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Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are
introduced and compared. The first approach is based on a formal solution of the stress transport equation in
which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of
the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response
to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second
approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy
for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation
approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is
expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose.
Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular
quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures.
The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large
eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approxi-
mation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike
eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be
derived directly from the stress transport equation with the production term, and using physically motivated
assumptions about Lagrangian decorrelation and upstream isotropy.
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I. INTRODUCTION

One of the most basic challenges in turbulence modeling
is the need for closures for the fluxes associated with unre-
solved turbulent fluctuations. In the context of large eddy
simulation �LES�, closures are required for the subgrid-scale
�SGS� stress tensor �1,2�. Traditional closures involve mostly
algebraic expressions relating the stress tensor to powers of
the velocity gradient tensor. More elaborate approaches us-
ing separate transport equations have sometimes also been
employed, although these tend to be significantly more costly
in the context of LES. Closures expressing the stress in terms
of the matrix exponential function do not appear to have
received much attention in the literature. The objective of the
present work is to identify and discuss two separate paths
that lead to such closures. Both paths are based on the
Lagrangian dynamics of turbulence, i.e., on an understanding
of the evolution of turbulence as one follows fluid-particle
paths in time.

The use of Lagrangian concepts in turbulent flows has a
long history �3,4� and, in recent years, has seen renewed
interest for modeling �5–9�. Among others, a model for the
pressure-Hessian tensor based on the recent Lagrangian evo-
lution of fluid elements—the recent fluid deformation �RFD�
closure—has been proposed �10–12�. In this approach, a
change of variables is made expressing spatial gradients in
terms of Lagrangian gradients �e.g., how does a variable at

the present location vary if we change the initial position of
the fluid particle at an earlier time�. Then the assumption of
isotropy is introduced for the Lagrangian gradient tensors.
This assumption allows for simpler isotropic forms to be
used, and is argued to be justified based on Lagrangian de-
correlation effects. Deviations from isotropy at the present
location for the Eulerian gradient tensors develop as a result
of fluid material deformation along the Lagrangian trajectory.
More traditionally, the Lagrangian time evolution of the
stress tensor following fluid particles can be derived by tak-
ing appropriate moments of the Navier-Stokes equations. In
this paper we examine both of these approaches to formulate
models for the SGS stress tensor in turbulence in the context
of LES.

A description of small-scale structure of turbulence begins
with the Navier-Stokes equations of an incompressible fluid
of velocity u,

du

dt
=

�u

�t
+ �u · ��u = − �p + ��2u , �1�

where d /dt stands for the Lagrangian material derivative, p
the pressure divided by the density of the fluid, and � the
kinematic viscosity. Because of incompressibility, the veloc-
ity gradient tensor Aij =�ui /�xj must remain trace free, i.e.,
Aii=0, and the pressure field is the solution of the Poisson
equation �2p=−AlkAkl.
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In the framework of LES, the SGS stress tensor is defined
using the filtering approach �13,15�,

�ij = uiuj − ūiūj . �2�

An overbar denotes spatial filtering at a scale � and is for-
mally given by a convolution with a non-negative, spatially
well-localized filtering function G�r� of characteristic size �,
with unit integral �G�r�dr=1, namely

ū�x,t� =� G�r�u�x + r,t�dr .

The SGS tensor � enters in the dynamics of the filtered
velocity ū as it can be seen when applying the filtering pro-
cedure to the Navier-Stokes equations �Eq. �1��,

Dū

Dt
=

�ū

�t
+ �ū · ��ū = − �p̄ + ��2ū − � · � , �3�

where D /Dt stands for the Lagrangian material derivative
with ū as the advecting velocity, and p̄ the filtered pressure
divided by the density of the fluid. Because of incompress-

ibility, the filtered velocity gradient tensor Āij =�ūi /�xj must

remain trace free, i.e., Āii=0, and the filtered pressure field is
the solution of the respective Poisson equation �2p̄=

−ĀlkĀkl−�2�ij /�xi�xj.
Next, we also consider the transport equation for the SGS

stress tensor � �13–15�, which follows from Eq. �3�:

D�

Dt
=

��

�t
+ �ū · ��� = − �Ā� − Ā� + � , �4�

where the term ���p+��−� ·J includes the pressure
gradient-velocity correlation

�p,ij = − �ui� jp − ui� jp̄ + uj�ip − uj�ip̄� ,

the viscous term,

��,ij = ��ui�
2uj − ūi�

2ūj + uj�
2ui − ūj�

2ūi� ,

and the generalized central third-order moment

Jijk = uiujuk − ūj�ik − ūi� jk − ūk�ij .

