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Unified multifractal description of velocity increments statistics in
turbulence: Intermittency and skewness
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Abstract

The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned
longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are concerned with the complete probability
density function (PDF) of signed longitudinal increments at all scales. First, we focus on the symmetric part of the PDFs, taking into account the
observed departure from scale invariance induced by dissipation effects. The analysis is then extended to the asymmetric part of the PDFs, with
the specific goal to predict the skewness of the velocity derivatives. It opens the route to the complete description of all measurable quantities,
for any Reynolds number, and various experimental conditions. This description is based on a single universal parameter function D(h) and a
universal constantR∗.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the field of turbulence, a significant effort has been
devoted to the analysis of the scaling behavior of structure
functions 〈(δ`u)q

〉, where δ`u is the longitudinal velocity
increment between two points separated by a variable distance
` [1]. However, a better strategy may be to concentrate on
the probability density functions (PDFs) of δ`u, rather than on
a set of moments [2]. Accordingly, this work deals with the
description of the PDFs of δ`u, where the scale ` spans the
entire range of excited scales of motion (from the integral far
down to the dissipative scales). Experimental and numerical
observations have provided the evidence that the PDFs of
δ`u are increasingly stretched as ` decreases, while they are
almost Gaussian at the large scales where the turbulence is
stirred [1]. This feature is known as intermittency. Moreover,
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Chevillard et al. [3] have recently argued that this stretching
is largely enhanced in the near-dissipation range, leading to
extremely high fluctuation levels for the velocity gradients.
Another essential feature lies in the significant asymmetry,
or skewness, of the PDFs. This skewness to be non-zero is
heuristically connected to the vortex folding and stretching
(irreversible) process, which drains energy from the large to
the small scales, and hence plays a central role in turbulence.
From a theoretical viewpoint, a quantitative description of
the skewness is still missing. In this context, our motivation
is to present a synthetic description of the PDFs of δ`u,
which encompasses the combined effects of intermittency and
skewness. To do so, the PDF of δ`u is split into a symmetric
P+

δ`u and an asymmetric P−

δ`u part. First, the focus is on P+

δ`u ,
which also represents the PDF of the magnitude of δ`u. We
show that P+

δ`u is suitably described by a multifractal picture of
turbulence dynamics [1], which incorporates finite-Reynolds-
number effects. The analysis is then extended to P−

δ`u with
the specific goal to describe the skewness phenomenon via a
quantitative estimate of the skewness factor 〈δ`u3

〉/〈δ`u2
〉
3/2

as a function of `.
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2. Statistics of longitudinal velocity increment magnitude:
Modeling the symmetric part of the probability density
function

From a general point of view, the PDF of the longitudinal
velocity increments Pδ`u can be split into a symmetric P+

δ`u

(i.e. even) function and an asymmetric P−

δ`u (i.e. odd) function
in the following way:

Pδ`u(δ`u) = P+

δ`u(δ`u) + P−

δ`u(δ`u). (1)

The PDF of the longitudinal velocity increment magnitude
P|δ`u|(|δ`u|) = Pδ`u(|δ`u|) + Pδ`u(−|δ`u|) = 2P+

δ`u(|δ`u|)

shows that the symmetric part of the PDF of δ`u describes the
magnitude statistics. Notice that neither P+

δ`u nor P−

δ`u can be
interpreted as a PDF of a random variable.

Let us first focus on the symmetric part of the PDFs of
the longitudinal velocity increments P+

` (δ`u). In the inertial
range, the multifractal formalism [4], which a priori pertains
in the limit of infinite Reynolds number, states that velocity
is everywhere singular, the longitudinal velocity increments
at scale ` behaving locally as `h , where the Hölder exponent
h takes a value in a finite interval [hmin, hmax]. When the
Reynolds number Re = σ L/ν is finite (L is the correlation
length scale, σ =

√
〈(δLu)2〉 and ν the kinematic viscosity),

Paladin and Vulpiani [5] have argued that the dissipative scale,
that is supposed to separate the inertial and the dissipation
scaling ranges, is not unique in the presence of intermittency
and is likely to depend on h. Using these arguments, Nelkin [6]
predicted the moments of velocity gradients, i.e. 〈(∂x u)q

