
INTRODUCTION

Pourquoi ne pas accélérer les processeurs séquentiels?

- Soit une machine séquentielle à 1 Tflop
 - Les données doivent aller de la mémoire au CPU (distance r)
 - Pour récupérer une donnée par cycle (1012 fois par seconde) à la vitesse de la lumière (c = 299 792 458 m/s ≈ 3e8 m/s)
 - Donc $r < c/10^{12} = .3$ mm
- Il faut mettre 1 Tera-octet de données dans 0.3 mm²
 - Chaque mot occupe ≈ 3 Angstroms², soit la taille d'un petit atome
- · Impossible à réaliser avec la technologie actuelle
- · Attention aussi à la chaleur dégagée par un tel processeur!

Unría Parallélisme - 2025

Problème de la densité et de la puissance Les systèmes concurrents sont plus efficaces d'un point de vue énergétique - La puissance dynamique est proportionnelle à V²fC - L'augmentation de la fréquence (f) augmente le voltage (V) - L'augmentation du nombre de cores augmente la capacité (C) mais linérairement - Economiser de la puissance en baissant la fréquence • Les processeurs séquentiels puissants gachent de la puissance électrique - Spéculation, vérification de dépendances dynamique - Découverte de parallélisme

10

Loi de Moore 2X transistors/puce tous les 18 mois (60% par an d'augmentation) Les microprocesseurs sont devenus plus denses, plus petits et surtout plus puissants. Cordon Moore (co-fondateur d'Intel) a prédit en 1965 que la densité des processeurs doublerait environ tous les 18 mois.

11

Loi de Moore, suite • En 1965, raisonnement empirique basé sur une relation entre la complexité des circuits et le temps • Loi qui a perduré à travers les années • Croissance due à plusieurs facteurs - Augmentation de la complexité des processeurs (densité en transistors, augmentation de la taille) - Ajout de fonctionnalités (caches internes, buffers d'instructions plus grands, lancement de plusieurs instructions par cycles, multithreading, profondeur des pipelines, ré-arrangement des instructions) - Finesse de gravure Gravure des wafers : 10nm, 7nm, 5nm (Taille du virus VIH: 90 nm)... 3nmusine TSMC en 2022

Conséquence

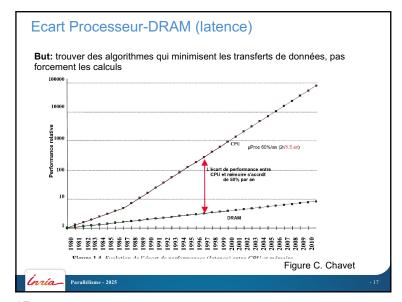
- Le seul moyen d'augmenter les performances est l'augmentation du nombre d'unité de traitement travaillant en parallèle
- L'argument du coût des transferts des données tient toujours !
 - Il faut se débrouiller avec le rapport entre le grain de calcul et le grain de communication
 - Faire en sorte que le volume total des calculs dépasse de loin le volume des communications

16

Problème de chargement des données

- La vitesse d'exécution des calculs ne dépend pas uniquement de la vitesse du processeur
- Il faut prendre en compte la vitesse de chargement des données de la mémoire vers le processeur
- La vitesse d'accès mémoire n'a augmenté que de 10% par an
 - Goulot d'étranglement important qui tend à augmenter

Performances du système de mémoire dépendent de la fraction de la mémoire totale qui peut être stockée dans le cache


Meilleures performances pour les unités parallèles car

- Caches agrégés plus grands

Parallélisme - 2025

- Bande-passante agrégée plus importante
- Attention à la localité des données

Ínnia Parallélisme - 2025 - 18

17

Problème de chargement des données, suite

- Le problème se retrouve sur les grandes architectures distribuées (grilles de calculs, clouds)
- Echelle différente mais problème similaire
- · Moyen de communication Internet
 - Exemples:
 - · les pages web chargées chez Google pour les recherches
 - Bases de données génomiques pour la bioinformatique

Quelques exemples d'applications parallèles

- · Sans ordinateurs, soit
 - on étudie les phénomènes sur papier (théorie),
 - on construit un instrument et on effectue des expérimentations.
- Limitations de cette approche
 - Trop compliqué
 - Ex: modéliser un Tsunami
 - Trop cher:
 - Ex: test de crash d'avion
 - Trop lent
 - Ex: évolution climatique, évolution des planètes
 - Trop dangereux:
 - · Ex: nucléaire, médicaments
- · Utiliser l'informatique pour simuler un phénomène
 - Se baser sur les lois de la physique et l'utilisation de méthodes numériques

Parallélisme - 2025

21

21

Exemple : Animation

- Le rendu utilisé pour appliquer des lumières, des textures et des ombres sur des modèles 3D afin de générer des images 2D pour un film
- Utilisation massive du calcul parallèle pour générer le bon nombre d'images pour un film complet (24 images/seconde)
- Quelques exemples
 - Pixar, 1995, Toy Story: premier film entièrement généré par ordinateur ("renderfarm" constituée de 100 machines dualprocs) – 1 image nécessite de 45 min à 24h – 300 Mo
 - Pixar, 1999, Toy Story 2: utilisation d'un système à 1400 processeurs pour une meilleure qualité d'image
 - 2001, Monstres et compagnie: 250 serveurs à 14 procs pour un total de 3500 processeurs
 - Transformers 2, Industrial Light and Magic: render farm avec 5700 cores
 - Renderfarm dans le cloud (vSwarm) ala Boinc
 - 2020 : Changer le visage de Sonic juste avant la diffusion du film en salles