In Sec. II it is shown that a formal solution for the stress
transport equation may be obtained by integrating the pro-
duction term exactly. This solution, suggested by �19�
but—to our knowledge—little pursued, will be shown to in-
volve matrix exponentials. The developments presented re-
quire some assumptions of Lagrangian isotropy and decorre-
lation, and some empirical evidence supporting these
assumptions is provided in Sec. III based on results from
direct numerical simulations �DNS�. In Sec. IV the RFD clo-
sure for the SGS stress is developed. The resulting model is
shown to be expressible compactly in terms of matrix expo-
nentials as well. Differences and similarities between the
RFD and transport equation solutions are discussed. In Sec.
V, the matrix-exponential solutions are expanded for short
times. The expansions allow to establish relationships to tra-
ditional eddy-viscosity and nonlinear closure models in tur-
bulence. In Sec. VI the matrix-exponential closure is imple-

mented in a most simple flow to illustrate its feasibility and
cost.

II. SOLUTION TO STRESS TRANSPORT EQUATION
USING MATRIX EXPONENTIALS

Equation �4� is of the form of the “time-dependent
Lyapunov equation,” if the tensor �’s implicit dependencies
upon the velocity fluctuations and the stress tensor were dis-
regarded �in reality, � depends upon small-scale velocity
fluctuations and thus the full equation is highly nonlinear and
nonlocal�. The formal solution of the Lyapunov equation in
terms of matrix exponentials has been found useful in a num-
ber of other fields: Principal oscillation pattern analysis �16�,
mechanics of finite deformations �17�, and fluctuation-
dissipation theorems for stochastic linear systems �18�. In the
context of the SGS stress transport equation the solution at
time t �starting from an initial condition at time t�� may be
written formally as follows:

��t� = H�t,t����t��H��t,t�� + �
t�

t

H�t,s���s�H��t,s�ds ,

�5�

where

DH�t,t��
Dt

= − Ā�t�H�t,t�� and H�t�,t�� = I . �6�

To our knowledge, this approach to solve the stress equation
in RANS closures was first suggested in the turbulence lit-
erature by �19� �see Eq. �4.4� in �19��. For the general case of
time-varying velocity gradient, we note that the auxiliary
matrix H�t , t�� can be written as a time-ordered exponential
�see Refs. �18,20,21� for background on this basic matrix
function�

H�t,t�� = T exp+�− �
t�

t

Ā�s�ds	 .

Equation �5� illustrates clearly the distinct roles played by
the production term and the contribution given by �. Evalu-
ation of Eq. �5� requires the knowledge of the time history of

Ā�s� as well as accurate closures for ��s� along the fluid
history t��s� t.

As a next step, one may consider the special case in which
the velocity gradient is assumed to be constant between the

initial time t� and t, and set equal to, e.g., Ā�t� and simply

denoted by Ā. For this approximate situation, the solution of
Eq. �6� may be written as an ordinary matrix exponential

H�t , t��=e−�t−t��Ā, where the matrix exponential is defined in
the usual way eB=
n=0

+� Bn /n!. To simplify further, consider
Eq. �5� for the case �=0, i.e., now retaining only the pro-
duction term. This step eliminates the important isotropiza-
tion effects of pressure strain and also the nonlinear diffusion
effects of the transport terms. While clearly missing impor-
tant physics, it is still instructive to observe that this simpli-
fication allows for the solution �Eq. �5�� to be written as

��t� = e−�t−t��Ā��t��e−�t−t��Ā�
. �7�
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At this stage it is conceptually advantageous to make con-
nection with Refs. �22–24�, where it is proposed to use con-
ditional statistics to capture the relevant statistics of the SGS
stress. For example, in Ref. �23�, it is shown that the least-
square-error best estimate for the SGS stress is of the form of
a multipoint conditional average, namely ��ij � ū1 , ū2 , . . . , ūN.
The multipoint conditioning variables �ū1 , ū2 , . . . , ūN� are, in
principle, constituted by the entire �N-point� resolved veloc-
ity field at scale �. To simplify the conditioning, one may
limit the information to the past time history of the local
velocity structure. In particular, a good choice that captures
much of the local dynamics in a Galilean invariant fashion is
the Lagrangian past history of the filtered velocity gradient

tensor Ā. The dependence on the Lagrangian time history
along a fluid particle advected by the filtered resolved veloc-

ity field is thus assumed to be described by Ā�s� with s� t

�here and below, the dependence of Ā on spatial position is
omitted for clarity�. According to these ideas, we define a
quasioptimal SGS stress tensor ��o��t� as the conditional av-

erage ��o��t�= ���t� � Ā. Noticing that the matrix exponential
prefactors entering in Eq. �7� are some deterministic func-
tions of the velocity gradient tensor itself, they thus can be
taken out from this conditional average and we get the fol-
lowing stress tensor:

��o��t� = e−�t−t��Ā���t���Āe−�t−t��Ā�
. �8�

With this expression, the closure problem has been changed
from requiring a model for the local stress tensor at time t to
requiring a model for the conditional average of the upstream
initial condition at time t�� t. The initial condition needed is
a symmetric tensor. In the absence of additional information,
the simplest assumption is to postulate that this conditionally
averaged upstream stress tensor is isotropic, namely