〉. The
phenomenological consequences on the energy power spectrum
were studied by Frisch and Vergassola [7] who proved the
existence of an intermediate dissipative range. Meneveau [8]
further investigated the behavior of the structure functions in
that transitory range. Recently, Chevillard et al. [3] revisited the
behavior of longitudinal velocity increments in the intermediate
dissipative range and showed, among other new predictions,
that the width [η−, η+] of this range of scales behaves non-
trivially with the Reynolds number, i.e. ln(η+/η−) ∼

√
lnRe.

To provide a complete statistical description of longitudinal
velocity increments statistics, one needs to model the
probability law of the stochastic variable |δ`u|. As originally
proposed by Castaing et al. [9], within the propagator approach,
the velocity increments magnitude can be considered as
the product of two independent random variables, |δ`u| =

β` × |δ| (in law), where δ is a zero-mean Gaussian random
variable of variance σ 2 and β` a positive random variable
(see [3] for details). In the inertial range, i.e. η(h) �

` � L , where η(h) is the fluctuating dissipative scale,
β`(h) = (`/L)h can be expressed as a function of the
singularity strength h that fluctuates from point to point
according to the probability law P`(h) ∼ (`/L)1−D(h). Note
that the exponent h and the parameter function D(h) gain
the mathematical status of Hölder exponent and singularity
spectrum in the inviscid limit (Re → +∞). The dissipative
scale η(h) fluctuates according to: η(h) = L(Re/R∗)−1/(h+1),
where the constant R∗ is necessary to be consistent with
experimental and numerical data [10–12]. More precisely, in
a monofractal description of velocity fluctuations (Kolmogorov
K41 theory [1]), one can show [3] that the Kolmogorov constant
cK = 〈(δ`u)2

〉/〈ε〉2/3`2/3
= (R∗/15)2/3. Actually in this

simplified monofractal framework, the average local dissipation
〈ε〉 = 15ν〈(∂x u)2

〉 = (15/R∗) × σ 3/L can be related to
the ratio Re/(Rλ)

2
= 4/R∗ (where Rλ is the Taylor based

Reynolds number). We will see in the following that the data are
compatible with the universal value R∗

= 52 (in the presence
of intermittency).

For scales ` ≤ η(h), the velocity is smooth and Taylor’s
development applies, i.e. δ`u(x) = `∂x u(x). In the multifractal
description, using a simple continuity argument with the inertial
range behavior [6] yields β`(h) = (`/L)(η(h)/L)h−1 and
P`(h) ∼ (η(h)/L)1−D(h). Then, we impose that the function
β` be continuous and differentiable at the transition, following
a strategy already used in a slightly different form in Ref. [8],
and which is inspired from an elegant interpolation formula
originally proposed by Batchelor [13], independently derived
in a field theoretic approach [14]. In this framework, a single
function β`(h,Re/R∗) covers the entire range of scale:

β`(h,Re/R∗) =

(
`
L

)h[
1 +

(
`

η(h)

)−2
](1−h)/2

, (2)

and

P`(h,Re/R∗,D) =
1

Z(`)

(
`
L

)1−D(h)[
1 +

(
`

η(h)

)−2
](D(h)−1)/2

, (3)

where Z(`) is a normalization factor such that
∫ hmax

hmin
P`(h,Re/

R∗,D)dh = 1.
From Eqs. (2) and (3), one can derive analytical predictions

for the moments of the longitudinal velocity increment
modulus, i.e. 〈|δ`u|

q
〉, the energy power spectrum (which is

linked to the Fourier transform of the second order moment [15,
16]) and the symmetric part of the longitudinal velocity
increments PDF. This approach has also been successfully
applied in the Lagrangian framework in which the PDFs are
symmetric [17,18].

As advocated in Ref. [19], the magnitude cumulant analysis
provides a more reliable alternative to the structure function
method. The relationship between the moments of |δ`u| and the
cumulants Cn(`) of ln |δ`u| reads

〈|δ`u|
p
〉 = exp

(
∞∑

n=1

Cn(`)
pn

n!

