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The impacts of Information and Communication Technologies

• Between 2.1% and 3.9% of 
worldwide greenhouse gaz emissions 
in 2020 [Freitag2021] 

• Emissions increased by ~ 5.5% every 
year (2015 to 2019) [ShiftProject2021]

Global GHG emissions of modeled pathways from IPCC 
2023 Sixth Assessment Report.

GHG: GreenHouse Gaz , IPCC: Intergovernmental Panel on Climate Change, 
ICT: Information and Communication Technologies

• More than climate change, ICTs can 
contribute to 
• Freshwater change 
• Rare metal depletion 
• Primary energy consumption 

[Benqassem2021]
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Treaties and regulations to reduce emissions

• Paris Agreement (2015) 
• European Green Deal  
• Corporate Sustainability Reporting Directive (January 2023)  
• Energy Efficiency Directives 

Need for the companies to assess the footprint 
of their digital services 

Need for policy makers of assessment 
standards
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Computational cost of Machine Learning
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Evolutions in Machine Learning Model and their training, as the maximum value up to the 
given year. [EpochAI2024]

ICT: Information and Communication Technologies, GPU: Graphic Processing Units

Stable Diffusion (2022): 256 A100 GPUs for 25 days 

• Artificial Intelligence (AI) 
• Tasks that typically require 

human intelligence 

• Machine Learning (ML) 
• AI that automatically learns 

from a set of data 

• Deep Learning (DL) 
• ML that relies on deep neural 

network models 



PhD Defense - Mathilde Jay - 15 Oct. 2024 7

The growing impact of Machine Learning

Machine Learning is 
one of main drivers of 
increase of electricity 

demand in the 
European Union 

between 2023 and 2026  
[IEA2024]

Estimated electricity demand from traditional data centres, dedicated AI data centres and 
cryptocurrencies in 2022 and 2026. [IEA2024] 

IEA: International Energy Agency

~ 100 TWh for 
dedicated AI 
datacenter 

Need to assess footprint 
of machine learning 

services
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Networks

End-User Devices

8

Machine Learning services and materiality

Estimates for global ICT’s carbon footprint in 2020 according to 3 
studies [Freitag2021]

Accelerators

HPC: High Performance Computing

Supercomputers in 
HPC Data Centers

Edge Data 
Centers
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The multiple facets of an ML service

CAPEX OPEX

Operational impacts (OPEX) Embodied impacts from 
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Research questions & objectives

How can we accurately report impacts 
of ML services?  

How can those impacts be reduced? 

Can decentralizing computations 
reduce the impacts?

Design a methodology to assess the 
impacts of training a ML model

Show its versatility by applying it on 
various models and infrastructures

Provide a better understanding of the 
impacts of ML training infrastructures 

Compare a Supercomputer and an Edge 
node on model training
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Existing literature on ML service impact assessments

NLP: Natural Language Processing

Alert on the 
carbon 
footprint of 
NLP training 

Same on other 
tasks 

Federated 
Learning/ML at 
the Edge 

Addition of the 
embodied 
footprint 

ML deployment Our 
methodology

[Strubell2019]
[Henderson2020, 
Patterson2020, 
Wu2022] 

[Savazzi2021, 
Qiu2024, 
Patterson2024] 

[Ligozat2022, 
Dodge2022, 
Luccioni2023] 

[Patterson2022,
Wu2022, 
Luccioni2023]

Electricity 
consumption
Carbon emission

Primary energy

Metal and mineral 
scarcity
OPEX

CAPEX

Supercomputer

Edge

Training

Deployement

Impact 
Indicators

Hardware life 
cycle

ML system 
scope

ML life cycle
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Methodology

• Life Cycle Assessment (LCA) 
• ISO standards (14040 and 14044) 
• Standards from the International 

Telecommunication Union  
• Multi-criteria & multi phases 

• We apply Attributional LCA to ML 
training
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Methodology

• Life Cycle Assessment (LCA) 
• ISO standards (14040 and 14044) 
• Standards from the International 