��ij�t���Ā � 1
3 ��kk�t���Ā�ij . �9�

The magnitude of the tensor is proportional to the trace of
the SGS tensor and has units of squared velocity. The as-

sumption of isotropy may be justified if ��t�� and Ā�t� be-
come more and more decorrelated as the elapsed time t− t�
grows, then no locally strong and statistically preferred di-
rection should exist. This step introduces a characteristic
decorrelation time-scale �a, and t− t� will be chosen to be of
the order of such a decorrelation time scale. Clearly, one
must also assume local isotropy to hold for the statistics, and
this is justified from the usual arguments in turbulence when
� is sufficiently small compared to the integral scale. Inci-
dentally, it is expected that a decorrelation between ��t�� and

Ā�t� may occur due to pressure effects, turbulent diffusion,
etc. Some numerical evidence for such decorrelation and
isotropization is provided in the next section.

The trace of the conditional SGS tensor, ��kk�t�� � Ā�t�,
must still be specified. The simplest option that is consistent
with a local evaluation of velocity and length scales is to

choose a factor proportional to �2�S̄�2, where S̄��Ā
+ Ā�� /2 is the filtered strain rate tensor and �S̄ �

��2S̄ijS̄ij�1/2. Finally, replacing into Eq. �8� with t− t�=�a,
we obtain

��o� = cexp�
2�S̄�2e−�aĀe−�aĀ�

, �10�

where the parameter cexp is unknown and may be obtained by
empirical knowledge, or by generalizing the dynamic model
�25�.

For completeness and clarity, we remark that the matrix
exponential solution may equivalently be obtained by solv-
ing the linearized equation for a turbulent fluctuation that
only keeps the rapid distortion term from the large-scale ve-
locity field, and neglects all other effects. That is to say, we

solve formally the equation Dtui�=−uk�Āik using the matrix
exponential function. The solution is then multiplied by its
transpose to form ui��t�uj��t� which is then averaged over the
fluctuating initial condition ui��t��uj��t�� �conditioned on a

constant Ā�. The averaging of the term ui��t��uj��t�� yields the
initial �upstream� stress tensor ��t��, and with the conditional
averaging, an expression equivalent to Eq. �8� is obtained.
This is similar to the equivalence between solving the equa-
tion for covariances or for the fluctuations and then averag-
ing, as noted in the context of stochastic linear systems in
�18�.

Equation �10� represents a closure for the SGS stress ex-
pressed in terms of matrix exponentials instead of the more
commonly used algebraic closures �26�. In Sec. IV, a connec-
tion is noted between the expression, Eq. �10�, and a physical
closure for the subgrid stress tensor based on the recent fluid
deformation closure in the Lagrangian frame.

III. EMPIRICAL EVIDENCE OF LAGRANGIAN
DECORRELATION AND ISOTROPY FROM DNS

In order to verify whether the decorrelation and isotro-
pization of conditional averages of SGS stresses occur in
turbulence, we analyze a DNS dataset of forced isotropic
turbulence. The simulation is conducted using a pseudospec-
tral method in a �0,2	�3 box. 1283 grid points are used.
Fourier modes in shells with �k��2 are forced by a term
added to the Navier-Stokes equations which provides con-
stant energy injection rate 
 f =0.1. The viscosity of the fluid
is �=0.0032. Data is collected after the simulation reaches
statistical steady state. Note that ��t�� is the SGS stress at a
previous time t� and at the spatial location occupied by the
fluid particle which is at the position x at time t �i.e.,
X�t� ;x , t�, in the notations of Sec. IV�. According to the
transport equation for ��t� �Eq. �4��, the fluid particle is ad-
vected by the filtered velocity field. Thus, the position of the
fluid particle at t� is found by backward particle tracking
starting from end-time t in the filtered velocity field. To per-
form backward particle tracking, the filtered velocity and
SGS stress fields are calculated and stored at every �t
=0.009, corresponding to 1 /20 of the Kolmogorov time
scale. A Gaussian filter is used with filter scale �=15�,
where � is the Kolmogorov length scale. In order to quantify
isotropy as function of t− t�, the ratio of off-diagonal to on-
diagonal tensor elements of the conditional averaged SGS
stress at decreasing previous time t� is computed.
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According to the derivation, the averaging must be con-
ditioned on a particular value of the resolved velocity gradi-

ent Ā�t�. There are a large number of possibilities, since Ā�t�
has eight independent elements. As representative of an im-
portant class of velocity gradient structure, we choose to

consider regions where the Ā�t� is such that it has a large
shear in one direction, whereas all other velocity gradient
tensor elements are weak. We choose a particular shear di-
rection, “12,” and define E12�t� to be “high-12-shear” events
that occur at time t. These events are defined here as those

points where �1� Ā12�t�� Ārms, i.e., large and positive 12-

shear, �2� �Āij�t��� Ārms for other off-diagonal components

�i , j�= �1,3� and �i , j�= �2,3�, and �3� �Āij�t��� Ārms /�2 for

the diagonal elements i= j. The gradient rms Ārms is defined

as Ārms��ĀijĀij1/2. This definition allows for a sufficiently
large number of events to be counted and thus help in reach-
ing statistical convergence. With this definition of a condi-
tioning event, we calculate the isotropy factor I�t− t�� accord-
ing to

