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Three temporal velocity signals are analyzed from direct numerical simulations of the Navier–Stokes
(N–S) equations. The three signals are: (i) the velocity of fluid particles transported by the time-
evolving solution (Eulerian velocity field) of the N–S equations, referred to as the dynamic case;
(ii) the velocity of fluid particles transported by a solution of the N–S equations at some fixed time,
referred to as the static case; and (iii) the time evolution of the solution of the N–S equations at
some fixed positions, referred to as the Eulerian case. The comparison of these three signals aims at
elucidating the importance of the overall spacetime evolution of the flow on Lagrangian statistics. It
is observed that the static case is, to some extent, similar to the Eulerian case; a feature that can be
understood as an ergodicity property of homogeneous and isotropic turbulence and can be related to
the process of random sweeping. The dynamic case is clearly different. It bears the signature of the
time evolution of the flow. This study emphasizes the importance of the global dynamics of the flow
and points out the existence of long-time correlations in the fluid-particle dynamics in the Lagrangian
description.

1. Introduction

1.1 The motivations

In a recent past, a significant effort has been devoted to the description of fluid-particle (or
Lagrangian) accelerations in fully turbulent flows [1–3]. These approaches are mainly rooted
in the idea of modeling the fluid-particle dynamics by an equation of Langevin type (by
analogy to the Brownian motion), where the stochastic force would represent the stirring
action of turbulence on the particle (see [4] for a comparative analysis of one-dimensional
Langevin models). If the stirring force is assumed uncorrelated in time, the statistics of the (one-
dimensional) Lagrangian velocity is mono-fractal with a similarity exponent equal to 1/2—the
velocity structure functions scale as 〈|v(t + τ ) − v(t)|p〉 ∼ τ p/2 for all p. This corresponds
to the non-intermittent Kolmogorov’s picture [5]. Experimental and numerical studies have
provided the evidence of intermittency [6, 7]. The scaling exponents deviate from the (linear)
scaling law p/2. Intermittency implies that multi-time correlations should be ascribed to
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the turbulence-stirring force. Accordingly, it has been proposed to model the trajectory of
a fluid particle by a ‘multifractal random walk’ [8], in which the force exhibits a random
direction but a long-range correlated magnitude. This phenomenological model, in which
long-time correlations and the occurrence of large amplitude events at small scales dominate
the motion, suitably accounts for the multifractal properties of the Lagrangian velocity [6–8].
The underlying picture is that a fluid particle, along its trajectory, encounters intense vortical
structures (and sometimes gets trapped for a significant amount of time [9]) over a quiescent
background Eulerian velocity field. Within this picture, Lagrangian intermittency is linked to
the nature, the distribution and the time evolution of the dynamical structures embedded in
the flow. In order to better understand the importance of the spacetime evolution of the flow,
we propose to examine and compare three different temporal velocity signals obtained from
direct numerical simulations (section 1.2) [10]. The energy spectra, the scaling behavior of
Lagrangian velocity structure functions and the correlations in time of velocity increments are
investigated.

Another argument in favor of the importance of the overall dynamics may be put forward as
follows. The turbulence-stirring force is associated with the negative pressure gradient at the
location of the fluid particle (neglecting dissipative effects at inertial time scales). From the
Navier–Stokes equations, the pressure is the solution of a Poisson (elliptic) equation, with the
divergence of (u.∇)u as a source term [11]. It is thus expected that the overall distribution of
velocity gradients (over the whole domain) influences the pressure at a particular position. This
reasoning emphasizes again the plausible importance of the whole flow on the fluid-particle
dynamics.

1.2 The three temporal velocity signals

Three velocity signals v(t) are examined; v(t) is the value, at time t , of the Eulerian velocity
field u(x, t) at some observation point x(t):

v(t) = u(x(t), t).

Three cases are considered.

(i) The dynamic case, which pertains to the fluctuations in time of the velocity of marked
fluid particles:

ẋ(t) = u(x(t), t),

where u(x, t) is the time-evolving solution of the Navier–Stokes equations.
(ii) The frozen case:

ẋ(t) = u(x(t), t0),

where u(x, t0) is a frozen (in time) solution of the Navier–Stokes equations. A single
snapshot of a converged turbulent flow is used to advect the fluid particles.

