THÈSE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'inform Spécialité : Informatique Unité de recherche : Laboratoire d'Informatique de Grenoble

Une méthodologie polyvalente pour évaluer la consommat électrique et l'empreinte environnementale de l'entraînemen l'apprentissage machine : des supercalculateurs aux équipem embarqués

A Versatile Methodology for Assessing the Electricity Consumption and Environmental Footprint of Machine Learning Training: from Supercomputers to Edge Devices

Présentée par :

Mathilde JAY

Direction de thèse : Denis TRYSTRAM

PROFESSEUR DES UNIVERSITES, GRENOBLE INP - UGA Laurent LEFEVRE CHARGE DE RECHERCHE HDR, CENTRE INRIA DE LYON Directeur de thèse

Rapporteurs : AURELIE BUGEAU

PROFESSEURE DES UNIVERSITES, UNIVERSITE DE BORDEAUX ANNE-LAURE LIGOZAT PROFESSEURE DES UNIVERSITES, ENSIIE

hèse soutenue publiquement le **15 octobre 2024**, devant le jury composé de :

DENIS TRYSTRAM,	Directeur de thèse
PROFESSEUR DES UNIVERSITES, GRENOBLE INP - UGA	
LAURENT LEFEVRE,	Co-directeur de thès
CHARGE DE RECHERCHE HDR, CENTRE INRIA DE LYON	
AURELIE BUGEAU,	Rapporteure
PROFESSEURE DES UNIVERSITES, UNIVERSITE DE BORDEAUX	
ANNE-LAURE LIGOZAT,	Rapporteure
PROFESSEURE DES UNIVERSITES, ENSIIE	
EMMA STRUBELL,	Examinatrice
ASSISTANT PROFESSOR, CARNEGIE MELLON UNIVERSITY	
SYLVAIN BOUVERET,	Examinateur
MAITRE DE CONFERENCES, GRENOBLE INP - UGA	
CLAUDE LEPAPE,	Examinateur
INGENIEUR DE RECHERCHE, SCHNEIDER ELECTRIC	
CLAUDIA RONCANCIO,	Examinatrice
PROFESSEURE DES UNIVERSITES, GRENOBLE INP - UGA	
ités :	
BRUNO MONNET	

NGENIEUR, Hewlett Packard Enterprise

A Versatile Methodology for Assessing the Electricity Consumption and Environmental Footprint of Machine Learning Training: from Supercomputers to Edge Devices

PhD Defense of Mathilde JAY

Supervised by Prof. Denis Trystram and Dr. Laurent Lefèvre Teams: DataMove (LIG), Avalon (LIP), Edge Intelligence (MIAI) October 15th, 2024

PhD Defense - Mathilde Jay - 15 Oct. 2024

Estimation from environmental databases

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

The impacts of Information and Communication Technologies

- Between 2.1% and 3.9% of worldwide greenhouse gaz emissions in 2020 [Freitag2021]
- Emissions increased by $\sim 5.5\%$ every year (2015 to 2019) [ShiftProject2021]
- More than climate change, ICTs can contribute to
 - Freshwater change
 - Rare metal depletion
 - Primary energy consumption

[Bengassem2021]

Global GHG emissions of modeled pathways from IPCC 2023 Sixth Assessment Report.

GHG: GreenHouse Gaz, **IPCC**: Intergovernmental Panel on Climate Change, **ICT**: Information and Communication Technologies

4

Treaties and regulations to reduce emissions

- Paris Agreement (2015)
- European Green Deal
 - Corporate Sustainability Reporting Directive (January 2023)
 - Energy Efficiency Directives

Need for **policy makers** of assessment standards

Need for the **companies** to assess the footprint of their digital services

Computational cost of Machine Learning

- Artificial Intelligence (AI)
 - Tasks that typically require human intelligence
- Machine Learning (ML)
 - AI that automatically learns from a set of data
- Deep Learning (DL)
 - ML that relies on deep neural network models

Evolutions in Machine Learning Model and their training, as the maximum value up to the given year. [EpochAI2024]

Stable Diffusion (2022): 256 A100 GPUs for 25 days

PhD Defense - Mathilde Jay - 15 Oct. 2024

ICT: Information and Communication Technologies, **GPU**: Graphic Processing Units 6

The growing impact of Machine Learning

Machine Learning is	1000 —
one of main drivers of	⊢ 800 —
increase of electricity	
demand in the	600 —
European Union	400 —
between 2023 and 2026	
[IEA2024]	200 —
	0 —