I�t − t�� � −
��12�t���E12�t�

�1/3���kk�t���E12�t�
. �11�

I�t− t�� monitors the isotropization of the SGS stress associ-
ated with large “12-shear events,” i.e., a particular aniso-
tropic condition in the large-scale velocity gradient tensor.
Since the turbulence is statistically isotropic, similar results
are expected if the other two shear components of �ij, namely
�13 and �23, had been chosen instead of �12, under condition-
ing based on events E13�t� or E23�t�, respectively.

Backward particle tracking starts from spatial locations
where the conditions in E12�t� are verified, at time t. At each
time t�� t, the particle locations are calculated from the
stored filtered velocity fields using a second-order Adam-
Bashforth scheme. The filtered velocity and SGS stresses at
the particle locations are interpolated from the stored fields
using sixth-order Lagrange interpolation. The conditional av-
erages are then found by averaging over all tracked particles.
Statistical sampling is increased by averaging over the tra-
jectories starting from several different end times t and also
over the other two 13 and 23 off-diagonal elements �in both
�ij�t�� and Eij�t��.

The resulting ratio I�t− t�� is plotted in Fig. 1 as a function

of the normalized time lag �t− t��Ārms. It is evident that the
conditional average of the SGS stresses becomes more iso-
tropic as the time lag increases and I�t− t�� crosses zero at

about 0.7 eddy turnover times, namely t�0.7Ārms
−1 . Then

there is negative undershoot to about −1 /2 of the initial
value, before it is relaxed to around zero �the isotropic value�
at about t�6Ārms

−1 . The undershoot below zero is an interest-
ing trend and understanding the physics of this behavior
would be an interesting goal for future studies.

As additional evidence for the Lagrangian time decorre-
lation between stress and large-scale velocity gradient, in
Fig. 2 we show the correlation coefficient between �12�t��
and −Ā12�t�, namely

�t − t�� = −
��12�t��Ā12�t�

���12�t��2�Ā12�t�2
. �12�

The correlation is near 15% at zero time-lag �similar to the
correlation coefficient between SGS stresses and strain-rate
tensor often quoted in a priori studies�, but then decays to

nearly zero at times around t�2Ārms
−1 . Taken together, the

DNS analyses thus provide evidence for the isotropy as-

sumption on ��ij�t�� � Ā�t�, as long as t− t���a with �a

= Ārms
−1 .
Note that due to the cost of storing the entire simulation

for backward particle tracking, only moderate Reynolds
numbers were considered in the analysis. The forcing length
scale has been estimated to be about 50 times the
Kolmogorov length scale, �, and the viscous effects begin to
significantly damp the motions at scales of about 10� and

(t-t’) Arms

I
(t

-t
’)

0 1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

_

FIG. 1. Decay of the anisotropy factor I �Eq. �11�� as function of

normalized time lag �t− t��Ārms measured in DNS of isotropic
turbulence.
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t’)

FIG. 2. Decay of the correlation coefficient  �see Eq. �12��
between �12�t�� and −Ā12�t� as function of normalized time lag �t
− t��Ārms measured in DNS of isotropic turbulence.
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smaller. Therefore, using �=15�, there may be some effects
from the forcing and viscous scales on the results. However,
the observed tendency towards isotropization is expected to
become more, not less, prevalent at higher Reynolds num-
bers. We point out that opportunities for much more in-depth
future analyses of such issues are provided by the availability
of a turbulence database at higher Reynolds number �29�
�although this database could not be used for the present data
analysis due to the fact that it does not yet contain suffi-
ciently efficient means of filtering the data�.