23

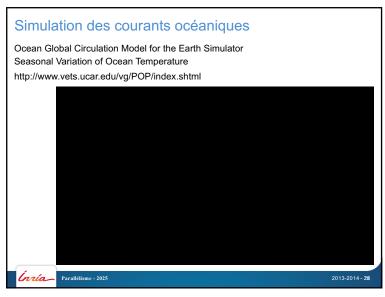
Astrophysique

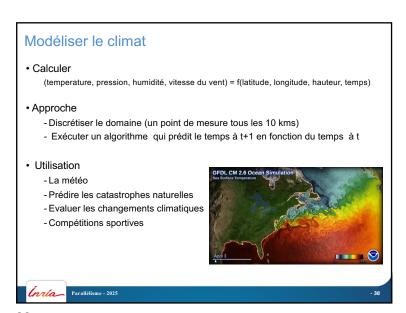
Explorer l'évolution des galaxies, processus thermonucléaires, traiter les données issues des téléscopes

- Analyse d'ensembles de données très larges
 - Ensemble de données "Sky surveys"
 - Sloan Digital Sky Surveys, http://www.sdss.org/
 - Analyse de ces ensembles de données pour trouver des nouvelles planètes, comprendre l'évolution des galaxies

Bioinformatique

- Augmentation importante des calculs avec l'arrivée massive de séquences d'ADN pour un grand nombre d'organismes, y compris des humains
- Celera corp. : whole genome shotgun algorithm
 - Division du génome en petits segments, trouver les séquences ADN des segments expérimentalement, utiliser un calculateur pour construire la séquence complète en trouvant les zones de recouvrements
 - Nombres de comparaisons énorme
 - Ex Wu Feng video Virginia Tech

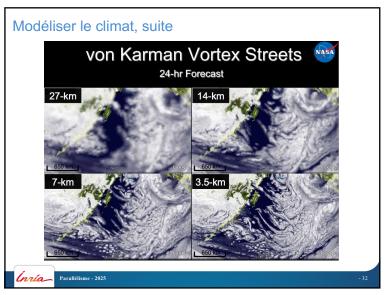


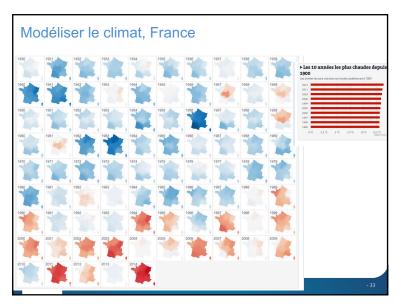

25

Simulation de tremblements de terre

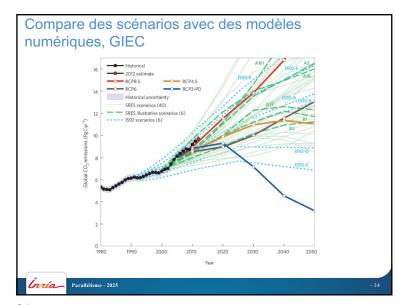
Southern California Earthquake Center ShakeOut Simulation workgroup. Simulation by Rob Graves, URS/SCEC.

Simulation des courants océaniques, suite

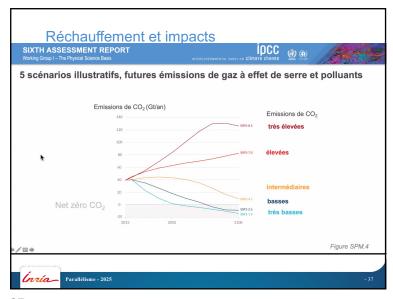

Développement d'un modèle de calcul du flux pour les océans du sud vers le pôle sud

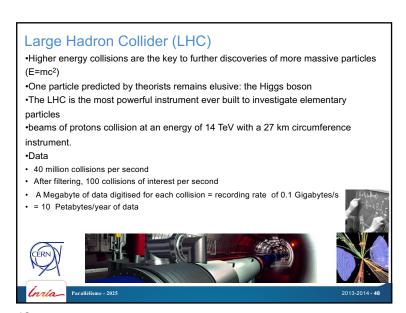

- Océan divisé en 4096 régions Est-Ouest, 1024 régions Nord-Sud, 12 couches en hauteur (50 10⁶ cellules 3D)
- Une itération du modèle simule la circulation de l'océan pour 10 minutes: 30 10⁹ opérations flottantes
- Pour un an de simulation: 52560 itérations
- Six ans de simulation donne 1016 opérations