)
. (4)

In Fig. 1, we report the results of the computation of the
magnitude cumulants Cn(`) of various experimental velocity
signals. Actually we have plotted the cumulants of ln β`

instead of ln |δ`u|, so that they vanish at the correlation length
scale L (as the signature of Gaussian statistics). When both
the cumulants and ln(`/L) are renormalized by ln(Re/R∗),
all the curves collapse on a universal linear function in the



L. Chevillard et al. / Physica D 218 (2006) 77–82 79
Fig. 1. Magnitude cumulant analysis of various experimental longitudinal
velocity profiles: (�) turbulent low temperature gaseous helium jet for Rλ =

208 [20]; (◦) air Jet for Rλ = 380 [21]; (O) wind tunnel for Rλ = 2500 [22].
(a) C1(`) = 〈ln β`〉 = 〈ln |δ`u|〉−〈ln |δ|〉. (b) C2(`) = Var(ln β`) = 〈ln2 β`〉−

〈ln β`〉
2

= Var(ln |δ`u|) − Var(ln |δ|). (c) C3 = 〈ln3 β`〉 − 3〈ln2 β`〉〈ln β`〉 +

2〈ln β`〉
3. The solid curves correspond to our theoretical predictions (see text).

inertial range (when ln(`/L)/ ln(Re/R∗) & −3/4, see [3])
of slope cn . Let us notice that in this representation, for
any Reynolds number, ln(ηK /L)/ ln(Re/R∗) = −3/4 and
ln(λ/L)/ ln(Re/R∗) = −1/2, where ηK and λ are respectively
the Kolmogorov and the Taylor scales. For the first order
cumulant (Fig. 1(a)), disregarding large scale anisotropy
leading to nonuniversal effects, c1 is found very close to
1/3, consistently with K41 theory [1]. For the second order
cumulant (Fig. 1(b)), the intermittency coefficient c2 =

0.025 ± 0.003 is found universal, i.e. independent of the
Reynolds number and of the experimental configuration. For
the third one, c3 cannot be claimed to be different from
zero (especially at high Reynolds number) confirming that
the statistics of longitudinal velocity increments are likely to
be log-normal [19,23]. In the intermediate dissipative range
(i.e. −1.1 . ln(`/L)/ ln(Re/R∗) . −3/4), C1(`) crosses
over towards trivial scaling; the straight line of slope unity
observed at smaller scales means that velocity increments
become proportional to the scale (Taylor development). The
behavior of the second order cumulant is much more interesting
and has been widely studied in Ref. [3]: a non-trivial
Reynolds dependent rapid increase occurs in the intermediate
dissipative range, the larger the Reynolds number, the more
“rapid” the increase. Finally, C2(`)/ ln(Re/R∗) tends toward
a universal value in the far-dissipative range. Note that C3(`)

displays similar behavior. In Fig. 1 are also represented our
theoretical predictions obtained from the computation of the
moments of ln β` using Eqs. (2) and (3), i.e. 〈(ln β`)

n
〉 =∫ hmax

hmin
(ln β`)

nP`(h)dh. We have used the following set of
parameters: R∗

= 52 and a universal log-normal parabolic
D(h) function,

D(h) = 1 −
(h − c1)

2

2c2
, (5)

with c2 = 0.025 and c1 = 1/3 + 3c2/2 ≈ 0.37
to ensure that ζ3 = 3c1 − 9c2/2 = 1 in the inviscid
limit [1]. The integration limits hmin and hmax are respectively
the minimal and maximal values such that D(h) ≥ 0.
Using Eq. (5), we get hmin = c1 −

√
2c2 ≈ 0.15 and

hmax = c1 +
√

2c2 ≈ 0.59. The different curves so obtained
superimpose remarkably well with the corresponding data for
the first two cumulants which demonstrates that our multifractal
description accounts quantitatively well for the departure from
scaling in the intermediate dissipative range. Finite Reynolds
number effects [23], statistical convergence and lognormal
approximation can explain some discrepancies between our
theoretical prediction and the behavior of the third order
cumulant.