(iii) The Eulerian case:

v(t) = u(x0, t).

The velocity is recorded at some fixed spatial points in the computational domain, as
it would be measured by local probes in a real turbulent flow. Considered here is the
case where turbulence develops in the absence of a mean flow; otherwise the Taylor
frozen turbulence hypothesis states that the turbulent structure is advected past the mea-
suring probe at the mean flow speed, and time measurements trivially reduce to spatial
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Table 1. The parameters and Eulerian characteristic scales of the simulations.

grid urms(m s−1) ν (m2s−1) ε (m2s−3) η (m) λ (m) Rλ L (m)

run1 1283 0.12 5.4 10−4 1.0 10−3 0.020 0.34 75 0.84
run2 2563 0.12 1.5 10−4 1.0 10−3 0.0075 0.18 140 0.75

urms is the root-mean-square velocity, ν the kinematic viscosity, ε the mean dissipation, η ≡ (ν3/ε)1/4

the Kolmogorov’s dissipative scale, λ ≡ √
15νu2

rms/ε the Taylor micro-scale and Rλ ≡ urmsλ/ν is the tur-
bulent Reynolds number. L = (π/2)

∫
k−1 E(k)dk/u2

rms is the estimate of the (longitudinal) integral scale,
where E(k) denotes the mean energy spectrum in wavenumber.

measurements. The Eulerian temporal velocity statistics in the absence of mean flow is
more controversial [13, 14].

To what extent does the statistics of (one-dimensional) velocity increments δv(τ ) ≡ vx (t +
τ ) − vx (t) depend on the case under investigation?

1.3 The numerical tools

The three cases are examined numerically.
The N–S equations are solved in a cubic domain with periodic boundary conditions, using a

parallel distributed-memory pseudo-spectral solver (without de-aliasing). The time integration
is performed by a (second order in time) leap-frog scheme. In order to sustain a (statistically)
stationary state, a large-scale forcing is supplied to the dynamics, so as to compensate exactly
the losses due to molecular dissipation; in other words, the total kinetic energy of the system is
kept constant. This robust and efficient forcing scheme permits a rapid relaxation to stationarity.

The trajectories of fluid particles are discretized in time by a second-order Runge–Kutta
scheme:

xn+1 = xn + �t

2

[
un(xn) + un+1(xn + �t un(xn))

]
.

The velocity of a particle is interpolated from the nodal values of the Eulerian velocity field,
using cubic spline functions [12]. In the dynamic and static cases, 104 particles have been
followed during approximatively 5T ∗

L , where T ∗
L is the correlation time of the particle veloc-

ity. At this point, it should be noted that the Lagrangian integral time TL (computed as the
integral of the Lagrangian velocity correlation function) notably underestimates the value of
the correlation time T ∗

L for which 〈v(T ∗
L )v(0)〉 ≈ 0 (see figure 1). This feature implies that

a satisfactory convergence of Lagrangian velocity statistics actually requires a simulation
over a time interval much larger than the Lagrangian integral time. The choice of a rather
low-resolution simulation was here primarily dictated by the fulfilment of this convergence
requirement.

Finally, the parameters and characteristic times of the simulations are reported in tables 1 and
2. Let us mention that run1 was exploratory, numerical results have been computed from run2.

Table 2. The Eulerian and Lagrangian (for the dynamic case) characteristic times of the simulations.

Rλ TE (s) TL (s) T ∗
L (s) tη (s) dt (s)

Run1 75 6.9 5.9 ∼ 25 0.74 0.025
Run2 140 6.2 4.8 ∼ 20 0.39 0.005

TE ≡ L/urms is the integral-scale eddy turn-over time, TL the (usual) Lagrangian integral time, T ∗
L is the Lagrangian

correlation time and tη ≡ (ν/ε)1/2 the Kolmogorov’s dissipative time. dt is the time step of the numerical integration.
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Figure 1. The Lagrangian correlation time T ∗
L for which 〈v(T ∗

L )v(0)〉 ≈ 0 is much larger than the Lagrangian integral
time TL . The existence of long-time correlations in the Lagrangian velocity imposes that numerical simulations should
be run over time intervals much larger than TL . In the present simulations, the statistics have been sampled over about
20TL .