Need to assess footprint of machine learning services

Estimated electricity demand from traditional data centres, dedicated AI data centres and cryptocurrencies in 2022 and 2026. [IEA2024]

PhD Defense - Mathilde Jay - 15 Oct. 2024

IEA: International Energy Agency

7

PhD Defense - Mathilde Jay - 15 Oct. 2024

Estimates for global ICT's carbon footprint in 2020 according to 3 studies [Freitag2021]

HPC: High Performance Computing 8

The multiple facets of an ML service

PhD Defense - Mathilde Jay - 15 Oct. 2024

ModelSelectionHyper-parameter searchTraining & Fine-Tuning

Model Deployment Inference

Embodied impacts from manufacturing, transport, end of life (CAPEX)

Scope 2

Indirect impacts: Due to its applications

Scope 3

Systemic impacts

Research questions & objectives

How can we accurately **report** impacts of ML services?

How can those impacts be reduced?

Can **decentralizing** computations reduce the impacts?

PhD Defense - Mathilde Jay - 15 Oct. 2024

Design a **methodology** to assess the impacts of training a ML model

Show its versatility by applying it on various models and infrastructures

Provide a better understanding of the impacts of ML training infrastructures

Compare a **Supercomputer** and an **Edge** node on model training

10

00. 01. 02. 03. 04. 05. 06.

The environmental impact of Machine Learning (ML) & research questions

Contents

Methodology

- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

Existing literature on ML service impact assessments

		Alert on the carbon footprint of NLP training	Same on other tasks	Federated Learning/ML at the Edge	Addition of the embodied footprint	ML deployment	Our methodology
		[Strubell2019]	[Henderson2020, Patterson2020, Wu2022]	[Savazzi2021, Qiu2024, Patterson2024]	[Ligozat2022, Dodge2022, Luccioni2023]	[Patterson2022, Wu2022, Luccioni2023]	
Impact Indicators	Electricity consumption						
	Carbon emission						
	Primary energy						 ✓
	Metal and mineral scarcity						
Hardware life cycle	OPEX						
	CAPEX						 ✓
ML system scope	Supercomputer						
	Edge			 			 ✓
ML life cycle	Training						
	Deployement						

NLP: Natural Language Processing

12

- Life Cycle Assessment (LCA)
 - ISO standards (14040 and 14044)
 - Standards from the International Telecommunication Union
 - Multi-criteria & multi phases
- We apply Attributional LCA to ML training

PhD Defense - Mathilde Jay - 15 Oct. 2024

Methodology

- Life Cycle Assessment (LCA)
 - ISO standards (14040 and 14044)
 - Standards from the International Telecommunication Union
 - Multi-criteria & multi phases
- We apply Attributional LCA to ML training
- Scope

Impact scopes

- Life Cycle Assessment (LCA)
 - ISO standards (14040 and 14044)
 - Standards from the International Telecommunication Union
 - Multi-criteria & multi phases
- We apply Attributional LCA to ML training

Scope

• The CAPEX and OPEX impacts of the ML compute nodes during the training phase

Functional Unit

Train the Model on the Dataset until the Quality Target is reached

- Life Cycle Assessment (LCA)
 - ISO standards (14040 and 14044)
 - Standards from the International Telecommunication Union
 - Multi-criteria & multi phases
- We apply Attributional LCA to ML training

• Scope

• The CAPEX and OPEX impacts of the ML compute nodes during the training phase

- Functional Unit
 - Train the model on the dataset until the quality target is reached
- Impacts
 - Primary Energy (PE) measured in mega joule (MJ)
 - Global Warming Potential (GWP) measured in equivalent CO₂ emission (kg.CO₂.eq)
 - Abiotic Depletion Potential (ADP) of minerals and metals measured in equivalent antimony (kg.Sb.eq)

Operational phase (OPEX)

- Power measurement
 - Of each components
 - With a frequency high enough to capture evolution

- Software-based power meters
- Electricity impact factors
- Repeatability of experiments
- Fixed and controlled environments

PhD Defense - Mathilde Jay - 15 Oct. 2024

Embodied phase (CAPEX)

- Embodied impacts of each component of the ML compute node
- Time-based allocation