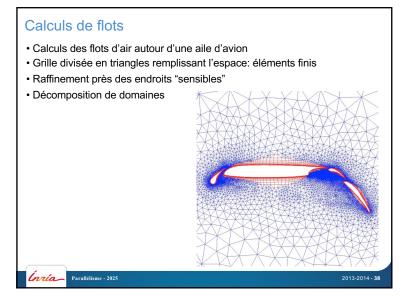
Inria

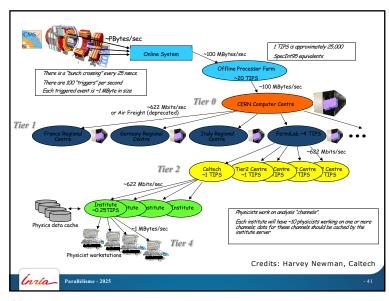

Parallélisme - 2025

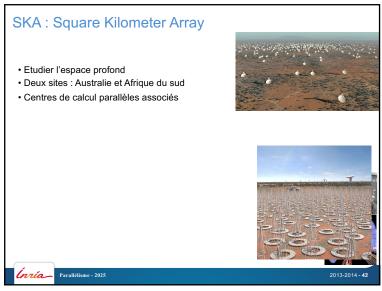
- 2

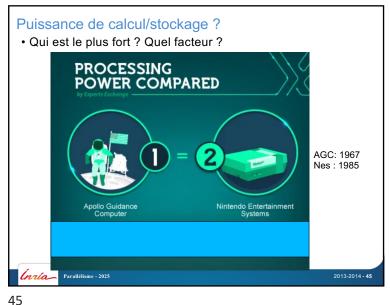


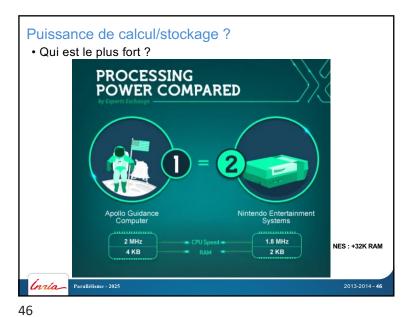


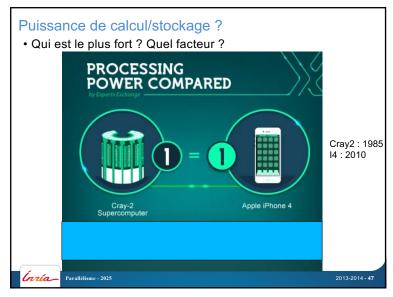

Scenario	Narratif	Défi pour l'atténuation	Défi pour l'adaptation
SSP1 Développement durable	Forte coopération internationale, priorité donnée au développement durable, amélioration des conditions de vie et préférences des consommateurs pour des biens et services respectueux de l'environnement, peu intensifs en ressources et en énergie.	Faible	Faible
SSP2 Poursuite des tendances	Les tendances sociales, économiques et technologiques actuelles se poursuivent, le développement et la croissance progressent de mainté inéglas écan les pays et les régions. Les institutions nationales et internationales œuvrent à la réalisation des objectifs de développement durable qui progresse lentement. L'environnement se dégrade malgré un développement moins interlief en ressources et en énergie.	Moyen	Moyen
SSP3 Rivalités régionales	Résurgence des nationalismes, développement économique lent, persistance des inégalités et des conflits régionaux. Les pays soit guides par des précocupations en matière de sécurité et de compétitivité. Ils se concentrent sur les problèmes nationaux voir et régionaux et sur les enjeux de sécurité allimentaire et énergétique. Faible priorité internationale pour la protection de l'environnement, qui se dégrade fortement dans certaines régions.	Elevé	Elevé
SSP4 Inégalités	Développement marqué par de fortes inégalités entre et à l'intérieur des pays. Dégradation de la cohésion sociale et multiplication des conflits. Fossé croissant entre une élite connectée et mondialisée, responsable de la majorité des émissions de GES, du en semble fragmenté de populations à faible revenu, peu éduqué et vuhérable au changement dimatique. Le secteur énergélique se diversille entre sources d'énergile fortement carbonées et décarbonées. Les politiques environnementales se concentrent sur les enjeux locaux.	Faible	Elevé
SSP5 Développement conventionnel	Développement adossé à l'exploitation forte des énergies fossiles et marqué par des investissements élevés dans la santé, l'éducation et les nouvelles technologies. Adoption de modes de vintensits en ressources et en énergie à travers le monde. La croissance économique et le progrès technologique sont élevés. Les problèmes de pollution locale sont bien gérés et l'adaptation est tacilitée notamment grâce au recut de la pauvreté.	Elevé	Faible

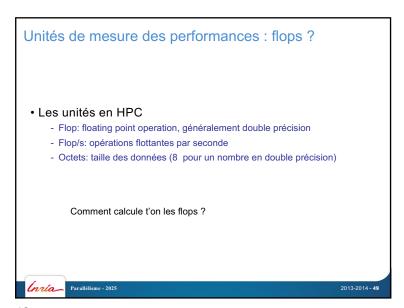


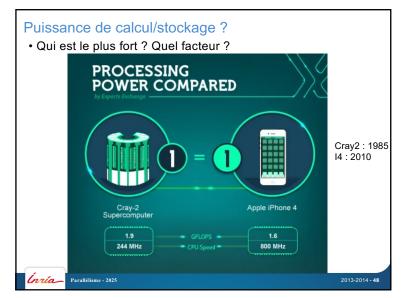

Réchauffement et impacts Ces scénarios sont identifiés par un nom de la forme SSPx-y, où SSPx est la trajectoire socio-économique de référence utilisée pour modéliser ce scénario et y le niveau approximatif de forcage radiatif résultant du scénario en 2100. Cinq scénarios démarqués les uns des autres ont été choisis pour être évalués plus précisément dans ce rapport : •SSP1-1.9 : scénario très ambitieux pour représenter l'objectif 1,5°C de l'Accord de Paris •SSP1-2.6 : scénario de développement durable •SSP2-4.5 : scénario intermédiaire •SSP3-7.0 : scénario de rivalités régionales •SSP5-8.5 : développement basé sur les énergies fossiles https://www.i4ce.org/dou-viennent-les-cinq-nouveaux-scenarios-du-giec-climat/

