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The local statistical and geometric structure of three-dimensional turbulent flow can be described by the
properties of the velocity gradient tensor. A stochastic model is developed for the Lagrangian time
evolution of this tensor, in which the exact nonlinear self-stretching term accounts for the development of
well-known non-Gaussian statistics and geometric alignment trends. The nonlocal pressure and viscous
effects are accounted for by a closure that models the material deformation history of fluid elements. The
resulting stochastic system reproduces many statistical and geometric trends observed in numerical and
experimental 3D turbulent flows, including anomalous relative scaling.

DOI: 10.1103/PhysRevLett.97.174501 PACS numbers: 47.27.Ak, 02.50.Fz, 47.27.eb, 47.53.+n

Fully developed turbulent flows are omnipresent in the
natural and manmade environment. Development of a
deeper understanding of fundamental properties of turbu-
lence is needed for progress in a number of important fields
such as meteorology, combustion, and astrophysics.
Despite the highly complex nature of inherently three-
dimensional velocity fluctuations, turbulent flows exhibit
universal statistical properties. An example is the
k�5=3-law of Kolmogorov [1]. Another example is the
ubiquity of intermittency of longitudinal and transverse
Eulerian velocity increments between two points [2].
Moreover, probability density functions (PDFs) of velocity
increments change with the length scale between the
points. Starting from an almost Gaussian density at large
scale L (i.e. the integral length scale), these PDFs undergo
a continuous deformation in the inertial range to finish in a
highly skewed and non-Gaussian PDF near the viscous
scale of turbulence [2,3]. The latter is, equivalently, also
true for the velocity gradients. Recently, a simple two-
equation dynamical system was derived [4] that reproduces
the formation of intermittent tails in the PDFs.

While much attention has been devoted to the statistics
and anomalous scaling of longitudinal and transverse ve-
locity increments, there has been growing interest (see e.g.
[5]) in the properties of the full velocity gradient tensor
Aij � @jui. Aij characterizes variations of all velocity
components, in all directions. Such additional information
is required (but unavailable) to model pressure effects in
the system of Ref. [4] and thus to allow reproducing sta-
tionary statistics. Empirically it has also become apparent
that A displays a number of interesting and possibly uni-
versal geometric features. For example, the vorticity vector
(related to the antisymmetric part of A) is preferentially
aligned [6] with the eigenvector of the intermediate eigen-
value of the strain-rate tensor S � �A�AT�=2, where T
stands for transpose. Moreover, the preferred state of the
local deformation is axisymmetric extension, correspond-
ing to two positive and one negative eigenvalues of S.
These geometric trends have been repeatedly observed in
experimental and numerical experiments [6], both at the

viscous scale as well as in the inertial range, for a variety of
different flows. These trends can be readily understood
from the nonlinear self-stretching [7,8] that occurs during
the Lagrangian evolution of A. However, the resulting so-
called restricted Euler (RE) dynamics, obtained by neglect-
ing viscous diffusion and the nonlocal anisotropic effects
of pressure, display unphysical finite-time singularities.
These are due to the absence of regularization properties
of the neglected viscous and pressure gradient terms. Prior
models that seek to regularize the RE dynamics include a
stochastic model in which the nonlinear term is modified to
yield, by construction, log-normal statistics of the dissipa-
tion [9], a linear damping model for the viscous term [10],
and the tetrad model [11] in which the material deforma-
tion history is used to model the unclosed pressure Hessian
term. Material deformation is also tracked in the viscous
diffusion closure in Ref. [12]. While each of these models
adds useful features, a model that has no singularities and
leads to stationary statistics, without tuning the nonlinear
term explicitly to impose log-normal dissipation statistics,
is still lacking. The aim of this Letter is to introduce such a
model and to document its properties.

The Lagrangian evolution of Aij is governed by the
gradient of the incompressible Navier-Stokes equations:

 

dAij
dt
� �AikAkj �

@2p
@xi@xj

� �
@2Aij
@xm@xm

; (1)

where � is the kinematic viscosity, p is the pressure divided
by density, and d=dt the Lagrangian (material) derivative.
Aii � 0 at all times. The last two terms in Eq. (1) are
unclosed. If the pressure Hessian @2

ijp is assumed to be
an isotropic tensor, its trace can be expressed in terms of an
invariant of A which yields, together with neglect of the
viscous term, to the above-mentioned, closed, RE system
[8]. Yet, it is well known that it is unphysical to assume that
@2
ijp is isotropic, given the complex anisotropic effects of

pressure gradient.
If instead we focus on changes of local pressure with

changes of past fluid particle locations (X) at some early
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time in the Lagrangian history (i.e. focus on the Lagrangian
pressure Hessian Pmn � @2p=@Xm@Xn, where p is eval-
uated at present time t but as function of initial positions),
the assumption of isotropy is better justified. This is based
on the idea that any causal relationship between the initial
time and the present has been lost due to the stochastic
nature of turbulent dispersion. The sketch in Fig. 1 is meant
to describe how an initially uncertain (and thus modeled as
isotropic) material shape is mapped onto the present loca-
tion with a deformed shape that mirrors the recent local
deformations due to the velocity gradient history. The
notation is as follows: x�t� denotes the present position
of interest, at time t. Mt0;t: X � x is the Lagrangian path
map [13] which gives the Eulerian position x at time t of a
fluid particle initially located at the position X at time t0.
By virtue of incompressibility, this map is invertible and its
Jacobian (the deformation gradient tensor) Dij � @xi=@Xj
has determinant det�D� � 1 at any time [14]. We denote its
inverse by D�1

ij � @Xi=@xj. The tensor Cij � DikDjk is
called the Cauchy-Green tensor which has been studied
in turbulent flows numerically and experimentally [15,16].

The relationship between the Eulerian and Lagrangian
pressure Hessian is obtained by applying twice the change
of variables @=@xj � �@Xm=@xj�@=@Xm, and neglecting
@�@Xm=@xj�=@xi (i.e. neglecting spatial variations of D�1

[13]). Then, the main closure hypothesis is that the
Lagrangian pressure Hessian, Pmn, is isotropic (i.e. Pmn �
Pkk�mn=3, where �mn is the Kronecker tensor), when the
time delay t� t0 is long enough to justify loss of informa-
tion. The pressure Hessian can then be rewritten as

 

@2p
@xi@xj

�
@Xm
@xi

@Xn
@xj

@2p
@Xm@Xn

� C�1
ij

1

3
Pkk; (2)

which could be regarded as a reinterpretation of the ‘‘tetrad
model’’ [11]. The dynamics of D are determined by
dD�t�=dt � A�t�D�t�. Starting at some initial time from
Dij�t0� � �ij, the general form of D can be written for-
mally using the time-ordered exponential function (expT ),
i.e. D�t� � expT �

R
t
t0
dsA�s�	 [17].

To determine Pkk, we follow Ref. [11] and use the
Poisson equation r2p � �AnmAmn � C�1

qq Pkk=3, from
which Pkk can be solved, leading to [11]

 

@2p
@xi@xj

� �
C�1
ij

C�1
qq
AnmAmn: (3)

A similar approach can be applied [12] to the viscous term,

expressing the Laplacian of Aij in the Lagrangian frame, as
in Eq. (2). The resulting Lagrangian Hessian of Aij is
modeled by a classical linear damping term, namely
�@2Aij=@Xp@Xq � ��pqAij=�3T�. The relaxation time
scale T is chosen to be on the order of the integral time
scale. This can be justified by recognizing that the distance
traveled by a viscous eddy during a viscous turnover or
decorrelation time, advected by the rms turbulence velocity
u0, scales like the Taylor microscale, �. Assuming there-
fore that � is the appropriate Lagrangian decorrelation
length scale of Aij, it follows that �=�@X�2 
 �=�2 


1=T. Finally, the model reads

 �
@2Aij
@xm@xm

� �
1

T
C�1
mm

3
Aij; (4)

and is reminiscent of mapping closures [18].
Replacing the pressure Hessian and the viscous term in

Eq. (1) by the modeled terms, Eqs. (3) and (4), one can
show numerically that the finite-time divergence induced
by the quadratic term is regularized, and each component
of Aij tends to zero at long times. Next, to generate sta-
tionary statistics a stochastic forcing term can be added.
The resulting system, however, is not stationary since it
depends upon the evolving tensors D and C whose time
evolutions reflect the nonstationary nature of turbulent
dispersion. For example, on average the largest (respec-
tively smallest) eigenvalue of C undergoes exponential
growth (respectively decrease) in time, whereas the inter-
mediate one remains approximatively constant [14–16].
We remark that in the tetrad model [11] this feature is
exploited to keep track of changing length scale. Our aim
here is to develop a statistically stationary description of
the velocity gradient at a fixed scale (e.g. viscous scale).