How

LCA databases

Reproducibility

Public databases

LCA: Life Cycle Assessment

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

Infrastructures

Apollo Node From the Champollion cluster

PhD Defense - Mathilde Jay - 15 Oct. 2024

Nvidia Jetson AGX Xavier

HPC: High Performance Computing 19

In

fractructuroc			
	HPC: APOLLO	EDGE: JETSON	
Node model	Apollo 6500 Gen10	Nvidia Jetson AGX Xavier	
FL32 performance (FLOP/S)	125 * 10 ¹²	1.41 * 10 ¹²	
GPU model	NVIDIA A100-SXM-80GB	NVIDIA GV10B, Volta architecture	
Number of GPU per node	8	1	
GPU TDP (W)	400		
CPU model	AMD EPYC 7763, 64 cores	Nvidia Carmel (Carmel), aarch64, 8 cores	
Number of CPU per node	2	1	
CPU TDP (W)	280		
Memory	1 TB	32 GB	
Installation year	2022	2023	
Available thought	HPE local network - slurm	Grid'5000 Estats cluster - OAR	
Power meter	HPE ILO 5, RAPL, NVML	Jetson-stats	
Node TDP (W)	3760 (GPUs + CPUs)	30	
Energy efficiency (FLOP/S/W)	3.3 * 10 ¹⁰	2.3 * 10 ¹⁰	

PhD Defense - Mathilde Jay - 15 Oct. 2024

GPU: Graphic Processing Unit, **CPU**: Central Processing Unit, **TDP**: Thermal Design Power

Measuring the electricity consumption of a node

Example of a GPU node

- Power meters
 - Outside of node
 - Processor power management libraries
- Software-based power meters
 - Proven to be accurate
 - Available on most nodes
- Which one is better for our use case?

RAPL: Running Average Power Limit, **NVML**: Nvidia Management Library

A quantitative comparison

- Compared software-based power meters
- constant offset

Comparison of power meters on 3 applications of the NAS benchmark on the Gemini cluster of Grid'5000.

PhD Defense - Mathilde Jay - 15 Oct. 2024

Evaluated them against external power meters and found a significant and non-

And a qualitative comparison

- Not suitable for our use case because of lack of • Configurability (frequency) for node with GPUs Versatility: power management librairies depend on infrastructures •

Mathilde Jay, Vladimir Ostapenco, Laurent Lefèvre, Denis Trystram, Anne-Cécile Orgerie, Benjamin Fichel. An experimental comparison of software-based power meters: focus on CPU and GPU. CCGrid 2023 - 23rd IEEE/ACM international symposium on cluster, cloud and internet computing, May 2023, Bangalore, India

A software-based power meter for Apollo and Jetson

ALUMET

- Time series of GPU consumption as well as CPU and RAM
- Configurable acquisition frequency
- Adaptive to edge and HPC architectures
- Modularity (e.g. new data sources can be added by plugins)
- Lightweight (no significant slowdown of HPC benchmarks for RAPL+CSV)

alumet.dev By Guillaume Raffin, BULL SAS, CNRS, INRIA, Grenoble INP-UGA. Licensed under the EUPL-1.2 or later. ~ 12 300 lines Written in Rust

Estimating the embodied impacts with Boavizta

Boavizta

Datavizta API: Multi-indicators/Multi-phase

- Aggregates data from various databases
 - ADEME carbon database
 - Manufacturer product carbon footprints
 - Semiconductor LCA
- For GPUs, need specifications
 - Die size
 - Printed Circuit Board area
 - Memory density and capacity

Total embodied or CAPEX impact of Jetson and Apollo

	GWP (kg CO2eq)	ADP (kg Sbeq)	PE (MJ)
Jetson	87	0.03	1254
Apollo	3858	0.28	49660

x 44 x 10 x 39

The embodied impact of one Apollo node is higher than the embodied impact of one Jetson node.

GWP: Global Warming Potential, **ADP**: Abiotic Depletion Potential, **PE**: Primary Energy

Memory dominates the embodied impacts

impacts.

GWP: Global Warming Potential, **ADP**: Abiotic Depletion Potential, **PE**: Primary Energy

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**

ML models & the impacts of their training

- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

MLPerf Benchmark

Area	Benchmark	Model	Dataset	Quality Target
Vision	Image classification	ResNet-50 v1.5	ImageNet	75.90% classification
Vision	Image segmentation	3D U-Net	KiTS19	0.908 Mean DICE score
Vision	Object detection	Mask R-CNN	COCO	0.377 Box min AP and 0.339 Mask min AP
Language	Speech recognition	RNN-T	LibriSpeech	0.058 Word Error Rate
Language	Natural Language Processing	BERT-large	Wikipedia 2020/01/01	0.72 Mask-LM accuracy
Commerce	Recommendation	DLRM	1TB Click Logs	0.8025 AUC

HPC: APOLLO

- Code provided by MLPerf
- Hyper-parameter search done by HPE

PhD Defense - Mathilde Jay - 15 Oct. 2024

EDGE: JETSON

- Memory limitations
- Long executions

Power profiles can vary significantly

TDP = 3760 W

Power profile = Power consumed by the 8 GPUs and the 2 CPUs as measured by NVML and RAPL.

