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Statistics of Fourier Modes of Velocity and Vorticity in Turbulent Flows:
Intermittency and Long-Range Correlations
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We perform a statistical analysis of experimental fully developed turbulence longitudinal velocity data
in the Fourier space. We address the controversial issue of statistical intermittency of spatial Fourier
modes by acting on the finite spectral resolution. We derive a link between velocity structure functions and
the flatness of Fourier modes thanks to cascade models. Similar statistical behaviors are recovered in the
analysis of spatial Fourier modes of vorticity obtained in an acoustic scattering experiment. We conclude
that vorticity is long-range correlated and found more intermittent than longitudinal velocity.
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In fully developed turbulence, most of the experimental,
numerical, and theoretical works [1] focus on the statistics
of the longitudinal velocity increments �ru�x� �
u�x� r� � u�x�. It is now well established that structure
functions Mq�r� � h��ru�

qix, behave as power laws, i.e.,
Mq�r� � r�q . The universal nonlinear evolution of �q with
respect to q is referred to the so-called intermittency
phenomenon: the probability density function (PDF) of
velocity u is close to Gaussian, while the PDF of longitu-
dinal velocity gradients @xu exhibits extremely large tails.
Another striking property of turbulence is the long-range
correlation of dissipation events, i.e., �@xu�2, up to the
velocity correlation length scale L. Many systems share
the same types of behaviors, as financial volatility [2] and
electrical transport in granular media [3]. A major issue in
turbulence is to derive a possible link between long-range
correlations and vorticity filaments [4]. In the Fourier
space, which is an alternative way to study turbulence
statistics [5], one could expect that the Fourier modes of
velocity ~u�k; t� should analogously follow the same types
of behaviors, i.e., hj~u�k; t�jqit � k��q , since k can be inter-
preted as the inverse of a scale, as prescribed in shell
models [6]. Furthermore, a statistical model based on the
rapid distortions of the small scales predicts strong inter-
mittency in the k space [7]. Surprisingly, it is not the case
on experimental and numerical velocity profiles, as pointed
out by the seminal paper of Brun and Pumir [8], since the
PDFs of Fourier modes are found to be undistinguishable
from Gaussians, whatever the value of k.

However, one of the crucial parameters of the Fourier
transform is the finite spectral resolution associated with
the finite length of velocity profiles hereafter noted ‘. The
goal of this Letter is to show that, whereas statistics of
Fourier modes do not depend on k, they depend signifi-
cantly on the ratio ‘=L. First, we present such a ‘‘short-
time’’ Fourier analysis of experimental longitudinal veloc-
ity data. Second, the statistical dependence on ‘=L is
clarified in the context of various turbulent cascade mod-
els. Finally, we perform a similar analysis on experimental
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data, obtained in an acoustic scattering experiment, allow-
ing the direct probing in time of spatial Fourier modes of
vorticity in a turbulent air jet. By comparison with the
longitudinal velocity data analysis, we conclude that vor-
ticity is also long-range correlated but more intermittent.

Let us introduce the short-time Fourier analysis
~u‘�k; x�, which depends on the space variable x and the
wave vector k and corresponds to the computation of the
Fourier transform of the longitudinal velocity u�x� in a
window h‘ of size ‘, i.e., ~u‘�k; x� � u�x� � �e�ikxh‘�x�	,
where � stands for the convolution product. We repre-
sent in Fig. 1(a) the flatness of j~u‘�k; x�j, i.e., F ‘�k� �
hj~u‘�k; x�j4i=hj~u‘�k; x�j2i2, as a function of ln�k=k��, where
k� � ��K��1 (�K is the dissipative Kolmogorov length
scale), for several windowing length ‘ (see the caption),
and for k 
 2�=‘. The experimental longitudinal velocity
signal used in this study has been recorded in the Modane’s
wind tunnel facility [9] at a Taylor microscale Reynolds
number R� � 2500 and thus exhibits a large inertial
range. Here, the spectral window is the Hanning function:
h‘�x� � cos2��x=‘� for x 2 ��‘=2; ‘=2	, h‘�x� � 0 in-
stead. For inertial wave vectors (k < k�), F ‘�k� slightly
depends on k but drastically on ‘: when ‘ is of the order of
several correlation lengths (‘� L), F ‘�k� is close to the
Gaussian value 2 [as found in [8] ] and when ‘=L! 0, we
note a rapid increase of the value of this inertial ‘‘plateau.’’
The evolution of F ‘�k� with respect to ‘=L is displayed on
Fig. 1(c). The error bars have been obtained by a least-
square fit of the plateaus of the flatness over wave vectors
in the inertial range. We thus observe that the flatness of the
Fourier modes behaves as a power law of the scale ‘, i.e.,
F ‘�k� � ‘� with � � �0:1 0:02. Here, the error bar
0.02 is large because of the lack of statistics and the fact
that longitudinal velocity profiles, obtained under the
Taylor hypothesis [1], are sensitive to the temporal decor-
relation [10]. We have also displayed in Fig. 1(c) the
evolution of the flatness for an another longitudinal ve-
locity profile (R� � 300) obtained in the air jet we
will present at the end of this Letter. Hence, � remains
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FIG. 1. (a) Flatness of j~u‘�k; x�j as a function of ln�k=k��
[k� � ��K��1], for different window lengths ‘ (from top to
bottom, ‘=L � 0.057; 0.067; 0.078; 0.089; 0.114; 0.156; 0.200;
0.228; 0.334; 0.456; 0.91; 1.82; 3.64; 7.28) for the Modane
velocity signal (R� � 2500�. (b) Flatness of synthetic velocity
profiles j~uRWS

