A Distributed Shared Buffer Space
for Data-intensive Applications

Renaud Lachaize Jorgen Sveerke Hansen

Sardes Project Department of Computer

Inria Rhone-Alpes Science

Grenoble, France University of Copenhagen,
Denmark

5th Distributed Shared Memory Workshop (DSM 2005) — Cardiff, UK - 2005-05-11



Context

Distributed applications/services running on
clusters of servers

Involved with intensive data transfers

Work developed for a cooperative storage
framework

B We speculate that it may also be useful for other
target applications (e.g. multimedia servers)




Motivation (1/2)

Data servers are hard to tune and optimize in
a generic fashion

B Several parameters may vary significantly:
[0 Node & network configurations

[0 Topology: central server, symmetric, ...

B Some nodes may act only as “message routers” that
do not access the data

[0 Traffic patterns
B Workload characteristics
B Maximize client performance (throughput / latency)
B Minimize load on server nodes
B Constraints for control messages and data transfer
may differ

=> Need for several data transfer strategies




Motivation (2/2)

Maintaining multiple versions of the
server’s code is complex
B Data transfers impact most parts of the code

Using a hardware-independent
communication API is not enough

B Either no flexibility regarding the transfer
strategy for a given interconnect family

B Or only considering “direct” communication
between two hosts

0 What about router nodes ?




Key Ideas

“True” Distributed Shared Memory
(DSM) systems have usually been
employed to program HPC
applications easily

We propose a restricted form of DSM
for flexible data exchange among
servers

B Coherency issues are left to the
application

Main principle : decoupling control

messages and data transfers




Outline

Introduction

Concepts

B Buffer Aggregates

B Transfer modules

B Putting it all together

Programming model
Examples & experiments




Application data exchange

Components of a distributed
application exchange data buffers
through a shared buffer space

Buffers are explicitly exported to and
imported from this shared buffer
space at the application level

Shared buffers are represented by
buffer aggregates




Buffer Aggregate (BA)

[0 Ordered list of data buffers

[0 Helps manipulation of data without memory copy operations
(appending headers, combining/splitting buffers, ...)

4 metadata
slice #1 slice #2
length=4096 [« » length=4096 |«—» -
AN N
\ N\ N\, /

e

data buffer #1

e

data buffer #2




Buffer aggregate (2)

[0 Concept and API close to previous work such as IOLite

B create empty BA, import buffers from the OS, append
a slice to the BA, get context object, get next slice
from context object, ...

B Unlike IOLite, current prototype does not provide
completely unified buffering and caching within an OS
(only within the framework)



Global buffer address space

O
O

O

A buffer aggregate is associated to a home node (who created it)

The contents of the BA can be mapped to a cluster wide address
space

A cdopy of the global metadata can be communicated to other
nodes

On a given node, at a given time, we can have:
B a global BA instance (using global data buffer addresses)
- reference to data slices on the home node
and/or
B a local BA instance (using local pointers to data buffers)
- enable local access to the slices

All updates to the buffer contents are eventually propagated to the
home node

10



Buffer mappings

Establishment/removal of a local
mapping are managed by the
framework

Programmer indicates need for local
access to the data buffers through
request for a context object

BA framework relies on underlying
code module (IODSM) for data
transfers

11



Different IODSM implementations
can coexist

B Every implementation is associated with
both

[0 a communication API

B hardware dependent (eg. Myrinet GM, SCI
IRM) or not (eg. sockets)

[] a transfer strategy, defined by:
B a transfer mechanism
= “real data copy”: data packet, RDMA
= remote memory mapping (SCI)
B a communication pattern (push/pull)

12



IODSM implementations

Any IODSM must implement the following
interface:

map_local_to_iodsm

map_iodsm_to_local

update_local_from_iodsm

update_iodsm_from_local

unmap_local

unmap_global

These functions are only called by the BA
infrastructure, not by the application programmer

13



Putting it all together

[0 At the application level, nodes exchange control
messages

B Network independence achieved
O with a hardware-independent API
[0 or with a modular structure for the application

B A control message includes one (or several) global
buffer aggregate(s)

[0 BA serialization
B Default mechanism only serializes global BA instance

B Other mechanisms can be defined

=> Decoupling between control messages and data
transfers is not mandatory

14



Legend :

. local BA instance

Q global

- local reference
— = global reference

BA instance

map_local_to_iodsm

global buffer address space

Y

-

fmmap_global

B

———————————————————————————————————————————————————————————————

map_iodsm_to_local

A picture may help (?!)