TDP: Thermal Design Power, **FU**: Functional unit

Power consumption can be higher than the TDP

PhD Defense - Mathilde Jay - 15 Oct. 2024

Power profile of ResNet-50 FU.

TDP: Thermal Design Power, **FU**: Functional unit

Most energy can be spent on the very last quality point

Energy required to reach each quality metric point for the DLRM FU

PhD Defense - Mathilde Jay - 15 Oct. 2024

Energy required to reach each quality metric point for the Mask R-CNN FU

FU: Functional unit

The ResNet FU impacts are shared between phases

$$I_{Embodied,FU} = \frac{T_{FU}}{T_{node}} * I_{Embodied,Node}$$

$$I_{FU} = IF_{elec} * E_{FU} + I_{Embodied,FU}$$

: Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)

T	: Use time of the equipment
IF _{elec}	: Electricity mix Impact Factor
E	: Electricity consumption

PhD Defense - Mathilde Jay - 15 Oct. 2024

GWP: Global Warming Potential, **ADP**: Abiotic Depletion Potential, **PE**: Primary Energy

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

achieves a **55%** classification score

PhD Defense - Mathilde Jay - 15 Oct. 2024

GWP: Globale Warming Potential, **ADP**: Abiotic Depletion Potential, **PE**: Primary Energy

Apollo outperforms Jetson on the performance and environmental criteria

Comparing infrastructures requires more criteria

- Jetson was designed for the edge and its associated constraints
 - Price
 - Latency
- Edge computing can be an opportunity for constraining computations

Multi-criteria comparison including performance, environmental, and qualitative metrics

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**
Advantages of our approach

- Versatility
 - Can do both operational and embodied assessments on most infrastructures
- Reproducibility
 - Rely on open databases and open source measuring tool
 - Code is available and reusable
- Insightfulness
 - better understanding and the possibility to find actionable reduction plans
- Power profile, accuracy/power tradeoff, details of component embodied footprint provide a • Enables a fair comparison between infrastructures and ML models

Limits

- Accuracy
 - Lack and uncertainty of LCA databases
 - **Offset** between software-based and external power meters not included
- Scope 2 and 3 outside of assessment
- Changes in learning
 - Focus on centralized training when other training approach are developed such as **Federated** Learning
 - Requires **replication** when trainings can last for days
- Other phases of ML life cycle
 - Focus on the training phase, omitting deployment and data collection

LCA: Life Cycle Assessment

Estimating the environmental impacts of a Generative AI service

Enlarge the scope

OPEX

- Application: Stable Diffusion
 - Open source
 - Deployed online as a service
- Combinaison of
 - Measurements (Training, Inference)
 - Allocations from LCA databases
- Training to long to replicate
 - Measurement of a **fraction** of training
 - Linear **regression** from number of steps

Each phase of the ML and hardware life cycles is significant

- The ADP impact is dominated by the embodied phase of hardware.
- The GWP and PE impacts come from the operational phase.
- The deployment causes most of the impacts.

Share (in percentage) of the life cycle phases of each digital infrastructure in the total impacts of the Stable Diffusion service for one year.

|--|

based methodology. CIRP LCE 2024 - 31st Conference on Life Cycle Engineering, Jun 2024, Turin, Italy.

PE(MJ)

GWP: Global Warming Potential, **ADP**: Abiotic Depletion Potential, **PE**: Primary Energy

00. 01. 02. 03. 04. 05. 06.

Contents

- The environmental impact of Machine Learning (ML) & research questions
- Methodology
- **Infrastructures & how to evaluate their impacts**
- ML models & the impacts of their training
- **Comparison of a supercomputer & an edge device**
- Limits of the approach & how to overcome them
- **Conclusion & perspectives**

Conclusion

- Impacts of Machine Learning are booming when they should be reduced
- Need of reporting and controlling those impacts
- Methodology: LCA for training
 - 3 LCA impact indicators
 - Operational, ressource extraction, manufacturing & distribution phases
 - Insightfulness, Versatility, Reproducibility
- Multi-criteria comparison of an Edge Device and a Supercomputer

- A significant offset between power meters
- Quality target/energy tradeoff
- For bigger models, electricity consumption can be estimated
- Scope can be extended to other ML life cycle phases

Perspectives

- Increasing the scope
 - Full node, storage, networks, cooling
 - Data collection
- Supercomputer-Edge scenario
 - Including network
- Consequential LCA
 - Encompasses indirect effects •
 - But more complex to model
- Assessing the sustainability of an ML model
 - EU AI act: security, transparency, ethics

PhD Defense - Mathilde Jay - 15 Oct. 2024

June 2024

General framework for frugal AI

An AFNOR SPEC to measure and reduce the environmental impact of AI

C AFNOR www.alsor.org

Appendix

A versatile methodology for assessing the electricity consumption and environmental footprint of machine learning training: from supercomputers to edge devices

Machine Learning and its materiality

Evolutions in Machine Learning specialized hardware (GPU, TPU) metrics, as the maximum value up to the given year [Hobbhahn2023].