Telecommunication Union   
• Multi-criteria & multi phases 

• We apply Attributional LCA to ML 
training 

• Scope
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Methodology

• Life Cycle Assessment (LCA) 
• ISO standards (14040 and 14044) 
• Standards from the International 

Telecommunication Union   
• Multi-criteria & multi phases 

• We apply Attributional LCA to ML 
training 

• Scope  
• The CAPEX and OPEX impacts of the ML 

compute nodes during the training phase

Train the Model on the Dataset 
until the Quality Target is 

reached

• Functional Unit
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Methodology

• Life Cycle Assessment (LCA) 
• ISO standards (14040 and 14044) 
• Standards from the International 

Telecommunication Union  
• Multi-criteria & multi phases 

• We apply Attributional LCA to ML 
training 

• Scope  
• The CAPEX and OPEX impacts of the ML 

compute nodes during the training phase 

• Functional Unit 
• Train the model on the dataset until 

the quality target is reached 

• Impacts 
• Primary Energy (PE) measured in 

mega joule (MJ) 
• Global Warming Potential (GWP) 

measured in equivalent CO2 emission 
(kg.CO2.eq) 

• Abiotic Depletion Potential (ADP) 
of minerals and metals measured in 
equivalent antimony (kg.Sb.eq)
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Methodology

• Public databases 

Embodied phase (CAPEX) 

• Embodied impacts of each 
component of the ML compute 
node 

• Time-based allocation

Evaluated 
Metrics

How • LCA databases

Reproducibility

LCA: Life Cycle Assessment 

• Repeatability of experiments 
• Fixed and controlled 

environments

Operational phase (OPEX)

• Power measurement 
• Of each components 
• With a frequency high enough 

to capture evolution

• Software-based power meters  
• Electricity impact factors
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Infrastructures 

10 cm

Apollo Node  
From the 
Champollion 
cluster

HPC
Nvidia Jetson 
AGX XavierEDGE

47 cm

85 cm

HPC: High Performance Computing
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Infrastructures 
HPC: APOLLO EDGE: JETSON

Node model Apollo 6500 Gen10 Nvidia Jetson AGX Xavier

FL32 performance (FLOP/S) 125 * 1012 1.41 * 1012

GPU model NVIDIA A100-SXM-80GB NVIDIA GV10B, Volta architecture

Number of GPU per node 8 1

GPU TDP (W) 400

CPU model AMD EPYC 7763, 64 cores Nvidia Carmel (Carmel), aarch64, 8 
cores

Number of CPU per node 2 1

CPU TDP (W) 280

Memory 1 TB 32 GB

Installation year 2022 2023

Available thought HPE local network - slurm Grid'5000 Estats cluster - OAR

Power meter HPE iLO 5, RAPL, NVML Jetson-stats

Node TDP (W) 3760 (GPUs + CPUs) 30

Energy efficiency (FLOP/S/W) 3.3 * 1010 2.3 * 1010

GPU: Graphic Processing Unit, CPU: Central Processing Unit, TDP: Thermal Design Power
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Measuring the electricity consumption of a node

• Power meters 
• Outside of node 
• Processor power management libraries 

• Software-based power meters  
• Proven to be accurate 
• Available on most nodes 

• Which one is better for our use case?

RAPL: Running Average Power Limit, NVML: Nvidia Management Library

Example of a GPU node

Node:  
Power meter

CPU: RAPL

GPU: NVML

RAM:  
RAPL
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A quantitative comparison

• Compared software-based power meters  
• Evaluated them against external power meters and found a significant and non-

constant offset  

Comparison of power meters on 3 applications of the NAS benchmark  
on the Gemini cluster of Grid’5000.
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 And a qualitative comparison 

• Not suitable for our use case because of lack of 
• Configurability (frequency) for node with GPUs 
• Versatility: power management librairies depend on infrastructures

Mathilde Jay, Vladimir Ostapenco, Laurent Lefèvre, Denis Trystram, Anne-Cécile Orgerie, Benjamin Fichel. An experimental comparison of 
software-based power meters: focus on CPU and GPU. CCGrid 2023 - 23rd IEEE/ACM international symposium on cluster, cloud and internet 
computing, May 2023, Bangalore, India 