3. Multifractal prediction of the skewness of longitudinal
velocity increments

Let us now investigate the statistics of signed longitudinal
velocity increments through the two estimators: (i) the skew-
ness S(`) = −〈(δ`u)3

〉/〈(δ`u)2
〉
3/2 and (ii) the asymmetry fac-

tor A(`) = −〈(δ`u)3
〉/〈|δ`u|

3
〉. The experimental estimates of

S(`) and A(`) are shown in Fig. 2 in a semi-logarithmic rep-
resentation. Interestingly, A(`) displays a plateau at about 0.14
in the inertial range, whereas the skewness behaves approxi-
matively as a power law. In the intermediate dissipative range,
both estimators undergo a rapid acceleration, very much like
what was observed for C2(`) in Fig. 1(b). From a theoretical
point of view, the third order structure function is a solution of
the Kármán–Howarth–Kolmogorov equation [24]

〈(δ`u)3
〉 = −

4
5
〈ε〉` + 6ν

d〈(δ`u)2
〉

d`
. (6)

This equation allows us to compute the third order structure
function when the second order one and the average local
dissipation are known. A similar approach has been performed
by Qian in Ref. [25] without taking into account the
intermittency corrections.

We have superimposed in Fig. 2 our theoretical predictions
to the experimental data for S(`) and A(`). Indeed, from
Eqs. (2) and (3), one can compute any moment of the magnitude
of velocity increments 〈|δ`u|

n
〉 and velocity gradient 〈|∂x u|

n
〉.

In particular, we get
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Fig. 2. Asymmetry factor A(`) and skewness S(`) estimated from various
experimental velocity profiles. The symbols have the same meaning as in Fig. 1.
The solid curves correspond to our theoretical predictions (see text).

〈ε〉 = 15ν〈(∂x u)2
〉 =

σ 3

L

15
R∗

×
R∗

Re

1
Z(0)

∫ hmax

hmin

(
η(h)

L

)2(h−1)+1−D(h)

dh, (7)

where Z(0) is the limit when ` → 0 of the normalization factor
Z(`) appearing in Eq. (3). Then, by inserting our description
of the second order structure function (Eq. (4) for p = 2)
together with the prediction of the average local dissipation
(Eq. (7)) in Eq. (6), we get the third order moment of velocity
increments 〈(δ`u)3

〉 at any scale and Reynolds number. As
shown in Fig. 2, the agreement is very good for distances in
between the Kolmogorov and Taylor scales ηK ≤ ` ≤ λ

(without any arbitrary shifts) when using the same parameter
function D(h) and R∗ as in our former magnitude cumulant
analysis.

Furthermore, we can derive that, when neglecting intermit-
tency corrections and setting the viscosity to zero in Eq. (6), we
get A(`) = 3

√
2π/R∗

≈ 0.145 and S(`) = 12/R∗
≈ 0.23, in

perfect agreement with experimental findings. Some discrep-
ancies occur for ` ≥ λ, especially for Modane’s longitudinal
velocity profile, because (i) of the lack of statistics and (ii) at
these scales, one has to take into account in Eq. (6) fluctuations
of the injection rate of energy [26,27]. In the intermediate and
far dissipative range, our formalism predicts a universal plateau
and a Reynolds number dependence for respectively the asym-
metry factor and the skewness of derivatives, in consistency
with Nelkin’s predictions [6] (see Table A.1 for precise values).
We derive in Appendix A the multifractal prediction for the
third order moment of the velocity gradient 〈(∂x u)3

〉. Exper-
imentally speaking, measuring gradients is still controversial
mainly because hot wire probe sizes are in general of the or-
der of the Kolmogorov scale [28–31]. We hope that further ex-
perimental studies will provide a definite test of the validity of
our predictions. These preliminary tests are nevertheless very
satisfactory.
4. Modeling the asymmetric part of the PDFS