<u>TDP (Thermal Design Power)</u>: A hardware characteristic provided by the manufacturer that corresponds to the maximum amount ponential increase in the electricity that can be generated by a compocent sumption of training Machine Learning steady workload measured in wattmodels

PhD Defense - Mathilde Jay - 15 Oct. 2024

Evolutions in Machine Learning Model and their training, as the maximum value up to the given year. [EpochAI2024]

Machine Learning services and its materiality

HPC data center

Networks

PhD Defense - Mathilde Jay - 15 Oct. 2024

Edge data center

Networks

Edge Devices

Machine Learning and its materiality

Figure: Evolutions in Machine Learning specialized hardware (GPU, TPU) metrics, as the maximum value up to the given year.

Machine Learning Boom

Evolutions in Machine Learning Model and their training, as the maximum value up to the given year. [EpochAI2024]

<u>Parameters:</u> Variables that are learned from the data during the training process. The number of parameters is a representation of the size of the model.

Training Dataset: Collection of data that the ML model is trained on.

<u>Training computing (FLOP)</u>: number of mathematical operations (+,-,*,/) performed to train the model.

Machine Learning Boom

Evolutions in Machine Learning Model and their training, as the maximum value up to the given year. [EpochAI2024]

Parameters: Variables that are learned from the data during the training process. The number of parameters is a representation of the size of the model.

Training Dataset: Collection of data that the ML model is trained on.

Quick definition of ML

Objective/Task

Data

Generating image from text

Pembroke Welsh Corgi with Cowboy Hat

PhD Defense - Mathilde Jay - 15 Oct. 2024

Learning

Model

• • •

Machine Learning and its materiality

CPU Central Processing Units

RAM Random Access Memory

+

SSD Solid State Drive

GPU Graphic Processing Units

Example of a supercomputer in a Data Center

	External and intra-mode devices		Power profiling software	Energy m	easurement softwar	Energy calculators		
	Omega Wat	BMC	Alumet	Code Carbon	Experiment Im- pact Tracker	Carbon Tracker	Green Algo- rithms	MI. CO2 Impact
Developement							301 15 15	
Origin			Eviden, LIG	MILA	University of Standford	University of Copenhagen	University of Cambridge	MILA
First (latest) release date			Mar. 2023 (May 2024)	Nov. 2020 (Jun. 2024)	Dec. 2019 (Jan. 2020)	Apr. 2020 (Sept. 2023)	Jul. 2020 (Apr. 2023)	Aug. 2019 (Jul 2022)
Environment			11	1			1	
Hardware compatibility	Any	Any	lotel RAPL, Nvidia NVML	Any	Intel RAPL, Nvidia NVML	Intel RAPL, Nvidia NVML	Any	Any
Scope	Node	Node	CPU, DRAM, GPU	CPU, DRAM, GPU	CPU, DRAM, GPU, process	CPU, DRAM, GPU	Node	Node
Job management support			No.	No	No	No		
Functional							1	
Hardware technology used			RAPL, NVML	RAPL, NVML, TDP	RAPL, NVML	RAPL, NVML	TDP	TDP
Software power model used					GPU, CPU and RAM usage- based			
Default sampling frequency (Hz)	1	0.2	2	1/15	1	0.1		
Online reporting	Yes	Yes	Yes	No	No	No	No	No
Power profiling	Yes	Yes	Yes	No	No	No	No	No
User-friendliness							1	
Availability of source code (License)			Yes (EUPL 1.2)	Yes (MIT)	Yes (MIT)	Yes (MIT)	Yes (CC-BY-4.0)	Yes (MIT)
Ease of use	Poor	Poor	Good	Good	Good	Good	Very good	Very good
Quality of documentation			Good	Fair	Fair	Good	Good	Fai
Configurability	Fair	Poor	Good	Poor	Quite good	Poor	Poor	Poor
Resulting data format	HTTP end- point	HTTP end- point	CSV	CSV	JSON, Code	File, Code	Web	Web, Latex
Data visualisation possibili- ties	Grafana (Kwollect)	Grafana (Kwollect)		Comet			Graphs on the web page	