49 citations

2578 download

Open Research Objects

Reusable/Research Objects Reviewed
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A software-based power meter for Apollo and Jetson

ALUMET 

• Time series of GPU consumption as well 
as CPU and RAM 
• Configurable acquisition frequency 
• Adaptive to edge and HPC architectures 
• Modularity (e.g. new data sources can 

be added by plugins) 
• Lightweight (no significant slowdown of 

HPC benchmarks for RAPL+CSV)

alumet.dev 
By Guillaume Raffin, BULL SAS, CNRS, 

INRIA, Grenoble INP-UGA. 
Licensed under the EUPL-1.2 or later.

~ 12 300 lines
Written in Rust
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Estimating the embodied impacts with Boavizta

x 44 x 10 x 39

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

GWP 
(kg CO2eq)

ADP
(kg Sbeq) PE (MJ)

Jetson 87 0.03 1 254

Apollo 3 858 0.28 49 660

The embodied impact of one 
Apollo node is higher than 
the embodied impact of one 
Jetson node.

Total embodied or CAPEX impact of Jetson and 
Apollo

Datavizta API: Multi-indicators/Multi-phase 
• Aggregates data from various databases 
• ADEME carbon database 
• Manufacturer product carbon footprints  
• Semiconductor LCA 

• For GPUs, need specifications 
• Die size 
• Printed Circuit Board area 
• Memory density and capacity
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GWP (kg CO2eq) ADP (kg Sbeq) PE (MJ)
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Memory dominates the embodied impacts

Share of each compute node component in the total embodied 
impacts.

EDGE: JETSON

HPC: APOLLO

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy
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MLPerf Benchmark

Area Benchmark Model Dataset Quality Target

Vision Image classification ResNet-50 v1.5 ImageNet 75.90% classification

Vision Image segmentation 3D U-Net KiTS19 0.908 Mean DICE score

Vision Object detection Mask R-CNN COCO 0.377 Box min AP and 
0.339 Mask min AP

Language Speech recognition RNN-T LibriSpeech 0.058 Word Error Rate

Language Natural Language 
Processing BERT-large Wikipedia 2020/01/01 0.72 Mask-LM accuracy

Commerce Recommendation DLRM 1TB Click Logs 0.8025 AUC

Z

Z

Z
Z

HPC: APOLLO EDGE: JETSON

• Installation of software 
• Memory limitations 
• Long executions

Focus on ResNet-50

• Code provided by MLPerf  
• Hyper-parameter search 

done by HPE
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Power profiles can vary significantly 

Power profile of RNN-T FUPower profile of ResNet-50 FU
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TDP = 3760 W

TDP: Thermal Design Power, FU: Functional unit

HPC: APOLLO

Power profile = 
Power consumed 
by the 8 GPUs and 
the 2 CPUs as 
measured by NVML 
and RAPL.

1 color = 1 
repetition of 
the training
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Power consumption can be higher than the TDP 

Power profile of ResNet-50 FU.

TDP = 30 W

EDGE: JETSON

TDP: Thermal Design Power, FU: Functional unit
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Most energy can be spent on the very last quality point

HPC: APOLLO

FU: Functional unit
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The ResNet FU impacts are shared between phases

Share of usage and embodied phase in the total impacts of the ResNet-50 * 
FU on the Jetson node

EDGE: JETSON

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

IFU = IFelec * EFU + IEmbodied,FU

IEmbodied,FU = TFU

Tnode
* IEmbodied,Node

I

T

: Environmental Impact (expressed in kg 
CO2 eq, kg Seb, and MJ)  

: Use time of the equipment

IFelec : Electricity mix Impact Factor 

E : Electricity consumption 
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Apollo outperforms Jetson on the performance and environmental criteria

Train ResNet-50 on ImageNet until it 
achieves a 75.90% classification score

ResNet-50 FU:

Train ResNet-50 on ImageNet until it 
achieves a 55% classification score

55% 75.90%

ResNet-50* FU:

Speed

Accuracy

Electric Efficiency

GWP Efficiency

ADP Efficiency

PE Efficiency

Node (FU)
Apollo (ResNet-50*)
Apollo (ResNet-50)
Jetson (ResNet-50*)

Multi-criteria comparison including performance metrics and 
environmental metrics

GWP: Globale Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy
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Comparing infrastructures requires more criteria

• Jetson was designed for the edge and its 
associated constraints 
• Price 
• Latency 

• Edge computing can be an opportunity 
for constraining computations

Speed

Accuracy

Electric Efficiency

GWP Efficiency

ADP EfficiencyPE Efficiency

Latency

Cheapness

Accessibility

Node (FU)
Apollo (ResNet-50*)
Jetson (ResNet-50*)

Multi-criteria comparison including performance, environmental, 
and qualitative metrics

Submitted & in review.
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Advantages of our approach

• Versatility 
• Can do both operational and embodied assessments on most infrastructures 

• Reproducibility 
• Rely on open databases and open source measuring tool 
• Code is available and reusable 

• Insightfulness  
• Power profile, accuracy/power tradeoff, details of component embodied footprint provide a 

better understanding and the possibility to find actionable reduction plans 

• Enables a fair comparison between infrastructures and ML models
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Limits

• Accuracy 
• Lack and uncertainty of LCA databases 
• Offset between software-based and external power meters not included 

• Scope 2 and 3 outside of assessment 

• Changes in learning 
• Focus on centralized training when other training approach are developed such as Federated 

Learning 
• Requires replication when trainings can last for days 

• Other phases of ML life cycle 
• Focus on the training phase, omitting deployment and data collection

LCA: Life Cycle Assessment 
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Estimating the environmental impacts of a Generative AI service

• Application: Stable Diffusion 
• Open source 
• Deployed online as a service 

• Combinaison of  
• Measurements (Training, Inference) 
• Allocations from LCA databases 

• Training to long to replicate 
• Measurement of a fraction of training 
• Linear regression from number of steps
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Each phase of the ML and hardware life cycles is significant

• The ADP impact is 
dominated by the 
embodied phase of 
hardware. 

• The GWP and PE impacts 
come from the operational 
phase. 

• The deployment causes 
most of the impacts.

ADP(kg.Sb.eq) GWP(kg.CO².eq) PE(MJ)
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Service phase - Infrastructure

Data Transfer - Network

Inference - Data Center
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Share (in percentage) of the life cycle phases of each digital infrastructure in the total impacts of the 
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Conclusion

• Impacts of Machine Learning are 
booming when they should be reduced 
• Need of reporting and controlling 

those impacts 

• Methodology: LCA for training  
• 3 LCA impact indicators 
• Operational, ressource extraction, 

manufacturing & distribution phases  
• Insightfulness, Versatility, Reproducibility 

• Multi-criteria comparison of an Edge 
Device and a Supercomputer 

• A significant offset between power 
meters 

• Quality target/energy tradeoff 

• For bigger models, electricity 
consumption can be estimated 

• Scope can be extended to other ML 
life cycle phases
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Perspectives

• Increasing the scope 
• Full node, storage, networks, cooling 
• Data collection 

• Supercomputer-Edge scenario  
• Including network 

• Consequential LCA 
• Encompasses indirect effects 
• But more complex to model 

• Assessing the sustainability of an ML model 
• EU AI act: security, transparency, ethics 



Appendix



A versatile methodology for assessing 
the electricity consumption and 

environmental footprint of  
machine learning training:  

from supercomputers to edge devices



Context
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Machine Learning and its materiality
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Evolutions in Machine Learning specialized hardware 
(GPU, TPU) metrics, as the maximum value up to the 

given year [Hobbhahn2023].