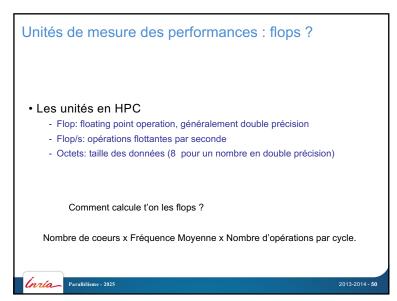


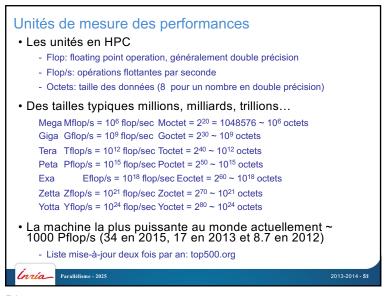


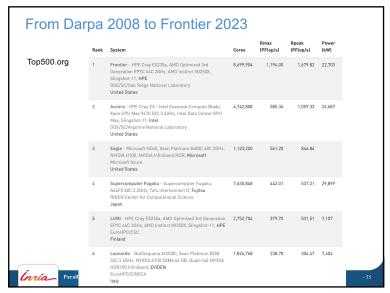


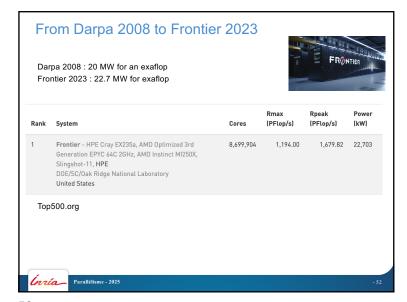


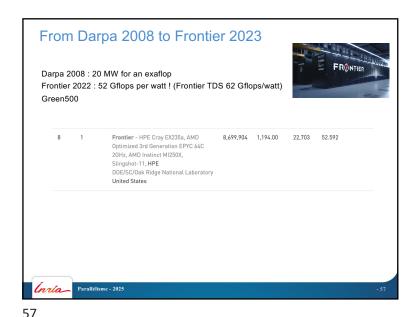


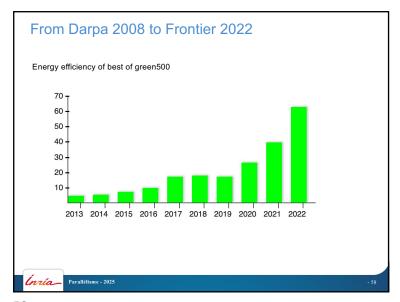


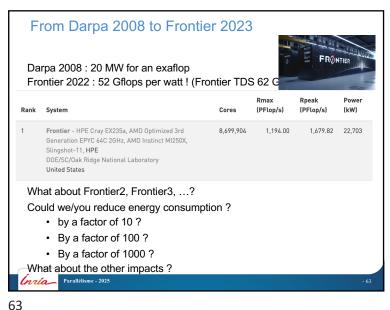




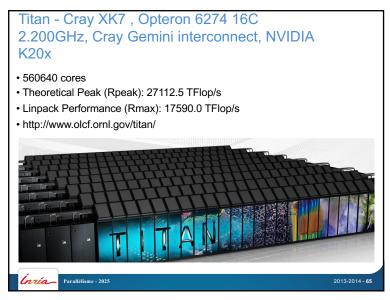


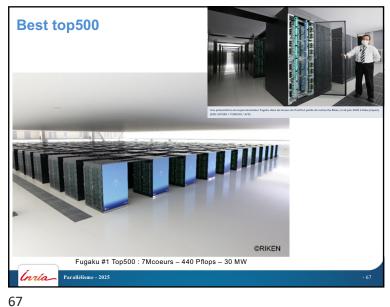






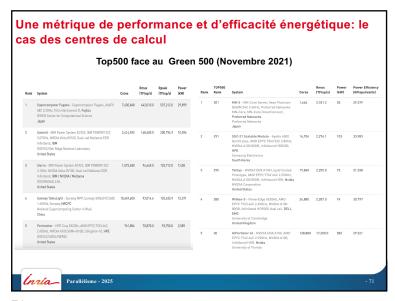
	Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
green500	1	293	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.86Hz, NVIDIA H100 806B PCle, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
	2	44	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Silingshot-11, HPE DDE/Sc/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
	3	17	Adastra - HPE Cray EXZ35a, AMD Optimized 3rd Generation EYIC 46C 26Hz, AMD instituted M250X, Slingshot-11, HPE Grand Equipment National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-	319,072	46.10	921	58.021
nrla Para	4	25	Setonix – GPU – HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 20Hz, AMD Instinct MI250X, Slingshot-11, HPE Pawasey Supercomputing Centre, Kensington, Western Australia Australia	181,248	27.16	477	56.983

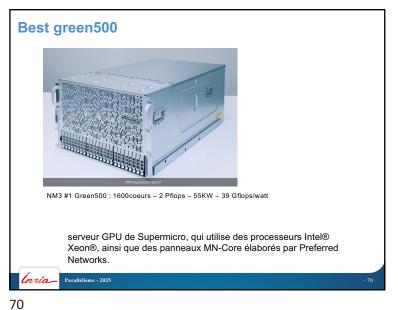

59



- 1,024,000 GB de mémoire
- 17,808.00 kW de conso électrique
- Linux comme OS

Unría Parallélisme - 2025





Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Dak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096	
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LINI. United States	1,572,480	94,640.0	125,712.0	7,438	top500.org
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.456Hz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371	
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE DDE/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589	-6

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	301	MN-3 - MN-Core Server, Xeon Platinum 8260M 24C 2.4GHz, Preferred Networks MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan	1,664	2,181.2	55	39.379
2	291	SSC-21 Scalable Modute - Apollo 6500 Gen10 plus, AMD EPYC 7543 32C 2.8GHz, NVIDIA A100 80GB, Infiniband HDR200, HPE Samsung Electronics South Korea	16,704	2,274.1	103	33.983
3	295	Tethys - NVIDIA DGX A100 Liquid Cooled Prototype, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100 80GB, Infiniband HDR, Nvidia NVIDIA Corporation United States	19,840	2,255.0	72	31.538
4	280	Wilkes-3 - PowerEdge XE8545, AMD EPYC 7763 64C 2.456Hz, NVIDIA A100 809B, Infiniband HDR200 dual rail, DELL EMC University of Cambridge United Kingdom	26,880	2,287.0	74	30.797
5	30	HiPerGator AI - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Infiniband HDR, Nvidia University of Florida	138,880	17,200.0	583	29.521