The crucial step of the proposed model is to replace the
actual slow decorrelation along the Lagrangian trajectory
and the total deformation history �t0; t	 with a perfect
correlation of Aij during a time scale � (which is thought

to be of the order of the Kolmogorov time scale
���������
�=�

p
,

where � is the dissipation rate). Correlations for time
delays longer than � are neglected. It follows, using the
time-ordered exponential property, that D�t� �
D�t� ��D��t�, where D��t� � e�A�t�. Furthermore, we ne-
glect the prior deformation history. Accordingly, we may
define a ‘‘stationary Cauchy-Green tensor’’

 C ��t� � D��t�DT
� �t� � e�Ae�AT

: (5)

When � decreases (i.e. the Reynolds number Re in-
creases), at fixed A the restitution strength of the pressure
Hessian model decreases (� � 0 corresponds to an iso-
tropic pressure Hessian as in the singular RE system).
Without loss of generality, henceforth all variables will
be scaled with the time scale T, i.e. t=T ! t and AijT !
Aij. Combining Eqs. (1) and (3)–(5) and a forcing term,

and defining the parameter � � �=T (
R�1=2
e ), the fol-

lowing stochastic differential equation is finally obtained:

x(t)X=x(t0)

FIG. 1. Sketch of how an initially uncertain (and thus modeled
as isotropic) material element is mapped onto the present posi-
tion x at time t, reflecting recent deformations.
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 dA�
�
�A2�

Tr�A2�

Tr�C�1
� �

C�1
� �

Tr�C�1
� �

3
A
�
dt�dW: (6)

The tensorial noise dW represents neglected effects, such
as action of larger-scale, and neighboring, eddies. For
simplicity, we assume dW is Gaussian and white in time.
In the assumed units of time, we choose dW � G

�������
2dt
p

,
where G is a tensorial Gaussian, delta-correlated noise.
Its covariance matrix should be consistent with an iso-
tropic, homogeneous, and traceless tensorial field,
namely hGijGkli�2�ik�jl�

1
2�ij�kl�

1
2�il�jk [19]. When

dWij � 0, numerical tests show that the finite-time diver-
gence is regularized for any initial condition.

The stochastic differential equation (6) is solved numeri-
cally using four different values for �: 0.2, 0.1, 0.08 and
0.06. A second-order weak predicator-corrector scheme
[20] is used, with time steps dt � 10�2 (dt � 10�3 is
used for � � 0:06). Integration times of order 105 T’s are
used. Time series of each component of A indicate sta-
tionary behavior. In Figs. 2(a) and 2(b) we show the PDFs
of longitudinal (A11) and transverse (A12) components for
various � values (here and below, all statistics are im-
proved by averaging over all available longitudinal and
transverse directions, respectively). When � decreases,
velocity gradient PDFs develop slightly longer tails.
Also, the longitudinal components are negatively skewed.

It has been observed in numerical simulations [21] that
the pseudodissipation AijAij is close to log normal for any
Reynolds number (as obtained in the stationary diffusion
process [9] by specific construction of the nonlinear term),
and one wonders whether log-normality arises in the
present model. Figure 2(c) presents the PDF of the loga-
rithm of the pseudodissipation for various values of the
parameter �. The PDF of lnAijAij from the model is close
(but not exactly equal) to Gaussian. Note that the finiteness
of dissipation implies that hA2

11i=T
2 � �=�15��. It follows

that �=
���������
�=�

p
is fixed through �2=��=�� � 15hA2

11i�
2.

To further characterize the statistics of A, Fig. 3 presents
the joint PDF of two important invariants of A, namely
Q � �Tr�A2�=2 and R � �Tr�A3�=3, nondimensional-
ized by hSijSiji. The joint PDF in the RQ-plane shows
the characteristic teardrop shape observed in various nu-
merical and experimental studies [6,11] and is consistent
with predominance of enstrophy-enstrophy production
(top-left quadrant) and dissipation-dissipation production
(bottom-right quadrant). For decreasing �, the joint PDF
becomes more elongated along the right tail of the
Vieillefosse line, consistent with data at increasing Re
[6,11]. Next, the statistics of alignment of the vorticity
vector !i � "ijkAkj with S, and of the S-eigenvalues �,
�, and � are quantified. In Fig. 4(a) the PDF of cos�	�,
where 	 is the angle between ! and the S-eigenvector
corresponding to its intermediate eigenvalue, is shown.
Clearly there is preferential alignment (as in real data
[6]). To quantify the preferred rate of the strain state, we
display in Fig. 4(b) the PDF of the parameter s� �
�3

���
6
p
���=��2 � �2 � �2�3=2. As in real flows [6], the

PDF of s� is shifted towards a peak at s� � 1 (axisymmet-
ric extension).