2. Frequency energy spectra

Firstly, the focus is on two-time velocity correlations. The mean energy spectrum versus fre-
quency is plotted in figure 2 for the three cases. All spectra exhibit a power-law scaling but with
different slopes. The corresponding local exponents, determined from the local logarithmic
slope of spectra, are displayed in the inset.

On the one hand, the dynamic frequency spectrum exhibits a scaling behavior close to ω−2,
as predicted from Kolmogorov’s similarity arguments [13] and already reported in literature:
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Figure 2. Spectra of energy in frequency of one component of the velocity of fluid particles evolving in the dynamic
case (◦), the static case (�) and the Eulerian case (�). T ∗

L denotes the correlation time for each signal. Spectra have
been shifted for clarity.
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E(ω) = εω−2 f (ω/ω0) with the Lagrangian dissipative frequency ω0 = (ε/ν)1/2 (stemming
from dimensional analysis). On the other hand, the static and Eulerian frequency spectra show
a scaling exponent closer to −5/3, characteristic of the Eulerian spectrum in wavenumber.
This exponent is consistent with Tennekes’s random-sweeping argument [14]. Small-scale
eddies are randomly swept without distortion, with a characteristic velocity urms past the
observation point x(t)—in the frame of reference attached to x(t). Indeed, it follows from
this assumption that the spectrum in frequency E(ω) is given by the spectrum in wavenumber
E(k) = ε2/3k−5/3 f (kη), where η = (ν3/ε)1/4, with the identification ω = kurms:

E(ω) = ε2/3 u2/3
rms ω−5/3 f

(
ω

ωc

)
.

The cut-off frequency is ωc = urms/η, which may be written as ωc 	 0.5 ω0 R1/2
λ , where

Rλ = urmsλ/ν is the Reynolds number based on the Taylor micro-scale λ = √
15νu2

rms/ε.
The cut-off frequency of the sweeping process is therefore much larger than the Lagrangian
dissipative scale ω0. This produces a wider inertial range as evidenced in figure 2. Let us note
that such discrepancies between Eulerian wavenumber and Eulerian frequency spectra had
already been reported in [16].

The ω−5/3 scaling observed for the static case is at first sight surprising, even if this scaling
had also been observed in a similar study using kinematic simulations [18]. In the static
case, v̇ = ∂t u + (ẋ.∇)u with ∂t u = 0 and ẋ = u. This yields for the particle acceleration
v̇ = (u.∇)u and for the variance

〈|v̇|2〉 = 〈|(u.∇)u|2〉. Here, the average is meant on time along
the trajectory. The hypothesis of random sweeping (small-scale velocity gradients are swept
by the large-scale velocities without distortion) implies that

〈|v̇|2〉static ≈ 〈|u|2〉〈|∇u|2〉 ∼ u2
rms εν−1,

which grows more rapidly than the Lagrangian estimate:

〈|v̇|2〉dynamic = ε3/2ν−1/2

with the Reynolds number [15].
These first results emphasize the importance of the time evolution of the flow

(∂t u(x, t) 
= 0) on two-time statistics and in particular on the acceleration variance.

3. Intermittency characteristics

We now seek to quantify the intermittency features of the velocity fluctuations. This is usually
achieved via the analysis of the so-called velocity structure functions 〈|δv(τ )|p〉 as functions
of the scale τ , and it is expected that velocity structure functions exhibit power-law scalings
in the inertial range:

〈|δv(τ )|p〉 ∼ τ ζp .

Intermittency refers to the nonlinear behavior of ζp in p.
As already advocated in [17], the cumulant expansion provides an alternative, physically

sound description of the scaling properties of velocity fluctuations:

log 〈|δv(τ )|p〉 = p C1(τ ) + p2

2
C2(τ ) + p3

6
C3(τ ) + · · · ,

where C p(τ ) represents the pth-order cumulant of log |δv(τ )|. In the inertial range, every C p(τ )
is expected to behave as a linear function of log(τ ): C1(τ ) = c1 log τ , C2(τ ) = −c2 log τ , etc.,
and the scaling exponents ζp are given by Taylor’s expansion ζp = ∑∞

k=1 ck(−1)k+1 pk/k!.
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Figure 3. The first two cumulants of velocity amplitudes for the dynamic case (◦), the static case (�) and the
Eulerian case (�). (a): the dash and solid lines correspond to the slopes c1 = 1/2 and c1 = 1/3, respectively. (b): the
dashed, solid and dashed-dotted lines correspond to the slopes c2

dynamic = 0.08, c2
static = 0.046 and c2

Eulerian = 0.03.