Let us finally elaborate a formalism to describe the PDF
of the signed longitudinal velocity increments. To do so, we
suggest to model the (signed) longitudinal velocity increments
in the following way: δ`u = β`×∆` (in law), where the positive
random variable β` is unchanged but ∆` is now an independent
zero mean random variable of variance σ 2, whose probability
P∆`

a priori depends on the scale `. It follows that

Pδ`u(δ`u) =

∫ hmax

hmin

dh

β`(h)
P`(h)P∆`

(
δ`u

β`

)
. (8)

According to Edgeworth’s development [32], any PDF can be
decomposed over a “basis” of the successive derivatives of a
Gaussian function:

P∆`
(x) =

+∞∑
n=0

λn(`)
dn

dxn

(
1

√
2πσ 2

e−x2/2σ 2
)

. (9)

The symmetric part (even terms) of the PDF of ∆`, i.e. P+

∆`
,

is well described by a Gaussian δ noise (as previously stated),
which means that λ0(`) = 1 and λ2n(`) = 0 for n ≥ 1
and every scale `. Furthermore, it can be demonstrated that
whatever σ 2 is, 〈(δ`u)3

〉 = −6λ3(`)〈(β`)
3
〉. Hence, λ3(`)

is fully determined by the Kármán–Howarth–Kolmogorov
(Eq. (6)). As Eq. (6) is the only available constraint on λn ,
it is quite natural (as a first approximation) to restrict the
expansion to λ3: λ2n+1(`) = 0 for n ≥ 2 and every scale `.
Additional statistical equations involving odd moments of δ`u
would be needed to give the next λ2n+1(`). This would require
further modeling (primarily to get ride of pressure terms),
which is outside the scope of the present work. Unfortunately,
the previous crude approximation for the odd terms of (9) leads
to severe pathologies, such as negative probability for rare large
∆` events and is not consistent with higher order statistics
such as hyperskewness 〈(δ`u)5

〉/〈(δ`u)2
〉
5/2 (data not shown).

Nevertheless, since the third order structure function does not
depend on the precise variance σ 2 entering in the third order
derivative of the Gaussian PDF, we propose to renormalize the
variance σ 2 of the retained odd term (n = 3): σ̃ 2

= 0.9σ 2.
We thus obtain P∆`

(∆`) = P+

∆`
(∆`) + P−

∆`
(∆`), where the

asymmetric part of the PDF of ∆` is modeled as

P−

∆`
(x) = λ3(`)

d3

dx3

(
1

√
2πσ̃ 2

e−x2/2σ̃ 2
)

. (10)

The PDFs of longitudinal velocity increments so obtained
from Eq. (8) are shown in Fig. 3 for several scales spanning the
inertial and intermediate dissipative ranges, and compared to
the experimental ones for both air jet Fig. 3(a)–(c) and Modane
3(d)–(f). We see a continuous deformation across scales, from
Gaussian at the correlation length scale (L) to exponential-like
distributions in the inertial range and ultimately to stretched-
exponential when dissipation starts acting. This PDF shape
evolution is the signature of intermittency and is remarkably
reproduced by our formalism when using the same quadratic
parameter D(h) function and constant R∗

= 52 as in
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Fig. 3. PDFs of signed longitudinal velocity increments of air jet [21]
(a)–(c) and Modane [22] (d)–(f) velocity signals for various scales. (a) and
(d): lnP`(δ`u). (b) and (e): (δ`u)3P`(δ`u). (c) and (f): (δ`u)4P`(δ`u).
Represented scales (from top to bottom): ln(`/L) = −6.0069, −5.3137,
−4.6206, −3.9274, −3.2343, −2.5411, −1.8480, 0.9246 for the air jet data
and ln(`/L) = −6.4137, −5.6028, −4.6645, −3.6411, −2.7501, −1.8598,
−0.8685, 0.1226 for the Modane data. All curves are arbitrarily vertically
shifted for the sake of clarity. The solid curves correspond to our theoretical
predictions (see text).

Figs. 1 and 2. This agreement is emphasized in Fig. 3(b), (d) and
3(c), (f) where respectively (δ`u)3P`(δ`u) and (δ`u)4P`(δ`u)

are represented as a quantitative test of the relevance of our
formalism to account for the asymmetrical PDF tails.