IV. STRESS TENSOR MODEL BASED ON THE RECENT
FLUID DEFORMATION CLOSURE

This alternative approach is based on relating the SGS
stress tensor to small-scale velocity gradients. To begin, one
may recall the multiscale expansion �27,28,30� in which,
among others, the exact subgrid stress �Eq. �2�� is written in
terms of u�, the velocity field coarse-grained at a scale �, but
still with ���, i.e., containing significant contributions from
subgrid scales. One may then define the approximated stress
tensor �ij

� =ui
�uj

�−ui
� uj

� and naturally �=lim�→0 ��.
Consistent with the Kolmogorov phenomenology, as ar-

gued formally in �31�, and also as used in various a priori
analyses of experimental data �see, e.g., �28�� the SGS stress
is relatively local in scale, stating that the leading terms en-
tering in its development are given by the coarse-grained
velocity at the resolution scale � and including also the next
range of length scales between ��� /� and � �e.g., ��2�.
As a consequence, one may use the approximation �ij

��ij
�=�/�. Furthermore assuming that u�=�/� is sufficiently

smooth over distances � �or using the coherent subregion
approximation �31��, a Taylor expansion of u� and evaluation
of the filtering operation at scale � in Eq. �2� leads to

�ij � C2�2�ui
�

�xk

�uj
�

�xk
, � =

�

�
. �13�

One observes that similarity-type models such as the stan-
dard nonlinear model �2,32� correspond to using the gradient
of the large-scale velocity field ��=� or �=1�. Nevertheless,
it is the case ��1 which is physically most relevant since
the true SGS stress includes scales smaller than �. However,
for ��1, the expression �13� does not constitute a closure
since then u� contains subgrid motions that are not known at
the LES filter scale �.

As in �5� and Chevillard and Meneveau �2006—CM06
from here on�, a Lagrangian label position X is employed to
encode the time-history information. Using the two-time for-
mulation of �3�, the label positions X�t� ;x , t� satisfy
dX /dt�= ū�X�t�� , t�� with X�t�=x. Thus X�t� ;x , t� represents
the position X at a prior time t� of the fluid particle which is
at position x at time t. Making the Eulerian-Lagrangian
change of variables also used in CM06 leads to the following
expression:

�ij = C2�2�Xp

�xk

�Xq

�xk

�ui
�

�Xp

�uj
�

�Xq
. �14�

All terms in this expression are strongly fluctuating vari-
ables. But, as in the preceding section, the most relevant

information is retained by the conditional averaged expres-
sion. We propose the same conditional averaging based on
the time history of the velocity gradient tensor along the past
fluid particle trajectory. Therefore, combining the conditional
averaging and the change of variables one may write

�ij
�o��t� = C2�2� �Xp

�xk

�Xq

�xk

�ui
�

�Xp

�uj
�

�Xq
�Ā�s�;t� � s � t� ,

�15�

where the dependence of stress ��o��t� on current position x is
understood and not indicated to simplify the notation. The
Jacobian matrix Gij�t� , t�=�Xi�t� ;x , t� /�xj satisfies �see, for
instance, �17��

DtG�t�,t� = − G�t�,t�Ā�t� with G�t,t� = I , �16�

where I is the identity matrix. Thus,

G�t�,t� = T exp−�− �
t�

t

Ā�s�ds	
is expressed as an “anti-time-ordered exponential,” with ma-
trices ordered from left to right for increasing times
�20,21,33�. The only difference with the matrix function
H�t� , t� of the preceding section �Eq. �6�� is the sense of time
ordering.

Since the deformation gradient tensor Gpk=�Xp /�xk is a
deterministic function of the past velocity gradient history,
these tensors can be taken outside the conditional averages in
Eq. �15�. So far one can thus write

�ij
�o��t� = C2�2�Xp

�xk

�Xq

�xk
Yijpq

with

Yijpq = � �ui
�

�Xp

�uj
�

�Xq
�Ā�s�;t� � s � t� ,

where Y is a fourth rank Lagrangian gradient tensor. At this
stage, it is now possible again to invoke Lagrangian isotropy,
following the approach of CM06 and of the preceding sec-
tion. It is assumed that the tensor Y is isotropic due to loss of
information caused by turbulent dispersion, past pressure ef-
fects, etc., if t− t� is long enough. Under the Lagrangian-
isotropy closure assumption, one may write

Yijpq = A��ij�pq + B��ip� jq + C��iq� jp. �17�

While individual realizations of a small-scale gradient tensor
in turbulence are of course not isotropic, statistical moments
such as the conditional average can be more justifiably ap-
proximated as isotropic. The isotropy assumption states that
the rate of change of turbulent velocities �u��x , t� �at the
present location and time �x , t��, with respect to changes in
past locations of the fluid particles at time t�, is insensitive to
orientation of �X. This appears to be a plausible postulate, if
sufficient time has elapsed, i.e., if t− t� is sufficiently large
for decorrelation to take place. In the preceding section we
used data from DNS to test the accuracy of such a decorre-
lation and Lagrangian isotropy assumption in a closely re-
lated context �directly based on the stresses rather than
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small-scale velocity gradient statistics�. Still, it is important
to recognize that this step is introduced here as an ad-hoc
closure assumption and no claim is made that this is a formal
step with controlled errors.