In a sense, the previous cumulant expansion allows us for a perturbative approach of intermit-
tency. Indeed, if only the first-order cumulant is retained in the expansion, (non-intermittent)
Kolmogorov’s theory (for Lagrangian velocity increments) is obtained with c1 = 1/2; the
log-normal assumption is recovered by retaining only the first two terms in expansion and

ζp = c1 p − c2
p2

2
,

and so on. For our purpose, we will focus on the first two cumulants.
The behavior of C1(τ ) and C2(τ ) for the dynamic, static and Eulerian cases are reported

in figure 3. For the dynamic case, C1(τ ) ≈ 1/2 log(τ/T ∗
L ) in agreement with the (ωT ∗

L )−2

scaling observed in the inertial range for the energy spectrum. In contrast, the first-order cu-
mulant for the static and Eulerian cases is better approximated by C1(τ ) ≈ 1/3 log(τ/T ∗

L ).
This scaling exponent is again consistent with the (ωT ∗

L )−5/3 behavior observed for the en-
ergy spectra. The second-order cumulant exhibits also a logarithmic behavior (in the iner-
tial range). For the dynamic case, C2(τ ) ≈ −0.08 log(τ/T ∗

L ) in good agreement with pre-
vious experimental data [6] and numerical simulations [7]. For the static and the Eulerian
cases, C2(τ ) ≈ −0.046 log(τ/T ∗

L ) and C2(τ ) ≈ −0.03 log(τ/T ∗
L ), respectively. These expo-

nents may be compared to the intermittency coefficient c2 = 0.049 ± 0.003 computed nu-
merically from the wavelet decomposition of three-dimensional Eulerian velocity fields [19]
and to the value c2 = 0.025 ± 0.003 obtained from one-dimensional Eulerian longitudinal
velocity increments [17]. We may thus conclude that the static and Eulerian cases have similar
statistics to, respectively, the three-dimensional and one-dimensional Eulerian velocity fields,
while the dynamic case is clearly more intermittent. This is confirmed in figure 4, where the
relative scaling exponents are displayed and compared. Another puzzling feature reported in
figure 4 is the similarity between the relative scaling exponents of passive scalar increments
[20–21] and those of Lagrangian velocity increments (within error bars).



D
ow

nloaded By: [Johns H
opkins U

niversity] At: 17:48 21 February 2007 

Lagrangian intermittencies in dynamic and static turbulent velocity fields 7

2 4 6

1

2

p

ζ p
/ζ

2

Figure 4. The relative scaling exponents ζp/ζ2 computed for the dynamic case (◦), the static case (�) and the
Eulerian case (�). For comparisons, the exponents obtained from experimental measurements of Lagrangian velocity
increments (·), the wavelet decomposition of three-dimensional Eulerian velocity fields (∇), one-dimensional Eulerian
longitudinal velocity increments (�), and passive scalar increments (�).

4. Long-time correlations

A characteristic property of turbulent Lagrangian dynamics is the observation of long-time
correlations [8]. This refers to the fact that acceleration and velocity increments are rapidly de-
correlated in time (because of the fluctuation of their direction, with a frequency comparable
to ω0), while their magnitude remains correlated over a time interval of the order of T ∗

L (the
correlation time of the Lagrangian velocity). In order to better quantify this phenomenon
and compare our three velocity signals, we introduce the magnitude-connected correlation
function [8, 17]:

χτ (�t) = 〈ln |δv(t, τ )| ln |δv(t + �t, τ )|〉 − 〈ln2 |δv(t, τ )|〉, (1)

where δv(t, τ ) = v(t + τ )−v(t) denotes the Lagrangian velocity increment (over a time scale
τ ) at time t .