	Тор5	00 fa	ice a	u G	reer	1 5 00	0 (N	ovembre 2021)				
Rank	System	Cores	Rmax [TFlop/s]	Rpeak (TFlop/s)	Power [kW]	Rank	TOP500 Rank	System	Cores	Rmax (TFlog/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 480 2 2094; Tribi Interconnect ID, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	1	301	MN-3 - MN-Core Server, Xeon Platinum 8266M 24C 2.40Hz, Preferred Networks MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan	1,664	2,181.2	55	39.379
2	Summit - IBM Power System AD922, IBM POWER9 22C 3.078Hz, NVIDIA Volta 0V100, Dual-rait Mellianox EDR Infolioand, IBM DOE/SC/Dak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096	2	291	SSC-21 Scalable Mediute - Apollo 6500 Gen10 plus, AMD EPYC 7843 32C 2.8GHz, NVIDIA A100 8098, Infiniband HDR200, HPE Samsung Electronics South Mores	16,704	2,274.1	103	33.983
3	Sierra - IBM Power System ACP22, IBM POWER9 22C 3.10HL, NVDIA Votra DV1010, Dual-ral Mellanov EDR Infriband, IBM, NVDIA / Mellanov DDE/NNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438	3	295	Tethys - NVIDIA DGX A100 Liquid Cooked Prototype, AMD EPYC 7742 ACC 2.250Hz, NVIDIA A100 B00B, Thinliband HDR, Nvidia NVIDIA Corporation United States	19,840	2,255.0	72	31.538
4	Sunway TaiheLight - Serway MPP, Surway SW26010 2600 1.456Hz, Surway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371	4	280	Wilkes-3 - PowerEdge XE8545, AMD EPYC 7763 &C 2.456Hz, NVIDIA A103 8098, Infinibend HDR200 dual rail, DELL EMC University of Cambridge	26,880	2,287.0	74	30.797
5	Perforution: - HPE Cray EX235r, AMD EPYC 7743 64C 2.456Hz, NVIDIA A100 SIXN4 40 GB, Stingshot-10, HPE DOE/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589	5	30	Uniked Kingdom HIPerGater At - NVIDIA DGX A160, AMD EPPC 7742 64C 2.25GHz, NVIDIA A100, Inflitiband HDR, Nvidia University of Florida	138,880	17,200.0	583	29.521

		mbre 2020		Rmax	Rpeak	Power
	Rank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
	1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.20Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
	2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DDE/SC/Dak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
	3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, XVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DDE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
	4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
	5	Selene - NVIDIA DGX A100, AMD EPYC 7742 &AC 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646
	6	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon ES-2692v2 12C 2.26Hz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
	7	JUWELS Booster Modute - Bull Sequana XH2000 , AMD EPYC 7402 240 2 80Hz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation Cluster Suite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
Parallélisn	8	HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2:10Hz, NVIDIA Tosla V100, Mellanox HDR Infiniband, Dell EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Votta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rait Meltanox EDR Infiniband , IBM / NVIDIA Mellanox DOE/NNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.450Hz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.66Hz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
6	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intet Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979,072	20,158.7	41,461.2	7,578
7	Al Bridging Cloud Infrastructure [ABCI] - PRIMERBY CX2570 M4, Xeon Gold 5148 Z0C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu National Institute of Advanced Industrial Science and Technology (AST) Japan	391,680	19,880.0	32,576.6	1,649
8	SuperMUC-NG - ThinkSystem SD530, Xeon Platinum 8174 24C 3.16Hz, Intel Omni-Path , Lenevo Leibniz Rechenzentrum Germany	305,856	19,476.6	26,873.9	

| TOP 500 Novembre 2019
| Rank Site | Summir | SM Disser System AC922 | Cares | TFlag/al | TFlag/al

Rank	: Site	System	Cores	Rmax (TFlop/s)	Rpeak [TFlop/s]	Power (kW)
1	National Supercomputing Center in Wuxl China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 2600 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH- IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 3151P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.66Hz, Aries interconnect , NVIDIA Tesla P100 Cray Inc.	361,760	19,590.0	25,326.3	2,272
4	Japan Agency for Marine-Earth Science and Technology Japan	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY- SC2 700Mhz ExaScaler	19,860,000	19,135.8	28,192.0	1,350
5	DDE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200BHz, Cray Germini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
6	DDE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
7	DDE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray Inc.	979,968	14,137.3	43,902.6	3,844
8	DDE/SC/LBNL/NERSC United States	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray Inc.	622,336	14,014.7	27,880.7	3,939
9	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.49Hz, Intel Omni-Path Fujitsu	556,184	13,554.6	24,913.5	2,719

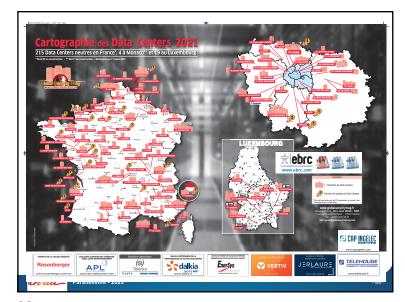
Rani	k Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.2006Hz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
5	DDE/SC/LBNL/NERSC United States	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries Interconnect Cray Inc.	622,336	14,014.7	27,880.7	3,939
6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5	2,719
7	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tosla P100 Cray Inc.	206,720	9,779.0	15,988.0	1,312
9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
10	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	4,233

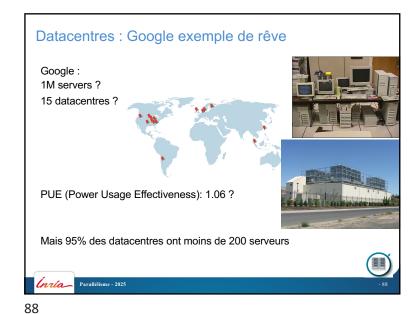
	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
	1	170	NVIDIA DBX SuperPDD - NVIDIA DBX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	19,840	2,356.0	90	26.195
llenge scale enable	2	330	MN-3 - MN-Core Server, Xeon Platinum 8260M 24C 2.4GHz, Preferred Networks MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan	1,664	1,652.9	65	26.039
onable	3	7	JUWELS Booster Module - Bull Seguana XH2000, AMD EPYC 7402 24C 2.80Hz, NVIDIA A100, Mellanox HDR Infiniliband/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	1,764	25.008
	4	146	Spartan2 - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR Infiniband, Atos Atos France	23,040	2,566.0	106	24.262
	5	5	Selene - NVIDIA DBX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	2,646	23.983
Parallélisme -	6	239	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 20Hz, Tofu interconnect D, Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
Parallélisme -	7	29	AIMOS - IBM Power System AC922, IBM	130,000	8,339.0	512	16.285

RAN	< SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DDE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	DDE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
7	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
8	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834
10	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510