While the assumption of isotropy eliminates the depen-

dence of Yijpq upon Ā, the latter still affects the Jacobian
matrix Gij =�Xi /�xj that enters in the closure for the SGS
stress. Next, we focus attention only on the trace-free part of
the modeled SGS stress tensor, i.e., we subtract the trace of
the stress. Noticing that the right Cauchy-Green tensor
�kXp�kXq is symmetric, only the unknown B�+C� enters in
the resulting quasioptimal model for the deviatoric part of
the stress �superscript od� model �ij

�od�. Dimensionally, the
parameter B�+C� has units of inverse time-scale squared,
and depends upon the turbulence statistics down to scales �.
For a fixed ratio � /�, and with both scales in the inertial
range, for simplicity we assume that the parameter B�+C�
follows, as in the preceding section, Smagorinsky scaling,

i.e., B�+C��c�S̄�2. One thus obtains

�ij
�od��t� = cexp�

2�S̄�2� �Xi

�xk

�Xj

�xk
−

1

3

�Xm

�xk

�Xm

�xk
�ij	 , �18�

where the parameter cexp=C2c, in a similar fashion as in the
preceding section, is unknown and may be obtained by em-
pirical knowledge, or by generalizing the dynamic model
�25�.

As a final step, the recent fluid deformation �RFD� ap-
proximation is used �CM06� in which the time-varying ve-

locity gradient Ā�s� between t� and t is approximated with a

constant value, e.g., equal to its value at t and denoted by Ā.
The initial condition for the fluid deformation �when the de-
formation gradient tensor is assumed to be the identity�, is
prescribed at the time t�� t. The solution to Eq. �16� can then

be written as G�t�, t�=e−�t−t��Ā. Note that in this approxima-
tion, H�t , t��=G�t�, t�, since the sense of ordering of the ma-
trix products is no longer significant.

The next step is to replace the solution for G�t�, t� into Eq.
�18�. As was done in the preceding section, we assume that a
characteristic decorrelation time scale �a has elapsed be-
tween the time where the initial isotropy assumption is jus-
tifiable and the current time when the stress closure is re-
quired. This means replacing the initial time t� with t−�a.
Finally, the closure for the deviatoric part of the stress reads
as

�ij
�od� = cexp�

2�S̄�2�e−�aĀe−�aĀ�
�d, �19�

where all quantities are evaluated at �x , t�. It is immediately
apparent that this closure is equivalent to the formal solution
developed in the preceding section �see Eq. �10��.

V. EXPANSIONS

In the preceding sections it has been shown that a matrix-
exponential closure for the deviatoric part of the SGS stress
tensor may be written as in Eq. �19�. As a next step, the
behavior of this closure is explored when �a is small enough

so that the norm of �aĀ is much smaller than unity. Then

e−�aĀ�I−�aĀ+ �1 /2���aĀ�2+¯. Up to second order one
then obtains

�od � cexp�
2�S̄�2�− 2�aS̄ + �a

2�ĀĀ� +
1

2
�Ā2 + �Ā��2�	d

+ ¯ � , �20�

Crow, in Ref. �19�, derived essentially the same result �see
his Eq. �5.3�� but with unspecified coefficients obtained as
moments of his memory kernel and an additional term pro-

portional to the material derivative DtS̄. It is immediately

apparent that if the time scale �a is chosen as �a= �S̄�−1, then
the first term is the standard Smagorinsky model with cexp
=cs

2 �where cs is the Smagorinsky coefficient�. Furthermore,
the second term, first term in round parentheses, is of the
form of the nonlinear model �2,28,32� with a prefactor
cexp�

2. Two differences with the standard nonlinear model
are apparent, however. The first is that if cexp�cs

2, then as
coefficient of the nonlinear term this is significantly smaller
than the coefficient for this term normally mentioned in the
literature �which ranges typically between 1 /12 to 1 /3�. The
second difference is the presence of the additional term

�Ā2+ �Ā��2� /2. To make connections with standard nonlin-
ear models used more often in RANS �e.g., �34��, the veloc-
ity gradient is decomposed into symmetric and antisymmet-

ric parts, Ā= S̄+�̄. The result is �again with �a= �S̄�−1�

�od � − 2cs
2�2�S̄�S̄ + cs

2�2�S̄2 + 1
2 ��̄S̄ − S̄�̄��d

. �21�

It is interesting to note that the expansion including the term

�Ā2+ �Ā��2� /2 cancels exactly the �̄�̄ part that is included

in the standard nonlinear model ĀĀ�. For detailed a priori
studies of the various decompositions of the velocity gradi-
ent and nonlinear terms see �35�.

VI. MATRIX EXPONENTIAL CLOSURE IN LES OF
ISOTROPIC TURBULENCE

The expansion introduced in the preceding section is for-

mally valid only for small values of the norm of �aĀ. For
more realistic larger values, the expansion may be inaccurate
and many additional higher-order terms are needed. They can
all be expressed in terms of expansions into integrity bases
�26�, but it is in general difficult to obtain the coefficients of
the expansion. Instead, it is proposed here to utilize the ma-
trix exponential directly in simulations. Since the exponen-
tial involves the full velocity gradient tensor, it appears more
natural to choose the time scale �a according to �a

=��ĀijĀij�−1/2���Ā�−1 instead of using �S̄�−1. The parameter
� is an empirical coefficient of order unity.