Exponential increase in the electricity 
consumption of training Machine Learning 
models

TDP (Thermal Design Power): A hardware 
characteristic provided by the manufacturer that 
corresponds to the maximum amount of heat 
that can be generated by a component under a 
steady workload measured in watts.  
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Machine Learning services and its materiality

HPC data center Edge data center Edge DevicesNetworksNetworks
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Machine Learning and its materiality
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Figure: Evolutions in Machine Learning specialized hardware (GPU, TPU) metrics, as the maximum 
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Machine Learning Boom

Training computing (FLOP): number of 
mathematical operations (+,-,*,/) 
performed to train the model.
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Evolutions in Machine Learning Model and their training, as the 
maximum value up to the given year. [EpochAI2024]

Parameters: Variables that are learned 
from the data during the training process. 
The number of parameters is a 
representation of the size of the model.

Training Dataset: Collection of data that 
the ML model is trained on.
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Machine Learning Boom

Parameters: Variables that are learned 
from the data during the training process. 
The number of parameters is a 
representation of the size of the model.

Training Dataset: Collection of data that 
the ML model is trained on.
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Model

Pembroke 
Welsh Corgi 
with Cowboy 
Hat
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Quick definition of ML

Data ModelObjective/Task Learning

Pembroke Welsh 
Corgi with Cowboy 
Hat

Generating 
image from 
text
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Machine Learning and its materiality

Example of a GPU node

Example of a supercomputer in a Data Center

CPU 
Central Processing Units

GPU 
Graphic Processing Units

RAM 
Random Access Memory  

+ 

SSD 
Solid State Drive



CCGRID
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Comparing tools

AL: ALUMET, CT: Carbon Tracker, CC: Code Carbon,  
EIT: Expriment Impact Tracker, GA: Green Algorithm, MCI: ML CO2 Impact 
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Per component consumption
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Electricity
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Infrastructures 

HPC: APOLLO EDGE: JETSON

Node model Apollo 6500 Gen10 Nvidia Jetson AGX Xavier

Number of nodes 20 12

GPU model NVIDIA A100-SXM-80GB NVIDIA GV10B, Volta architecture

Number of GPU per node 8 1

GPU TDP (W) 400

CPU model AMD EPYC 7763 64-Core Processor Nvidia Carmel (Carmel), aarch64, 8 cores

Number of CPU per node 2 1

CPU TDP (W) 280

Node TDP (W) 3 760 30

Memory 1 TB 32 GB

Switch model Mellanox HDR Infiniband

Number of switch 8

Switch power consumption (W) 375

Installation year 2022 2023

Available thought HPE local network - slurm Grid'5000 Estats cluster - OAR

Power meter HPE iLO 5 + RAPL + NVML Jetson-stats
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Machine Learning Framework for Distributed Platforms

Model Apollo Jetson

UNet MXNet / Horovod

RNN-T PyTorch

ResNet MXNet / Horovod PyTorch

MaskRCNN PyTorch

BERT PyTorch

DLRM HugeCTR
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Power profile of each FU
BERT FU
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Accuracy/Energy tradeoff on Apollo
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Performances of each FU
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Characteristics of the MLPerf models and datasets
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Jetson: Incoherence of electricity measurements

Comparing power meter and software-based power meter on 
Jetson (development kit, 16 Go)

Power profile of ResNet-50 FU on Jetson.
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Apollo: Incoherence of electricity measurements
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Increasing the number of nodes can reduce the training time but can 
also increase the energy consumed 
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Embodied
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Estimating the embodied impact

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Of GPUs
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Estimating the embodied impact

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Of the CPUs & RAM: Directly from database

Of other components:
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Estimating the impacts of the electricity consumption 

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

In this presentation, PUE = 1
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Allocation on the ResNet-50 FU

Hypothesis 
• AUR = Active Utilization Rate : 50% 
• Lifetime : 4 years

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy



Total
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Allocation on the ResNet-50 and ResNet-50* FU

Share of usage and embodied phase in the total impacts of the 
ResNet-50 * FU on the Jetson node