Comparing tools

AL: ALUMET, CT: Carbon Tracker, CC: Code Carbon, EIT: Expriment Impact Tracker, GA: Green Algorithm, MCI: ML CO2 Impact

Per component consumption

Electricity

Infrastructures

HPC: APOLLO

Apollo 6500 Gen10	Nvidia Jetson AGX Xavier					
20	12					
NVIDIA A100-SXM-80GB	NVIDIA GV10B, Volta architecture					
8	1					
400						
AMD EPYC 7763 64-Core Processor	Nvidia Carmel (Carmel), aarch64, 8 cores					
2	1					
280						
3760	30					
1 TB	32 GB					
Mellanox HDR Infiniband						
8						
375						
2022	2023					
HPE local network - slurm	Grid'5000 Estats cluster - OAR					
HPE ILO 5 + RAPL + NVML	Jetson-stats					

Node model Number of nodes GPU model Number of GPU per node GPU TDP (W) CPU model Number of CPU per node CPU TDP (W) Node TDP (W) Memory Switch model Number of switch Switch power consumption (W) Installation year Available thought Power meter

PhD Defense - Mathilde Jay - 15 Oct. 2024

EDGE: JETSON

Machine Learning Framework for Distributed Platforms

Model	Apollo	Jetson
UNet	MXNet / Horovod	
RNN-T	PyTorch	
ResNet	MXNet / Horovod	PyTorch
MaskRCNN	PyTorch	
BERT	PyTorch	
DLRM	HugeCTR	

Power profile of each FU

ResNet FU

PhD Defense - Mathilde Jay - 15 Oct. 2024

Mask R-CNN FU

DLRM FU

RNN-T FU

Accuracy/Energy tradeoff on Apollo

RNN-T PhD Defense - Mathilde Jay - 15 Oct. 2024 DLRM FU

ResNet-50 FU

BERT FU

Mask R-CNN

Performances of each FU

Energy (kWh)

FU	
ResNet-50	1.61 ± 0
3D U-Net	1.73 ± 0.7
Mask R-CNN	2.16 ± 0.09
RNN-T	1.97 ± 0.11
BERT-large	1.13 ± 0.01
DLRM	0.14 ± 0

Time (min)	Utilization (%)						
	GPU	CPU					
29.42 ±0.19	94.84 ± 0.71	28.57 ± 0.72					
31.72 ± 12.6	96.94 ± 0.89	8.2 ± 0.07					
43.6 ± 1.69	89.87 ± 0.2	8.84 ± 0.02					
36.12 ± 2.21	95.46 ± 0.28	68.47 ± 0.89					
20.83 ± 0.25	96.88 ± 0.11	6.88 ± 0.01					
4.18 ± 0.02	57 ± 0.46	5.36 ± 0.03					

Characteristics of the MLPerf models and datasets

Model

Parameter numbe

ResNet-50 v1.5	25.6
3D U-Net	19
Mask R-CNN	25.6
RNN-T	29.8
BERT-large	345
DLRM	540

er (M)	Dataset	size	Batch size				
	Sample	GB	Sample	In GB			
	1.28e+6	167	408	53			
	6.72e+4	40	56	229			
	4.00e+4	20	96	48			
	2.78e+5	500	1536	2763			
	3.00e+6	400	384	51			
	3.78e+9	342	55296	5			

Energy consumption (kWh)	1	0.99	0.81	0.79	-0.95	0.47	0.37	-0.88	-0.37	1.00
Training time (min)	0.99	1	0.75	0.72	-0.92	0.41	0.33	-0.84	-0.42	0.75
GPU utilization $(\%)$	0.81	0.75	1	0.98	-0.77	0.38	0.25	-0.99	-0.16	0.50
Average power (W)	0.79	0.72	0.98	1	-0.78	0.45	0.28	-0.96	-0.11	0.25
Number of parameters (M)	-0.95	-0.92	-0.77	-0.78	1	-0.51	-0.33	0.82	0.46	0.00
CPU utilization $(\%)$	0.47	0.41	0.38	0.45	-0.51	1	0.94	-0.33	0.47	-0.25
Batch size (GB)	0.37	0.33	0.25	0.28	-0.33	0.94	1	-0.21	0.6	-0.50
Batch size (number)	-0.88	-0.84	-0.99	-0.96	0.82	-0.33	-0.21	1	0.26	-0.75
Dataset size (GB)	-0.37	-0.42	-0.16	-0.11	0.46	0.47	0.6	0.26	1	1.00
	(k_{WL})	(n_{1})	$(\%)$ U_0	er(W)	$(VV) SI_{i}$	(\mathcal{M}) (\mathcal{M})	$^{e}(GB)$	(mb_{er})		1.00
	^{Inption}	ing time	utilizati,	$^{ m ge}_{ m DOW}$	$arannet_{e}$	utilizati,	atch size	Size (n_{l}	aset size	
	y consu	$Train_{\widetilde{\Omega}}$	GPU	$A_{Ver_{e}}$	$ber \ of p$	CPU	<u></u>	Batch	D_{at}	
	ullerg.			λr.	IUID AT					