As a first test, LES of forced isotropic turbulence is per-
formed. This flow is the simplest possible test case and it is
used here simply to determine whether simulations using the
matrix-exponential based closure are numerically stable
yielding realistic energy spectra, and to ascertain the associ-
ated computational cost. The generalization to dynamic ver-
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sions and tests in more complex flows will be left for future
investigations. The simulation uses the same pseudospectral
method as was used in the DNS outlined in Sec. II, with
same grid resolution, forcing scheme and time step size.
Dealiasing is performed by zero-padding according to the
two-third rule. The viscosity of the fluid is �=0.000 137. The
subgrid-scale model implemented is given by Eq. �19� and
cexp= �0.1�2 is chosen �dynamic versions �25� of this model to
determine cexp can be developed in the future�. To specify �a,
the values �=0.5, 1, and 2 are tested �a dynamic approach of
determining � could also be developed�. In the pseudospec-
tral scheme, the modeled SGS stress is evaluated in physical
space and is made trace free �this only affects the effective
pressure, not the dynamics� before computing its divergence
in Fourier space.

The matrix exponentials are evaluated using truncated
Taylor expansion with scaling and squaring �36�. Specifi-

cally, we need to evaluate exp�B�, where B=−�Ā / �Ā�. For a
matrix C in general, the Kth-order truncated Taylor expan-
sion uses matrix polynomial TK�C�=
n=0

K Cn /n! to approxi-
mate exp�C�, incurring an error bounded by �C�K+1 / ��1
− �C � / �K+2���K+1�!�. The error decreases with the norm
of the matrix C. Therefore, to evaluate exp�B�, we first de-
fine C=B /2 j, where the value of the integer j is chosen to
ensure �C � �1 /2. exp�C� is then approximated by TK�C�
and finally exp�B� is given by �TK�C��2j

. The cost of calcu-
lating TK�C� is reduced by using Cayley-Hamilton theorem
to express Cn �n�2� in terms of I, C, C2, and the invariants
of C. Choosing K=7, we obtain the following equation for
T7�C� with an error smaller than 10−8:

T7�C� = C0I + C1C + C2C2, �22�

where

C0 = 1 −
RC

3!
+

QCRC

5!
−

QC
2 RC

7!
,

C1 = 1 −
QC

3!
−

RC

4!
+

QC
2

5!
+

2QCRC

6!
+

RC
2 − QC

3

7!
,

C2 =
1

2
−

QC

4!
−

RC

5!
+

QC
2

6!
+

2QCRC

7!
.

Here QC=−Tr�C2� /2 and RC=−Tr�C3� /3 are the two non-
zero invariants of C �note that Tr�C�=0�. In terms of cost,
the above algorithm uses about �1+ j�N3+5N2+2N+37 flops
to calculate exp�B� when B is given, where N is the dimen-
sion of the matrix. In our tests j=1+floor�log2 ��, so j=1
when �=1 and the cost is estimated at about 140 flops for
each stress evaluation. This can be compared with the single
matrix multiplication needed for the nonlinear model, which
is about N3�30 flops. Overall with this closure, our code
took about 2 times as long to run as compared to using the
mixed model.

Simulations were initialized with random Fourier modes
and evolved until statistical steady state was obtained. No
numerical instabilities were observed for the three parameter
cases considered �cexp=0.01, �=0.5, 1, and 2�. In Fig. 3 the

energy spectra obtained from the three simulations as aver-
aged in the time interval between one and three large-eddy
turnover times are shown. Figure 4 shows the time evolution
of the derivative skewness coefficient S= ���1ū1�3
/ ���1ū1�23/2. As can be seen, the case �=1 appears to yield
physically meaningful results, which can be compared with
the well-known results of the Smagorinsky model and the
mixed model �see, for example, �37��. But, there is clear
dependence on the parameter �. The skewness coefficient
quickly drops to values near −0.3 for �=1 and −0.36 for �
=2. These are realistic values for filtered turbulence �38�.
The skewness values for �=0.5, on the other hand, appear to
be too close to zero, consistent with some pile-up of the
spectrum at high wave numbers.