5. Conclusion

To conclude, we have shown that the evolution across scales
of the signed longitudinal velocity increments statistics, from
the inertial far down the dissipative ranges, depends only on a
universal parameter function D(h) and a universal constant R∗

that must be seen as a multifractal version of the Kolmogorov
constant. In particular, neglecting the intermittency corrections,
we provide an enhanced phenomenology of turbulence in
deriving the value of the skewness S(`) = 12/R∗

≈

0.23 in the inertial range. We have further shown that
choosing a quadratic form for D(h) (i.e. the hallmark of an
underlying lognormal cascading process) provides a very good
quantitative description of the longitudinal velocity increments
PDFs measured in several flows, in different geometries
and for different Reynolds numbers. This study proposes a
new formalism, relying on Edgeworth’s development, which
opens the route to the modeling of velocity increment PDF.
New experimental investigations of velocity gradients statistics
would be welcomed as an additional and complementary test of
our theoretical multifractal approach.
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Appendix A. Multifractal prediction of the skewness of
derivatives

In an infinite domain, or in a finite domain with periodic
boundary conditions, a Taylor’s development of the second
order structure function leads to

〈(δ`u)2
〉 =

〈(
4∑

n=1

∂n
x u

`n

n!
+ o(`4)

)2〉

= `2
〈(∂x u)2

〉 −
`4

12
〈(∂2

x u)2
〉 + o(`4). (A.1)

Inserting the development pointed by Eq. (A.1) into the
Kármán–Howarth–Kolmogorov equation (Eq. (6)) leads to

〈(∂x u)3
〉 = −2ν〈(∂2

x u)2
〉. (A.2)

This classical result can be found in Ref. [24]. One may
wonder whether our description of the second order structure
function (Eqs. (2) and (3)) is consistent with this development
(Eq. (A.1)). In particular, the pre-supposed continuous and dif-
ferentiable transition between the inertial and the dissipative
range of scale inspired from the work of Batchelor [13] should
give a leading term proportional to `3 once inserted in Eq. (6).
This property constrains seriously the possible form of the tran-
sition. The transition form used here benefits from such a prop-
erty. We get, with the help of symbolic calculation software,

〈(∂x u)3
〉 = −

6νσ 2

L4

[
2

Z(0)

∫ hmax

hmin

[2h − 1 −D(h)]

×

(
η(h)

L

)2(h−2)+1−D(h)

dh + F
]

, (A.3)

where F is a negligible additive term, coming from the Taylor’s
development of the normalization factor Z(`), and given by

F = −
1

Z(0)2

∫ hmax

hmin

[1 −D(h)]
(

η(h)

L

)−1−D(h)

dh

×

∫ hmax

hmin

(
η(h)

L

)2h−1−D(h)

dh. (A.4)

Eq. (A.3) can be seen as the multifractal prediction of
the third order moment of the velocity derivatives, using the
same transition interpolation form as in Eqs. (2) and (3).
This is also a prediction for the second order moment of
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Table A.1
Theoretical predictions of the skewnesses and asymmetric factors of velocity
derivatives (Eq. (A.3)) for the three different experiment longitudinal velocity
data sets presented in Figs. 1 and 2

Rλ S(0) A(0)

208 0.35 0.17
380 0.38 0.17

2500 0.50 0.17

We have used R∗
= 52 and a parabolic function for D(h) (Eq. (5)) with

parameters c2 = 0.025 and c1 = 1/3 + 3c2/2.

the second order derivative of velocity via Eq. (A.2). We
gather in Table A.1 the theoretical values for the skewness
S(0) = 〈(∂x u)3

〉/〈(∂x u)2
〉
3/2 and the asymmetric factor

A(0) = 〈(∂x u)3
〉/〈(∂x u)2

〉
3/2, i.e. the limit when ` → 0 of

our theoretical predictions for the skewness and asymmetric
factor of velocity increments presented in Fig. 2. A specifically
designed experiment aimed at measuring the fluctuations of
longitudinal velocity increments for scale much smaller than
the Kolmogorov length scale will provide a decisive test of the
validity of these theoretical predictions.
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