‘ �k; x�j (dotted line) and j~uCWS
‘ �k; x�j (solid line) vs

ln�k=kmax�, where kmax is the Nyquist wave vector and for several
scales [from top to bottom log2�‘p=L� � �8, �7, �6, �5, �4,
�3, �2, �1, 0, 1 and 2]. (c) Values of the plateaus of parts (a)
and (b) vs ln�‘=L�: (�) modane velocity data, (�) air-jet
velocity data (‘=L � 0.32; 0.64; 1.28; 2.56; 5.12; 10.24),
(�) synthetic velocities, (solid line) our theoretical prediction
[Eq. (3)].
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unchanged and can be considered as universal. Let us
mention that the second moment of j~u‘�k; x�j is obviously
proportional to k�5=3 and hj~u‘�k; x�j2i � �‘=L�hj~uL�k; x�j2i
for k 
 2�=‘. In the dissipative range (i.e., k > k�), the
flatness appears to rapidly increase without any saturation
[11]. This is one of the first experimental verifications of a
Kraichnan’s conjecture [12,13] which is linked to the log-
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infinitely distribution breaking of velocity [14] and is
currently under investigation. In the following, we will
theoretically establish a link between the inertial exponent
� and the structure function exponent �q: � � �4 � 2�2.

Let us now begin with defining an intermittent (zero
mean) velocity profile. This is usually done with the help of
wavelet series [15], early introduced in the context of
turbulence [16,17],

u�x� �
X�1
j�0

X2j�1

k�0

cj;k j;k�x�; (1)

where the set f j;k�x� � 2j=2 �2jx� k�g is an orthonormal
basis of the space of finite energy functions L2��0; L	�
[see [18] ] and  an admissible ‘‘mother’’ wavelet. The
wavelet coefficients cj;k govern the statistics across
scales. Generally, the coefficients cj;k � 2�j=2�j;k�j;k are
chosen as a product of a sign (�j;k � 1 with equal proba-
bility) and positive random variables�j;k that are chosen so
as to be compatible with turbulence longitudinal velocity
statistics, i.e., E��qj;k� � 2�j�q [E�:� meaning here mathe-
matical expectation]. Moreover, as already predicted by
the unifying point of view of Cates and Deutsch [19],
statistics of velocity fluctuations are correlated in space
and scale that can be formalized through space-scale cor-
relations of dyadic wavelet coefficients as E��q1

j;k�
q2
l;m� �

E��q1
j;k�E��

q2
l;m�C

q1;q2
j;k;l;m, where the functions Cq1;q2

j;k;l;m render
additional correlations

C q1;q2
j;k;l;m � �jk2�j �m2�lj �max�2�j; 2�l�	�q1�q2

��q1
��q2

(2)

stating that wavelet coefficients are typically correlated, in
amplitude, up to the correlation length L. The generated
velocity profile ucws�x� using Eq. (1), where �j;k are corre-
lated according to Eq. (2), will be called a cascade wavelet
series (CWS) [8,17,18]. Using the simplest admissible
Haar wavelet [i.e.,  �x� � 1 for x 2 �0;L=2�,  �x� � �1
for x 2 �L=2;L�,  �x� � 0 instead] and the box for the
short-time Fourier transform [i.e., h‘�x� � 1 for x 2
�0; ‘	, and h‘�x� � 0 instead], it can be shown analytically
that E�j~uCWS