VII. DISCUSSION

A closure based on matrix exponentials and assumptions
about short-time Lagrangian dynamical evolution has been
proposed. Matrix exponentials as formal solution of the
stress transport equation provides interesting insights into the
effects of the production �gradient-stretching� term. Histori-
cally, in the context of RANS modeling using additional
transport equations, the �closed� production term has justifi-
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FIG. 3. Radial kinetic energy spectra of forced isotropic turbu-
lence from LES using the matrix-exponential closure of Eq. �19�
with cexp= �0.1�2. Solid line, �=1; dashed-dotted line, �=2; and
dashed line, �=0.5. Dotted line, universal Kolmogorov spectrum
E�k�=1.6
 f

2/3k−5/3.
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FIG. 4. Longitudinal derivative skewness coefficient S as func-
tion of simulation time. Lines are the same as in Fig. 3. �L�6 is the
integral time scale.
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ably not been the focus of attention in the literature. In LES,
however, due to practical constraints, algebraic closures are
most often preferred. The present approach shows that the
effects of production in the context of such closures may be
taken into account directly based on an exact solution of the
stress transport equation. A central step in the present ap-
proach is to use isotropy for the upstream initial condition.
Evidence for such isotropization of initial condition, given
present large-scale velocity gradients, has been obtained us-
ing a DNS database. Implementation of the closure in LES of
forced isotropic turbulence yielded good results. The compu-
tational cost is significant, but it is not prohibitive. Since our
code with this model took about 2 times as long to run as
with a traditional algebraic closure, LES with this model at a
resolution of N3 has similar CPU cost as LES with a tradi-
tional model run at a resolution of �21/4N�3��1.2N�3.

It is crucial to stress that the additional, more subtle phys-
ics of the remaining terms in Eq. �4� �pressure effects, turbu-
lent diffusion, dissipation, etc.� are, in general, unlikely to be
well represented by the simple assumption of upstream isot-
ropy. In addition, nonequilibrium conditions in which A var-
ies quickly along the particle trajectory are not included in
the closure as written in Eq. �19�, in which the velocity gra-
dient is assumed to have remained constant over a time scale
�a. To explore nonequilibrium effects, the full time-ordered
exponential function must be used, although this would still
leave out the nonequilibrium effects of �. To compare the
present approach to other closures will require more in-depth
testing in more demanding, complex flows �e.g., where ef-
fects of anisotropy, nonequilibrium, and pressure-strain cor-
relations are expected to be important�.

It is also instructive to consider the case of two-
dimensional �2D� turbulence. Nothing in the closure strate-
gies pursued here limits their application to space dimension
3, at least nothing very obvious. However, the expansions
�Eqs. �20� and �21�� show that this is not likely to be a
qualitatively good closure for space dimension 2, since one
there expects an effective “negative eddy viscosity” corre-
sponding to inverse energy cascade �39�. It is thus worth
reflecting on some of the reasons for the inaccuracy of the
closures in 2D, since this may help pinpoint potential short-
comings in 3D as well. First, it is known that the 2D inverse
cascade is less local than the 3D forward cascade, with most
of the flux coming from triadic interactions for a scale ratio
�=4–8 �39,40�. However, the starting point of the RFD clo-
sure, Eq. �13�, is not accurate for ��1. To get a qualitatively
reasonable alternative at � substantially larger than
1—which involves only first-order gradients—one must in-

stead use something like the “coherent subregions approxi-
mation” of �39�. On the other hand, the starting point of the
closure approximation in Sec. II, the stress transport equation
�4�, is exact in 2D just as in 3D. The failure of the closure
procedure in 2D is now due, presumably, to the effects of the
� source terms in the transport equation. Indeed, those terms
are expected to contribute as an effective “negative viscos-
ity,” primarily due to the pressure-Hessian rotating small-
scale strain matrices relative to the large-scale strain �39�.
Note that, strictly speaking, this is probably also true in 3D,
so that the matrix-exponential closures are likely to be overly
dissipative in every dimension. The main effect of the gradi-
ent stretching terms—which is a tendency to forward cas-
cade, or positive eddy viscosity—is well captured by the
matrix-exponential closure in any dimension, but the addi-
tional, more subtle physics of the remaining terms in Eq. �4�
are most likely not well represented by the simple assump-
tion of isotropy.

As has been cautioned several times in this paper, the
simplified matrix-exponential closure as written in Eq. �10�
employs the drastic approximation of entirely omitting the
pressure-strain correlation and other nonlinear scrambling
terms. But unlike eddy-viscosity based closure assumptions,
this expression can be derived directly from a relevant fluid
dynamical equation, namely the stress transport equation
�with only the production term�, and using physically moti-
vated and straightforward assumptions about Lagrangian
decorrelation and upstream isotropy. A similar result is ob-
tained using a Eulerian-Lagrangian change of variables when
the stress is expressed in terms of subgrid-scale velocity gra-
dients. Perhaps it can be expected that casting this light on
the closure problem improves our understanding of this long-
standing problem.

Finally, we remark that many transport equations for tur-
bulence moments have a basic structure similar to Eq. �4�,
including two production terms involving the velocity gradi-
ent and its transpose. Examples include higher-order mo-
ments of velocity, the spectral tensor encountered in rapid
distortion theory calculations, etc. The formal solution in
terms of matrix exponentials provides new possibilities of
calculation and insights into the underlying physics.
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