—~

N
\

\

l

data copy

update_lpcal_from_ic

control
message

with

‘unmap_local

pdsm

6

local
buffer

B

data copy

update_ipdsm_from |

with

local

\@:al

address space

/

node 1

(home node)

] B local
buffer
node 2



Outline

Introduction

Concepts

B Buffer Aggregates

B Transfer modules

B Putting it all together

Programming model
Examples & experiments

16



Programming model (1/3)

Node A (client)

prologue

b = iobuf_import(buffers)
iobuf_globalize(b)

p = iobuf_pack(b)
send(data_request + p)

17



Programming model (2/3)

Node B (server)
receive(data_request + p)

d = iobuf_unpack(p)

c = iobuf_gen_start(d, local)
perform data operations
iobuf_gen_end(c)
acknowledge request
iobuf_destroy(d)

18



Programming model (3/3)

Node A (client)
receive ack
iobuf_unglobalize(b)
epilogue
iobuf_destroy(b)

19



Examples and experiments

[0 2 Examples on Gigabit Ethernet illustrating the
benefits of decoupling control and data flow

B Assuming direct communication is possible between
any pair of nodes

[0 Overhead of the framework on SCI and Gigabit
Ethernet

[0 Test setup:

m Athlon 1800, 1 GB DDRAM, AMD 760MP chipset,
Broadcom 5701 GigE and Dolphin D330 adapters,
linux kernel 2.4.20

20



Example 1: Delayed allocation of
data payload

Ll

Server managing different priorities for data-sending
clients

B Low priority requests can accumulate at the server

B A pull-based write approach can help lower the
memory footprint on the server

Experiment with 1 high priority and 3 other clients (all
write-intensive)

B Delayed allocation helps reducing the memory load
on the server

0 From 778 to 335 MB (56% lower)

B Moderate increase in latency (9%) compared to joint
request and data transfers

21



Example 2: Elimination of data
copies on router nodes

Central server routing client (read &

write) requests to back ends

B Decoupling control and data flow allows
to bypass the router for data transfers

[0 Latency reduction up to:
B 9% for small transfers (4-8 kB)
B 43% for bulk transfers (64-128 kB)

22



Overhead of the framework

[0 Reengineering of our distributed storage application

B For a given transfer strategy, performance comparison of
IODSM based version versus a “hard-wired” version

[0 Gigabit-Ethernet : packet-based, sender-driven strategy
[0 SCI : RDMA, server-driven strategy

0 Various I/O benchmarks with cold caches

B mkfs, file and directory copy, Bonnie, linux kernel compilation,
etc.

B monitoring of latency of individual I/O requests and total
running time

[0 Results
B 3-5% overhead, for small (4-8 kB), sequentially synchronized
requests

B No noticeable overhead otherwise

23



Conclusion

O

Proposition : a programming model and the
associated framework that allow

B to tune the data transfers for a given setup
(networking hardware, topology

B by (possibly) decoupling control messages and data
transfers

B with no modification to the core applicative code and
an acceptable overhead

Perspectives

B Dynamically choose transfer strategy according to
the operating conditions

0 Handled either with a meta-IODSM or at the
application level

B Open issue : support for a wider ranfge of data access
patterns (e.g. partial updates of buffers)

24



	A Distributed Shared Buffer Space for Data-intensive Applications
	Context
	Motivation (1/2)
	Motivation (2/2)
	Key Ideas
	Outline
	Application data exchange
	Buffer Aggregate (BA)
	Buffer aggregate (2)
	Global buffer address space
	Buffer mappings
	Different IODSM implementations can coexist
	IODSM implementations
	Putting it all together
	A picture may help (?!)
	Outline
	Programming model (1/3)
	Programming model (2/3)
	Programming model (3/3)
	Examples and experiments
	Example 1: Delayed allocation of data payload
	Example 2: Elimination of data copies on router nodes
	Overhead of the framework
	Conclusion