The numerical estimation of χτ (�t) is plotted in figure 5 as a function of ln(�t/T ∗
L ) for our

three velocity signals. For each signal, the time scale τ was set to be the smallest inertial time
scale (for which dissipative effects remain negligible) and the time interval �t was considered
greater than or equal to τ (in order to avoid overlap between successive increments). As
a matter of fact, the first point of each plot (on the left) corresponds to �t = τ . With the
help of figure 3(b), τ may be roughly seen as the smallest scale for which C2(τ ) remains
proportional to ln τ , and thus, may be considered as the smallest inertial time scale. A first
striking observation is that all χτ (�t) vanish at �t very close to T ∗

L , stating that for the three
cases, magnitudes of inertial velocity increments are long-range correlated. Furthermore, it is
also observed in figure 5 that the three correlation functions χτ (�t) behave linearly with respect
to ln �t (the issue of possible quadratic corrections is adressed in [22]), with the same slopes
as the corresponding second-order cumulants (see figure 3(b)). This latter feature suggests
that, in each case, a similar (underlying) multi-time mechanism relates intermittency to the
long-time correlations of velocity increments. This mechanism may be considered as a random
multiplicative cascade, as originally proposed by Cates and Deutsch [23] (see also [8, 17, 22]).
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Figure 5. Estimation of the magnitude-connected correlation function χτ (�t) as a function of the time lag �t/T ∗
L ,

in the dynamic case (◦), the static case (�) and the Eulerian case (�). The first points of each plot (on the left) are
such that �t = τ , which allows us to read τ directly on the axis (and compare with figure 3.). The straight lines have
the same slopes as in figure 3(b).

Thus, statistics obtained from the three velocity signals point out unambiguously the existence
of an underlying cascade (with different slopes according to each case) which correlates the
amplitudes of Lagrangian velocity increments at any small scales with the global dynamics
of flow, i.e., the dynamics over a period of time comparable to T ∗

L . This feature again insists
on the importance of the dynamics of the flow in the fluid-particle dynamics.

5. Conclusion

It is found that velocity fluctuations of particles advected by a frozen Eulerian velocity field
are, to some extent, similar to the fluctuations in time of the Eulerian velocity field at some
fixed points. In both cases, the acceleration v̇(t) is dominated by the nonlinear term (u.∇)u
at the observation point x(t); a feature which may be related to the phenomenon of random
sweeping. In the static case, the velocity field u(x, t) is frozen in time but x(t) explores the
whole domain, while in the Eulerian case, the velocity field u(x, t) evolves in time but x(t) is
fixed. The similarity between the static and the Eulerian cases may therefore be understood as
an ergodicity property of homogeneous (without mean flow) and isotropic turbulence. Finally,
the intermittency measured in the dynamic case is very different. The present results indicate
that fluid particle dynamics are indeed very sensitive to the global time evolution of the flow;
a feature that may indicate that non-homogeneous large-scale dynamics of the flow should be
taken into account explicitly in the modeling of Lagrangian dynamics.

Acknowledgement

This work has been supported by the French Ministère de la recherche and the Centre National
de la Recherche Scientifique. Numerical simulations have been performed at the CINES (France)
using an IBM SP4 computer.



D
ow

nloaded By: [Johns H
opkins U

niversity] At: 17:48 21 February 2007 

Lagrangian intermittencies in dynamic and static turbulent velocity fields 9

References

[1] Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. and Bodenschatz, E., 2002, Measurement of particle
accelerations in fully developed turbulence. Journal of Fluid Mechanics, 469, 121–160.

[2] Mordant, N., Crawford, A. M. and Bodenschatz, E., 2004, Three-dimensional structure of the Lagrangian
acceleration in turbulent flows. Physical Review Letters, 93(21), 214501.

[3] Yeung, P. K., 2002, Lagrangian investigations of turbulence. Annual Review of Fluid Mechanics, 34, 115–42.
[4] Aringazin, A.K. and Mazhitov, M.I., 2004, One-dimensional Langevin models of fluid particle acceleration in

developed turbulence. Physical Review E, 69(2), 026305.
[5] Monin, A. M. and Yaglom, A. S., 1987, Statistical Fluid Mechanics. (Cambridge, MA: MIT Press)
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