‘p
�kn; 0�j

2	 / �‘p=L�k
�1��2
n , for kn � �2n=L >

�=‘p and ‘p � L2�p [�n; p� 2 N2]. Moreover, the flat-
ness F ‘p�kn� � E�j~uCWS

‘p
�kn; 0�j4	=�E�j~u

CWS
‘p
�kn; 0�j2	�2 be-

haves as

F ‘p�kn� � 2
2

�1� �4 � 2�2��2� �4 � 2�2�

�‘p
L

�
�4�2�2

(3)

when ‘p ! 0 independently of kn. We thus have demon-
strated that � � �4 � 2�2. Note that the flatness is not
exactly equal to 2 at the correlation length (‘p � L).

In order to check our analytical predictions, in particular,
to verify whether our computations depend on the box h‘
3-2



FIG. 2. Acoustic scattering experiment in a turbulent jet flow.
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and the synthesis wavelet  , we perform a statistical study
of the process uCWS�x�, using a more regular Daubechies-6
wavelet for the synthesis wavelet  and a Hanning window
for h‘. The method used to build the positive random
variables �j;k is the classical multiplicative cascade model

[8,17–21]: recursively, �0;0 � 1, �j;2k � W�l�j�1;k�j�1;k,

and �j;2k�1 � W�r�j�1;k�j�1;k, where the W�	�j�1;k (	 � l for
left or r for right) are independent identically distributed
(IID) positive random variables [see [17,18] ]. As an ex-
ample, we will study the log-normal case where each
lnW�	�j�1;k is a Gaussian random variable of mean 
 ln2

and variance �2 ln2 (leading to the quadratic spectrum
�q � 
q� �2q2=2). We have used the set of parameters
�2 � 0:025 and 
 � 1=3� 3�2=2, consistent with ex-
perimental findings [22], so that �2 � 2=3, �3 � 1, and
2�2 � �4 � 0:1. Numerically, the infinite sum in Eq. (1)
is truncated at j � N � 218 and is generated over 25

integral scales. It can be shown that such a stochastic
process is not stationary [23] but at first order, its correla-
tion function is consistent with Eq. (2). We show in
Fig. 1(b) (solid line) the estimation of the flatness of
~uCWS
‘p
�k; x� as a function of ln�k=kmax�. After a

k-dependent crossover (data not shown) linked, among
other reasons, to the effect of discreteness in the cascade
[21], the flatness does not depend on the wave vector k
but significantly depends on ‘p. In Fig. 1(c), we have
gathered all the values of the inertial plateaus using a
least-square fit providing an error bar estimation. The
plateau behaves as a power law of the scale ‘p in accor-
dance with Eq. (3): �4 � 2�2 � �0:1 0:001. The dis-
crepancies between the prefactors are mainly linked to
the nonstationary character of this generated synthetic
velocity profile.

We would like to mention that if wavelet coefficients are
no longer long-range correlated (take Cq1;q2

j;k;l;m � 1) and if
ln�j;k are chosen to be independent Gaussian random
variables with mean 
 ln2j and variance �2 ln2j, the cor-
responding synthetic velocity generated will be called a
random wavelet series (RWS) uRWS�x� which is intermit-
tent in a mathematical sense [24]. By construction,
E�j~uCWS

‘p
�kn; 0�j

2	 � E�j~uCWS
‘p
�kn; 0�j

2	, and analytical cal-

culations performed in the same framework defined in the
context of CWS (i.e., using a Haar wavelet for  and a box
for h‘) show that the flatness F p�kn� is equal to 2 for both
wave vectors kn and window lengths ‘p. This property has
been checked numerically (with the same parameters 

and �, and the same synthesis wavelet  and analysis
window h‘ as in the CWS case). The results are presented
in Figs. 1(b) and 1(c). This heuristic synthetic process
shows that experimental longitudinal velocity data are
not only intermittent, but also long-range correlated.