An important feature of small-scale turbulence is scaling
of higher-order moments with Re [22], i.e. hjA11j

pi 


RF �p�
e . Regular K41 scaling corresponds to F �p� � p=2

[1] while deviations indicate anomalous scaling. However,
the simple assumption to take the forcing term W Gaussian
and delta correlated in time is expected to be realistic at
most for a limited range of Reynolds numbers. Therefore,
we present results in terms of relative scaling which uti-
lizes the above relation for p � 2 to obtain Re 
 hA2

11i
[using F�2� � 1 from the condition of finite dissipation],
and thus hjA11j

pi 
 hA2
11i

F �p�. Shown in Fig. 5 are p-order
moments of A11 and A12, as a function of the second-order
moments, and varying parameter �. Deviations from the
dashed lines (K41 case with slope p=2) are consistent with
anomalous scaling. Since PDFs of normalized A11 and A12

change with � or Re, their statistics cannot follow K41
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FIG. 2. (a) and (b) PDFs of longitudinal and transverse com-
ponents of the velocity gradient tensor A (normalized by its root
mean square), obtained from time integration of Eq. (6) for � �
0:2, 0.1, 0.08, and 0.06. (c) PDF of lnAijAij, for the same values
of �. A Gaussian PDF of unit variance (dashed line) is also
shown. Arrow direction indicates decreasing � (increasing Re).
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FIG. 3. Contour plots of the logarithm of the joint PDF of
Q� � Q=hSijSiji and R� � R=hSijSiji

3=2, for (a) � � 0:2 and
(b) � � 0:08. Contours are logarithmically spaced, starting at 1
and separated by factors of 10. Thick line: zero discriminant
(Vieillefosse) line.
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scaling. The solid lines in Fig. 5 use the multifractal
formalism: F �p� � �minhf�p�h� 1� � 1�D�h�	=�h�
1�g and D�h� is the classical singularity spectrum [2]. The
latter is used here with a parabolic approximation D�h� �
1� �h� c1�

2=�2c2�, with c1 � 1=3� 3c2=2 [3,22], and
thus a single unknown parameter c2 (c2 � 
=9, where
 is
the usual intermittency exponent). The numerical results
can thus be used to determine c2 from the model by fitting
the slopes in Fig. 5. The solid lines are for a parameter c2 �
0:025 (or 
 � 9c2 
 0:22) for the longitudinal, and c2 �
0:040 for the transverse cases. These values are in excellent
agreement with values found from data [2,3]. The longitu-
dinal derivative skewness factor S shows characteristic
values near �0:5.

In conclusion, building on several prior works
[8,9,11,12], a new model has been proposed for the aniso-
tropic part of the pressure Hessian and the viscous diffu-
sion term entering in the Lagrangian evolution equation for
the velocity gradient tensor A. The system predicts a
variety of local, statistical, geometric, and anomalous scal-
ing properties of 3D turbulence. Results are obtained

within a limited range of the parameter �, or Reynolds
number Re. When tests are done with � below 0.05, the
PDFs of velocity increments, of R and Q, and alignment
trends become less realistic. This is due possibly to the
limitations imposed by the assumption of Gaussian forc-
ing. More work is needed to extend the approach to arbi-
trarily high Reynolds numbers, possibly by adding
additional degrees of freedom to the model or by modify-
ing the type of forcing.
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FIG. 5. Relative scaling of velocity gradient moments (�) in
the (a) longitudinal and (b) transverse direction for various
orders p. Different points are for various � (from left to right
� � 0:2, 0.15, 0.1, 0.09, 0.08, 0.07, 0.06, and 0.05). In (a) the
skewness coefficient S � hA3

11i=hA
2
11i

3=2 is also shown (� using
the right scale). Solid lines denote predictions from multifractal
scaling, dashed lines are Kolmogorov (1941) scaling.
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FIG. 4. Alignment trends and preferred strain-rate state. (a)
PDF of the cosine of the angle between vorticity and the
intermediate eigenvector of the strain-rate tensor, showing pref-
erential alignment. (b) PDF of the strain-rate state parameter.
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