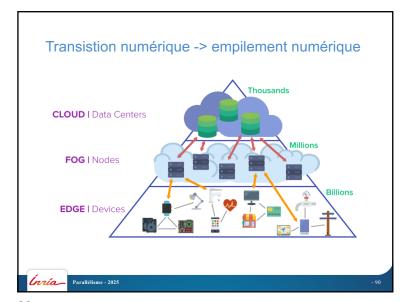
Ran	TOP500 k Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , PEZY Computing / Exascale Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AIMOS - IBM Power System AC922, IBM POWER9 20C 3.459Hz, Dual-rall Mellanox EDR Infiniband, NYIDIA Votta 6V100, IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771
4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.4GHz, Infiniband EDR, NVIDIA Testa V100 SXM2 , IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574
5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	10,096	14.719
6	8	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 MA, Xeon Gold 6148 20C 24GHz, WIDIDA Tesla V100 SXM2, Infilhand EDR, Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	1,649	14.423
7	494	MareNostrum P9 CTE - IBM Power System AC922, IBM POWER9 22C 3.1GHz, Duat-rail Mellanox EDR Infiniband, NVIDIA Testa V100, IBM Barcelona Supercomputing Center Spain	18,360	1,145.0	81	14.131

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	375	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.36Hz, Infiniband EDR, PEZY-SC2 , PEZY Computing / Exescaler Inc. Advanced Center for Computing and Communication, RICKI, Japan	953,280	1,063.3	60	17.604
2	374	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.26Hz, Infiniband EDR, NVIDIA Testa V100, Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113
3	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	9,783	14.668
4	7	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.469tz, NVIDIA Tesla VIIO SXXQ, Infiniband Edn. Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	1,649	14.423
5	22	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2880y4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704
6	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	7,438	12.723
7	446	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-24301,v4 10C 1.86Hz, Infiniband EDR, NVIDIA Testa P109 SXM2 , NEC National Institute of Advanced Industrial Science and Technology	23,400	961.0	76	12.681


Green500 Rank	MFLOPS/W	Site	System	Total Power(kW
1	9462.1	NVIDIA Corporation	NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100	349.5
2	7453.5	Swiss National Supercomputing Centre [CSCS]	Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100	1312
3	6673.8	Advanced Center for Computing and Communication, RIKEN	ZettaScaler-1.6, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SCnp	150.0
4	6051.3	National Supercomputing Center in Wuxi	Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	15371
5	5806.3	Fujitsu Technology Solutions GmbH	PRIMERGY CX1640 M1, Intel Xeon Phi 7210 64C 1.3GHz, Intel Omni-Path	77
6	4985.7	Joint Center for Advanced High Performance Computing	PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path	2718.7
7	4688.0	DOE/SC/Argonne National Laboratory	Cray XC40, Intel Xeon Phi 7230 64C 1.3GHz, Aries interconnect	1087
8	4112.1	Stanford Research Computing Center	Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190
9	4086.8	Academic Center for Computing and Media Studies (ACCMS), Kyoto University	Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect	748.1
10	3836.6	Thomas Jefferson National Accelerator Facility	KOI Cluster, Intel Xeon Phi 7230 64C 1.3GHz, Intel Omni-Path	111


	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency [GFlops/watts]
	1	259	Shoubu system B - ZettaScaler-22, Xeon D-1971 16C 1.36Hz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	794,400	842.0	50	17.009
	2	307	Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.30Hz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exacater Inc. High Energy Accelerator Research Organization /KEK Japan	762,624	788.2	47	16.759
	3	276	Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2 , PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657
	4	149	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-24994 20C 2.20Hz, Infiniband EDR, NVIDIA Tesla Y100 , Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113
	5		Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1971 160 1.30Hz, Infiniband EDR, PEZY-SC2 700Mhz, Exaccaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	1,350	14.173
	6	13	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5:2890w1 AC 2.46Hz, Intel Omni-Path, NVIDIA Tesla P100 SXM2, HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704
	7	195	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-2830Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P10G SXMZ, NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
la Parallé	lis 8	419	RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon	11,712	635.1	60	10.603

Green500 Rank	MFLOPS/W			Tota Pow (kW
1	7,031.58	Institute of Physical and Chemical Research (RIKEN)	Shoubu - ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC	50.3
2	5,331.79	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC/DL - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.1GHz, Infiniband FDR, NVIDIA Tesla K80	51.1
3	5,271.81	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	57.1
4	4,778.46	Institute of Modern Physics (IMP), Chinese Academy of Sciences	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GHz, Infiniband QDR, NVIDIA Tesla K80	65.0
5	4,112.11	Stanford Research Computing Center	XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190.
6	3,856.90	IT Company	Inspur TS10000 HPC Server, Xeon E5-2620v3 6C 2.4GHz, 10G Ethernet, NVIDIA Tesla K40	58.0
7	3,775.45	Internet Service	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40	110.0
8	3,775.45	Internet Service	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40	110.0
9	3,775.45	Internet Service	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40	110.0
10	3,775.45	Internet Service	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40	110.



90

Qu'est-ce que le calcul parallèle ?

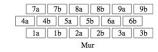
Pouvoir accélérer une application en

- 1. Divisant cette applications en sous-tâches
- 2. Exécuter ces sous-tâches en parallèles sur des unités différentes

Pour réussir, il faut être capable de

- 1. Trouver le parallélisme dans l'application
- 2. Trouver le bon grain de calcul/échange de données
- 3. Avoir des connaissances pour concevoir une solution efficace sur la machine cible

Unría Parallélisme - 2025


- · Le parallélisme est utilisé partout
 - Recouvrement d'E/S sur un processeur
 - Chargement et préparation d'instructions suivantes avec l'exécution d'instructions courantes dans un processeur
 - Utilisation d'unités différentes (unités arithmétiques entière et flottante, unités flottantes multiples, unités pour le traitement graphiques, ...)
 - Multitasking, recouvrement de chargement de pages mémoire et calcul
- Dans ce cours, on va regarder le parallélisme en général (modèles, architecture, algorithmique) avec un focus plus important sur l'utilisation d'unités différentes (processeurs, core) pour le calcul

