

� (A.2)

with ( / ) ( / )δ δ δ δ= + −−Q 8 15 2 15ijkl ik jl il jk
1  such that /= −G Q Q Q Qijkl ijkl ijmm klnn ppqq.

The specific form of the Onsager–Machlup Lagrangian is not important for the general 
derivation below. We calculate the action variation with respect to the path ( )A t  with initial 
point fixed, that is, ( )Aδ =t 01 , yielding

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
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A

A
A
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A
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(A.3)

By demanding the action variation to be stationary with respect to the path ( )A t  we arrive at

A A
∂
∂
−

∂
∂
=

L L

t

d

d ˙
0� (A.4)

[ ( ) ( )] [ ( ) ( )] ( )P A P Aδ δ λ δ− + =αβ

=
� ��� ���t t t t A tTr Tr 0,T T

2 2 1 1

0

2� (A.5)

where we used the conjugated momentum ( ) / ( )P A= ∂ ∂Lt t˙  in the last equality. Equation (A.4) 
is the Euler–Lagrange equation which gives the evolution with time, while (A.5) implies the final 
condition for the conjugated momenta ( ) δ δ λ= − α βP tij i j2 . The second term in equation (A.5) 
vanishes owing to the initial condition set to ( )A t1 , where no variation is allowed.
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