Correlation heatmap

Jetson: Incoherence of electricity measurements

Comparing power meter and software-based power meter on Jetson (development kit, 16 Go)

Apollo: Incoherence of electricity measurements

PhD Defense - Mathilde Jay - 15 Oct. 2024

Increasing the number of nodes can reduce the training time but can also increase the energy consumed

1 color = 1 set of nodes

Impact of sizing up the number of Apollo node of Champollion On the BERT FU

FU: Functional unit

Emboociec

Estimating the embodied impact

Of GPUs

$$I_{compute}(s_{die}) = s_{die} * I_{compute,man}$$

$$I_{memory}(c,d) = \frac{c}{d} * I_{memory,manuford}$$

$$I_{board}(s_{PCB}) = s_{PCB} * I_{board}$$

 $I_{GPU,capex} =$

PhD Defense - Mathilde Jay - 15 Oct. 2024

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Notations

- Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)
- Surface or area (of the GPU die or of the board) 5
- Memory capacity
- Memory density
- : Node weight

Boavizta

$nufactoring + I_{compute,transport}$

 $factoring + I_{memory,transport}$

$I_{compute}(s_{die}) + I_{memory}(c,d) + I_{board}(s_{PCB}) + I_{HeatSink} + I_{PCIEConnector}$

Estimating the embodied impact

Of the CPUs & RAM: Directly from database

Of other components:

PhD Defense - Mathilde Jay - 15 Oct. 2024

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Notations

- Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)
- Surface or area (of the GPU die or of the board) 5
- Memory capacity
- Memory density
- Node weight

Boavizta

 $I_{case} = \frac{w}{\bar{w}} * \bar{I}_{case}$

Estimating the impacts of the electricity consumption

$I_{training,opex} = PUE * IF_{elec} * E_{training}$

In this presentation, PUE = 1

PhD Defense - Mathilde Jay - 15 Oct. 2024

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Notat	io	ms	
1	-	Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)	
Icapex		Embodied Impact (manufacture, transport, and end of life)	
lopez	÷	Operational Impact (usage)	
IFelec	;	Electricity mix Impact Factor	
E	-	Electricity consumption	
AUR	;	Active Utilization Rate	
PUE		Power Usage Effectiveness of the data center	

Allocation on the ResNet-50 FU

$I_{training,capex} = \frac{T_{training}}{AUR * T_{lifetime}} * (I_{GPU,capex} + I_{CPU,capex} + I_{RAM,capex} + I_{Other,capex})$

Hypothesis

- AUR = Active Utilization Rate : 50%
- Lifetime : 4 years

PhD Defense - Mathilde Jay - 15 Oct. 2024

Notations

- Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)
- Embodied Impact (manufacture, transport, and end of life) leaner
- Operational Impact (usage) Lopex
- : Active Utilization Rate AUR
- : Use time of the equipment

Allocation on the ResNet-50 and ResNet-50* FU

	Usage	Embodied
GWP (kg CO2eq)	1.31E-01	8.30E-02
ADP (kg Sbeq)	7.80E-08	6.00E-06
PE (MJ)	1.96E+01	1.07E+00

	Usage	Embodied
GWP (kg CO2eq)	1.60E-01	3.43E-01
ADP (kg Sbeq)	9.59E-08	1.07E-04
PE (MJ)	2.41E+01	4.89E+00

GWP: Global Warming Potential, ADP: Abiotic Depletion Potential, PE: Primary Energy

Share of usage and embodied phase in the total impacts of the ResNet-50 * FU on the **Jetson** node

FU impacts on Apollo

GWP (kg CO2eq)	2.14E-01	2.30E-01	2.98E-01	2.62E-01	1.51E-01	2.28E-02
ADP (kg Sbeq)	6.08E-06	6.55E-06	9.00E-06	7.47E-06	4.30E-06	8.59E-07
PE (MJ)	2.07E+01	2.22E+01	2.79E+01	2.54E+01	1.46E+01	1.81E+00