95

Un aperçu du parallélisme

• Travail de deux maçons (a et b) montant un mur de briques

- Une brique après l'autre
 - Ils se gènent pour prendre les briques et pour les mettre en place

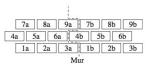
Unría Parallélisme - 2025

Un aperçu du parallélisme

• Travail d'un maçon montant un mur de briques

	13		14		15		16		17		18
7		8		9		10		11		12	
	1		2		3		4		5		6
					N	Anr					

- Seul il procède par rangées
 - Lent $! \rightarrow \text{séquentiel}$


Parallélisme - 2025

94

Un aperçu du parallélisme

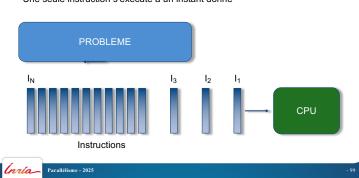
• Travail de deux maçons (a et b) montant un mur de briques

- · Chacun s'attribue une portion de mur pour travailler
- · Plus efficace mais
 - b a plus de chemin à faire pour récupérer les briques
 - Ils se gènent pour prendre les briques
- Variantes
 - a travaille de droite à gauche, b commence plus vite mais pbs de synchronisation
 - a lance les briques à b quand il en prend une pour lui

Unría Parallélisme - 2025

Un aperçu du parallélisme, suite

- · Quelques réflexions sur l'exemple
 - Plus efficace que le travail d'un seul maçon mais
 - Plus de travail en général car organisation entre les maçons
- En général
 - Pour avoir une application parallèle, il faut que l'application soit décomposable en sous-problèmes suffisamment indépendants
 - Il faut pouvoir organiser le travail à répartir.
 - Surcoût dû à la répartition du travail (transmission des briques)
 - Trouver le meilleur algorithme parallèle ...
 - Pas forcement celui qui est le plus efficace en séquentiel!


lnría

Parallélisme - 2025

97

Retour aux ordinateurs

- Les programmes sont généralement conçus pour s'exécuter sur des processeurs séquentiels
 - Unité centrale (CPU) unique
 - Application découpée en suite d'instructions exécutées l'une après l'autre
 - Une seule instruction s'exécute à un instant donné

Qu'espère-t-on?

Avoir un bon speed-up! Facteur d'accélération

- Idéalement, on espère avoir une accélération de p sur p processeurs !

Malheureusement, c'est rarement le cas (gain inférieur à p)

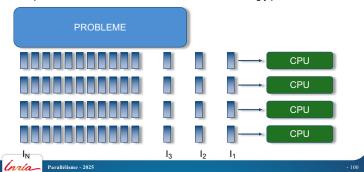
- · Parties séquentielles d'un algorithme
- Problèmes de surcoût (overhead) dus à des calculs redonnants, les coûts de transfert de données (mémoire, disque, réseau)

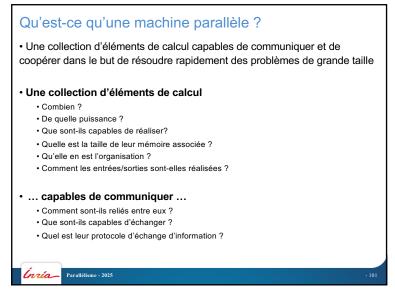
Parfois le gain est supérieur à p

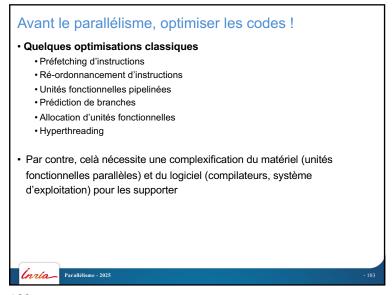
- · Appelé speed-up superlinéaire
- Grâce à des différences de vitesse mémoire (mémoire vive vs caches), moins de calcul grâce au parallélisme (recherche dans des arbres)
- Applications pour lesquelles l'exécution sur un processeur est impossible (durée infinie d'exécution)

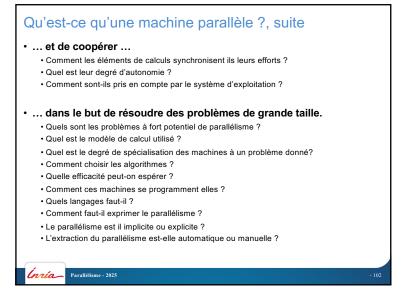
lnria

Parallélisme - 2025


00


98


Parallélisme


Sous la forme la plus simple, on utilise plusieurs ressources pour résoudre un problème

- Problème divisé en sous-parties indépendantes (si possible)
- Utilisant plusieurs CPU
- Si pas de communications entre les CPUs : "embarrasingly parallel" !

Comment trouver le parallélisme ?

- · Partir d'un langage séguentiel ?
- · L'application a un parallélisme intrisèque
- Le langage de programmation choisi ne possède pas d'extension "parallèle"
- → Le compilateur, le système d'exploitation et/ou le matériel doivent se débrouiller pour trouver le parallélisme caché!
- Fonctionnement correct pour quelques applications trivialement parallèles (parallélisation de boucles imbriquées simples par exemple)
- · Mais en général, résultats décevants et pbs liés à la dynamicité (pointeurs en C par exemple)

Parallélisme - 2025

105

Autre approche: la coopération

Le programmeur et le compilateur travaillent ensemble

- · L'application a un parallélisme intrinsèque
- Le langage possède des extensions permettant d'exprimer le parallélisme
- Le compilateur va traduire le programme pour des unités multiples
- · Le programmeur donne des conseils au compilateur sur les zones qu'il faut optimiser, quelles sont les boucles parallèles, ...
- Le compilateur, en partant des informations qu'il possède sur le matériel (taille des caches, nombre d'unités parallèles, informations sur les performances), va pouvoir générer un code performant.