We will turn now to acoustic scattering measurements
allowing the direct access to a spectral characterization of
20020
the vorticity distribution. The nonlinear interaction of an
acoustic wave with a turbulent flow gives rise to a scatter-
ing process of the incident sound wave by the turbulent
vorticity distribution. As in any scattering experiment
(like, e.g., light or neutron scattering), the complex ampli-
tude of the scattered acoustic pressure field is directly
related to the incident acoustic amplitude and to the spatial
Fourier transform of the vorticity distribution [25]. We
have performed such a spectral investigation on a turbulent
axisymetric jet in air, at a Taylor-based Reynolds number
R� � 300. We use a bistatic configuration (Fig. 2) wherein
a plane monochromatic acoustic wave with frequency �0

and complex amplitude pinc�t� is directed on the turbulent
flow. The complex amplitude pscatt�t� of the sound wave
scattered at angle  is then recorded along time by a
separate acoustic receiver. Further details of the experi-
mental apparatus can be found elsewhere [26]. The scat-
tering process results in phase and amplitude modulations
of the scattered acoustic pressure with respect to the inci-
dent one: pscatt�t� � ~�?� ~k; t�pinc�t�, where

~�?� ~k; t� �
ZZZ

Vscatt

�?� ~x; t�e
�i ~k� ~xd3x (4)

is the spatial Fourier transform of the vorticity component
normal to the scattering plane at wave vector ~k such that
j ~kj � 4��0=c� sin�=2�, with c the sound speed. By
fixing both �0 and , the scattering experiment allows
the direct probing, in time, of a well-defined spatial
Fourier mode of the turbulent vorticity distribution char-
acterized by a unique spatial wave vector ~k (spectral reso-
lution). The price to pay for such a spectral resolution
lies in some spatial delocalization in the physical space
manifesting itself as a windowed spatial Fourier transform
over a finite volume Vscatt according to Eq. (4). The mea-
surement volume is defined by the intersection of the
incident and detected acoustic beams and mainly depends
on  and on the size of both acoustic transducers. In the
present experiment,  � 60� and the diameter of the cir-
cular transducers is 14 cm, leading to spatial resolutions of
order the integral length scale of the jet flow L. By varying
3-3
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FIG. 3. Flatness of experimental Fourier modes of vorticity vs
ln�‘=L�, for four inertial wave vectors ki. Dotted line slope is
equal to �0:24.
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�0, at a fixed , four different wave vectors ki, i � 1, 2, 3, 4
(in growing order) have been analyzed, corresponding to
various length scales spanning the whole inertial range of
the turbulent flow. In the spirit of the first part of this Letter,
we are interested in the influence of the parameter ‘=L
where ‘� �Vscat�

1=3 is a typical size of the measurement
volume and L is the integral scale of the flow over the
flatness F ‘�ki� � hj�‘� ~k; t�j

4it=hj�‘� ~k; t�j
2i2t . To this end,

we rely on the classical self-similarity property of the
axisymmetric turbulent jet [27] according to which the
integral scale L (and all other pertinent scales) increases
linearly with respect to the distance downstream from the
jet nozzle. A well-known consequence of this statistical
self-similarity is the invariability of the Reynolds number
for large enough distances from the jet nozzle. Several
scattering experiments have been performed at different
distances from the jet nozzle, corresponding to different
integral length scales L. On Fig. 3 is plotted the flatness of
the modal amplitude F ‘�ki� as a function of ln�‘=L�. First,
F ‘�ki� does not depend on the wave vector ki at a first
order for ‘ < L, in accordance with Fig. 1(c). Second, we
see that the flatness behaves as a power law with scale ‘,
i.e., F ‘�ki� � ‘

� with � � �0:24 0:02 when ‘=L! 0.
Analogously with longitudinal velocity, the exponent � is
directly related to the classical ��

q exponent of structure
functions of vorticity considered as a vector field, namely
� � ��

4 � 2��
2 . It is noticeable that our experimental find-

ing is in excellent agreement with a tensorial wavelet
analysis of Kestener and Arneodo [28] that has been ap-
plied to a 3D-vorticity field obtained from a direct numeri-
cal simulation (DNS) of Navier-Stokes equations at a
smaller Reynolds number R� � 140 for which they ob-
tained ��

4 � 2��
2 � �0:22 0:016. In the same spirit, it

has been measured that transverse velocity profiles are
more intermittent than longitudinal ones [29].

To sum up, we have shown that longitudinal velocity and
vorticity are intermittent and long-range correlated in the
physical space thanks to the study of the flatness of experi-
20020
mental velocity data and acoustical measurements of vor-
ticity Fourier modes. We have seen that vorticity is much
more intermittent than longitudinal velocity. Our theoreti-
cal study on wavelet series shows that the intermittency is
intrinsically related to long-range correlations. We mention
the necessity to generalize this approach to dissipative
length scales and wave vectors for which log-infinitely
divisible principles are violated.
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