Summary of ResNet-50 and ResNet-50* FU performances

	Jetson (ResNet-50*)	Apollo (ResNet-50)	Apollo (ResNet-50*)	Min	Max
Electricity c (kWh)	1.974036108	1.605368	0.5723368444	3	0
Duration (hours)	88.86541726	0.4903240667	0.1876559211	100	0
Accuracy	0.55	0.759	0.55	0	1
GWP (kg CO2eq)	5.03E-01	2.14E-01	7.83E-02	0.70	0
ADP (kg Sbeq)	1.07E-04	6.08E-06	2.33E-06	0.00	0
PE (MJ)	2.90E+01	2.07E+01	7.39E+00	50.00	0
Personnalisation	0.9	0.3	0.3	0	1
Latency	0.9	0	0	0	1
Price	1	0.001	0.001	0	1
Accessibility	0.7	0.1	0.1	0	1

PhD Defense - Mathilde Jay - 15 Oct. 2024

Stable Diffusion

Cluster	Champollion	Estats	Gemini	Sirius
Node model	Apollo 6500 Gen10	Nvidia Jetson AGX Xavier	Nvidia DGX-1	Nvidia DGX A100
Number of nodes	20	12	2	1
GPU model	NVIDIA A100-SXM-80GB	NVIDIA GV10B, Volta architecture	Nvidia Tesla V100- SXM2-32GB	Nvidia A100-SXM4-40GB
Number of GPU per node	8	1	8	8
GPU TDP (W)	400		400	280
CPU model	AMD EPYC 7763 64-Core Processor	Nvidia Carmel (Carmel), aarch64, 8 cores	Intel Xeon E5-2698 v4 (Broadwell, 64 cores/CPU)	AMD EPYC 7742 (Zen 2, 64 cores/CPU)
Number of CPU per node	2	1	2	2
CPU TDP (W)	280		135	225
Memory	1 TB	32 GB	1 TB	512 GiB
Switch model	Mellanox HDR Infiniband			
Number of switch	8			
Switch power consumption (W)	375			
Installation year	2022	2023	2019	2021
Available thought	HPE local network - slurm	Grid'5000 - OAR	Grid'5000 - OAR	Grid'5000 - OAR
Power meter	HPE ILO 5 + RAPL + NVML	Jetson-stats	RAPL/NVML + OmegaWatt+ BMC	RAPL/NVML + OmegaWatt+ BMC

Linear regression from smaller number of steps

PhD Defense - Mathilde Jay - 15 Oct. 2024

Estimation the electricity consumption of training Stable Diffusion

For 256x256 images Energy

For 512x512 images Energy

Where N is the number of training steps.

Version	Image	# steps	Estimated energy (kWh)		
	size		1 node	32 nodes	
	256	2.37e ⁺⁰⁵	4 70 + 02	1.50e ⁺⁰⁴	
V1-1	512	$1.94e^{+03}$	4.70e		
v1-4	512	2.25e ⁺⁰⁵	$ 4.01e^{+02}$	1.28e ⁺⁰⁴	
v1-5	512	$5.95e^{+05}$	$1.06e^{+03}$	3.39e ⁺⁰⁴	

PhD Defense - Mathilde Jay - 15 Oct. 2024

Energy (kWh) = $5.26e^{-04} \times N + 2.01e^{-02}$

Energy (kWh) = $1.78e^{-03} \times N + 1.64e^{-02}$

Impact of the energy measurement method

Software PM

Estimation of the electricity cost of training Stable Diffusion with different measurement method **PM**: Power Meter, **TDP**: Thermal Design Power

PhD Defense - Mathilde Jay - 15 Oct. 2024

PM

TDP

Training Stable Diffusion on the Gemini cluster

PhD Defense - Mathilde Jay - 15 Oct. 2024

Training Stable Diffusion on the Sirius cluster

Training Stable Diffusion on the Sirius cluster

PhD Defense - Mathilde Jay - 15 Oct. 2024

Training Stable Diffusion on the Gemini cluster

Reproducibility

Reproducibility

- Fixed environment
 - One node, and always the same
- Controlled environment
 - Fixed frequencies
 - Fixed power cap or mode
 - Minimalist software stack
 - Empty cache before each experiments
- Make sure the initial conditions are the same
 - Idle period between experiments

- Breach to reproducibility
 - Temperature in the Jetson cluster varies when I used all of them and that influenced the power draw
 - Didn't fix the set of nodes when working on Champollion at first, thus we noticed a big difference in energy consumption