Parallelisme "automatique" dans les processeurs actuels

- · Parallélisme au niveau du bit (BLP, Bit Level Parallelism)
 - Dans les opérations flottantes
- · Parallélisme d'instructions (ILP, Instruction Level Parallelism)
 - Exécuter plusieurs instructions par cycle d'horloge
 - ThLP (Thread level parallelism: multithreading)
- Parallélisme des gestionnaires de mémoire
 - Recouvrir les accès mémoire avec le calcul (prefetch)
 - Opérations vectorielles en parallèle (A[*] ← 3×A[*])
- · Parallélisme au niveau du système
 - Exécuter des tâches différentes sur des processeurs (ou des cores) différents
 - fork [func1(), func2()], ioin [*]
 - Threads, join
- · Limites à ce parallélisme "implicite"
 - Niveau d'intelligence des processeurs et des compilateurs
 - Complexité des applications

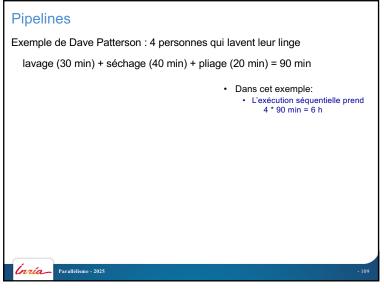
Parallélisme - 2025

- Nombre d'éléments en parallèle

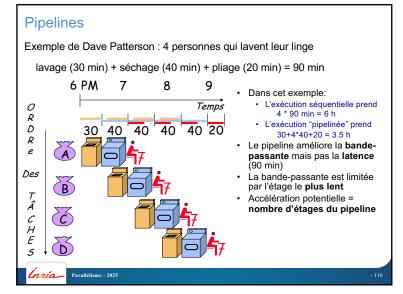
106

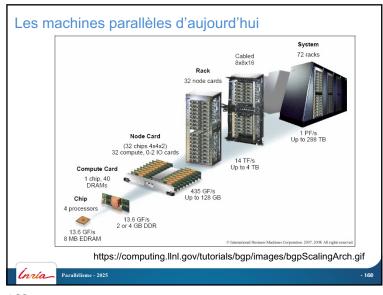
Pipelines

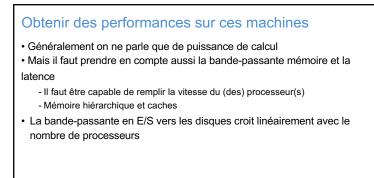
Exemple de Dave Patterson : 4 personnes qui lavent leur linge


lavage (30 min) + séchage (40 min) + pliage (20 min) = 90 min

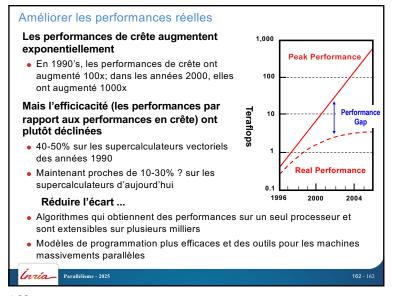
1 seule machine à laver, 1 sécheur, 1 machine à plier

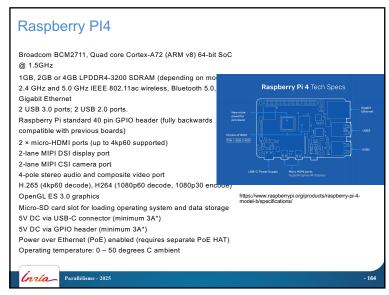

Temps Séquentiel?

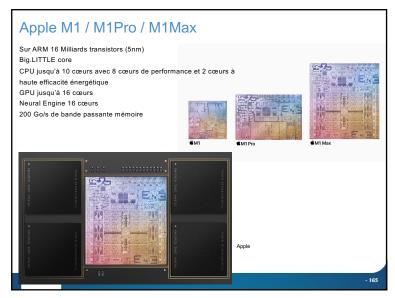

Temps Parallèle?


Unría Parallélisme - 2025









Parallélisme - 2025

Challenges à relever

- · Les applications parallèles sont souvent très sophistiquées
 - Algorithmes adaptatifs qui nécessitent un équilibrage dynamique Comment prouver un programme parallèle ? Comment le prouver formellement (avec une machine)?
- · Le parallélisme multi-niveaux est difficile à gérer
- La taille des nouvelles machines donnent des problèmes d'efficacité
 - Problèmes d'extensibilité déséquilibrage de charge
 - Goulots d'étranglement et en communication et/ou en entrées/sorties
 - Parallélisation insuffisante ou inefficace
 - Fautes et/ou pannes
 - Gestion de l'énergie
- Difficulté d'obtenir les meilleures performances sur les nœuds eux-mêmes
 - Contention pour la mémoire partagée
 - Utilisation de la hiérarchie mémoire sur les processeurs multi-cores
 - Influence du système d'exploitation

Parallélisme - 2025

Parallélisme en 2025...

- · Quelles applications vont (bien) tirer partie du parallélisme ?
 - Est-ce qu'il faudra les redévelopper from scratch ?
- Est-ce que tous les programmeurs devront être des programmeurs de machines parallèles?
 - Il faut des nouveaux modèles logiciels
 - Essayer de cacher le parallélisme au maximum
 - Le comprendre est une nécessité!
- L'industrie parie sur ces changements mais encore beaucoup de travail à effectuer

166

Conclusions

· L'ensemble des machines parallèles est constitué d'un ensemble (très) large d'éléments

- depuis des unités parallèles dans les processeurs
- des desktop Grids (a la boinc)
- Des edge/fog ... IoT
- Jusqu'à des datacenters connectés à travers le monde c'est la base du cloud (ex : Netflix utilise 300 000 processeurs pour réencoder ses films)
- Champ d'étude du parallélisme
 - Architectures
 - Algorithmes
 - Logiciels, compilateurs,
 - Bibliothèques
 - Environnements
- · Changements historiques importants
 - Jusque dans les années 90, réservées à des gros calculs de simulation
 - Aujourd'hui, parallélisme dans tous les processeurs (des téléphones aux
 - -supercalculateurs), parallélisme dans la vie courante (iPad, smartphones)

Unría Parallélisme - 2025

- 168