HPC: APOLLO

EDGE: JETSON

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Usage Embodied

GWP (kg CO2eq) 1.60E-01 3.43E-01

ADP (kg Sbeq) 9.59E-08 1.07E-04

PE (MJ) 2.41E+01 4.89E+00

Usage Embodied

GWP (kg CO2eq) 1.31E-01 8.30E-02

ADP (kg Sbeq) 7.80E-08 6.00E-06

PE (MJ) 1.96E+01 1.07E+00
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FU impacts on Apollo

GWP (kg CO2eq) 2.14E-01 2.30E-01 2.98E-01 2.62E-01 1.51E-01 2.28E-02

ADP (kg Sbeq) 6.08E-06 6.55E-06 9.00E-06 7.47E-06 4.30E-06 8.59E-07

PE (MJ) 2.07E+01 2.22E+01 2.79E+01 2.54E+01 1.46E+01 1.81E+00
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Summary of ResNet-50 and ResNet-50* FU performances 

Jetson (ResNet-50*) Apollo (ResNet-50) Apollo (ResNet-50*) Min Max

Electricity c (kWh) 1.974036108 1.605368 0.5723368444 3 0

Duration (hours) 88.86541726 0.4903240667 0.1876559211 100 0

Accuracy 0.55 0.759 0.55 0 1

GWP (kg CO2eq) 5.03E-01 2.14E-01 7.83E-02 0.70 0

ADP (kg Sbeq) 1.07E-04 6.08E-06 2.33E-06 0.00 0

PE (MJ) 2.90E+01 2.07E+01 7.39E+00 50.00 0

Personnalisation 0.9 0.3 0.3 0 1

Latency 0.9 0 0 0 1

Price 1 0.001 0.001 0 1

Accessibility 0.7 0.1 0.1 0 1



Stable Diffusion
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Cluster Champollion Estats Gemini Sirius
Node model Apollo 6500 Gen10 Nvidia Jetson AGX Xavier Nvidia DGX-1 Nvidia DGX A100

Number of nodes 20 12 2 1

GPU model NVIDIA A100-SXM-80GB NVIDIA GV10B, Volta 
architecture

Nvidia Tesla V100-
SXM2-32GB Nvidia A100-SXM4-40GB

Number of GPU per 
node 8 1 8 8

GPU TDP (W) 400 400 280

CPU model AMD EPYC 7763 64-Core 
Processor

Nvidia Carmel (Carmel), 
aarch64, 8 cores

Intel Xeon E5-2698 v4 
(Broadwell, 64 cores/CPU)

AMD EPYC 7742 (Zen 2, 64 
cores/CPU)

Number of CPU per 
node 2 1 2 2

CPU TDP (W) 280 135 225
Memory 1 TB 32 GB 1 TB 512 GiB

Switch model Mellanox HDR Infiniband
Number of switch 8

Switch power 
consumption (W) 375

Installation year 2022 2023 2019 2021

Available thought HPE local network - slurm Grid'5000 - OAR Grid'5000 - OAR Grid'5000 - OAR

Power meter HPE iLO 5 + RAPL + NVML Jetson-stats RAPL/NVML + OmegaWatt+ 
BMC

RAPL/NVML + OmegaWatt+ 
BMC
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Linear regression from smaller number of steps
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Estimation the electricity consumption of training Stable Diffusion

For 256x256 images

For 512x512 images
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Impact of the energy measurement method

Estimation of the electricity cost of training Stable Diffusion with different measurement method 
PM: Power Meter, TDP: Thermal Design Power
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Training Stable Diffusion on the Gemini cluster

Training Stable Diffusion on the Sirius cluster
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Training Stable Diffusion on the Gemini clusterTraining Stable Diffusion on the Sirius cluster



Reproducibility
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Reproducibility

• Fixed environment 
• One node, and always the same 

• Controlled environment 
• Fixed frequencies 
• Fixed power cap or mode 
• Minimalist software stack 
• Empty cache before each experiments 

• Make sure the initial conditions are 
the same 
• Idle period between experiments

• Breach to reproducibility 
• Temperature in the Jetson cluster 

varies when I used all of them and 
that influenced the power draw 
• Didn’t fix the set of nodes when 

working on Champollion at first, thus 
we noticed a big difference in energy 
consumption


