
A Distributed Shared Buffer Space
for Data-intensive Applications

Jørgen Sværke Hansen
Department of Computer
Science
University of Copenhagen,
Denmark

Renaud Lachaize
Sardes Project
Inria Rhône-Alpes
Grenoble, France

5th Distributed Shared Memory Workshop (DSM 2005) – Cardiff, UK - 2005-05-11

2

Context
Distributed applications/services running on
clusters of servers

Involved with intensive data transfers

Work developed for a cooperative storage
framework

We speculate that it may also be useful for other
target applications (e.g. multimedia servers)

3

Motivation (1/2)
Data servers are hard to tune and optimize in
a generic fashion

Several parameters may vary significantly:
Node & network configurations
Topology: central server, symmetric, …

Some nodes may act only as “message routers” that
do not access the data

Traffic patterns
Workload characteristics
Maximize client performance (throughput / latency)
Minimize load on server nodes
Constraints for control messages and data transfer
may differ

=> Need for several data transfer strategies

4

Motivation (2/2)
Maintaining multiple versions of the
server’s code is complex

Data transfers impact most parts of the code

Using a hardware-independent
communication API is not enough

Either no flexibility regarding the transfer
strategy for a given interconnect family
Or only considering “direct” communication
between two hosts

What about router nodes ?

5

Key Ideas

“True” Distributed Shared Memory
(DSM) systems have usually been
employed to program HPC
applications easily
We propose a restricted form of DSM
for flexible data exchange among
servers

Coherency issues are left to the
application

Main principle : decoupling control
messages and data transfers

6

Outline

Introduction
Concepts

Buffer Aggregates
Transfer modules
Putting it all together

Programming model
Examples & experiments

7

Application data exchange

Components of a distributed
application exchange data buffers
through a shared buffer space
Buffers are explicitly exported to and
imported from this shared buffer
space at the application level
Shared buffers are represented by

buffer aggregates

8

Buffer Aggregate (BA)
Ordered list of data buffers

Helps manipulation of data without memory copy operations
(appending headers, combining/splitting buffers, …)

slice #1

length=4096

slice #2

length=4096 …

data buffer #1 data buffer #2

metadata

9

Buffer aggregate (2)

Concept and API close to previous work such as IOLite

create empty BA, import buffers from the OS, append
a slice to the BA, get context object, get next slice
from context object, …

Unlike IOLite, current prototype does not provide
completely unified buffering and caching within an OS
(only within the framework)

10

Global buffer address space
A buffer aggregate is associated to a home node (who created it)
The contents of the BA can be mapped to a cluster wide address
space
A copy of the global metadata can be communicated to other
nodes

On a given node, at a given time, we can have:
a global BA instance (using global data buffer addresses)

reference to data slices on the home node
and/or

a local BA instance (using local pointers to data buffers)
enable local access to the slices

All updates to the buffer contents are eventually propagated to the
home node

11

Buffer mappings

Establishment/removal of a local
mapping are managed by the
framework
Programmer indicates need for local
access to the data buffers through
request for a context object
BA framework relies on underlying
code module (IODSM) for data
transfers

12

Different IODSM implementations
can coexist

Every implementation is associated with
both

a communication API
hardware dependent (eg. Myrinet GM, SCI
IRM) or not (eg. sockets)

a transfer strategy, defined by:
a transfer mechanism

“real data copy”: data packet, RDMA
remote memory mapping (SCI)

a communication pattern (push/pull)

13

IODSM implementations

Any IODSM must implement the following
interface:

map_local_to_iodsm
map_iodsm_to_local
update_local_from_iodsm
update_iodsm_from_local
unmap_local
unmap_global

These functions are only called by the BA
infrastructure, not by the application programmer

14

Putting it all together
At the application level, nodes exchange control
messages

Network independence achieved
with a hardware-independent API
or with a modular structure for the application

A control message includes one (or several) global
buffer aggregate(s)

BA serialization
Default mechanism only serializes global BA instance
Other mechanisms can be defined
=> Decoupling between control messages and data

transfers is not mandatory

BA

local address space

local
buffer

B

unmap_global

B

control
message

local
buffer

B

map_iodsm_to_local

data copy with
update_local_from_iodsm
data copy with
update_iodsm_from_local

Legend :

local BA instance

global BA instance
local reference
global reference

unmap_local

A picture may help (?!)
global buffer address space

map_local_to_iodsm

node 1 (home node) node 2

16

Outline

Introduction
Concepts

Buffer Aggregates
Transfer modules
Putting it all together

Programming model
Examples & experiments

17

Programming model (1/3)

Node A (client)
prologue
b = iobuf_import(buffers)
iobuf_globalize(b)
p = iobuf_pack(b)
send(data_request + p)

18

Programming model (2/3)

Node B (server)
receive(data_request + p)
d = iobuf_unpack(p)
c = iobuf_gen_start(d, local)
perform data operations
iobuf_gen_end(c)
acknowledge request
iobuf_destroy(d)

19

Programming model (3/3)

Node A (client)
receive ack
iobuf_unglobalize(b)
epilogue
iobuf_destroy(b)

20

Examples and experiments
2 Examples on Gigabit Ethernet illustrating the
benefits of decoupling control and data flow

Assuming direct communication is possible between
any pair of nodes

Overhead of the framework on SCI and Gigabit
Ethernet

Test setup:
Athlon 1800, 1 GB DDRAM, AMD 760MP chipset,
Broadcom 5701 GigE and Dolphin D330 adapters,
linux kernel 2.4.20

21

Example 1: Delayed allocation of
data payload

Server managing different priorities for data-sending
clients

Low priority requests can accumulate at the server
A pull-based write approach can help lower the
memory footprint on the server

Experiment with 1 high priority and 3 other clients (all
write-intensive)

Delayed allocation helps reducing the memory load
on the server

From 778 to 335 MB (56% lower)
Moderate increase in latency (9%) compared to joint
request and data transfers

22

Example 2: Elimination of data
copies on router nodes

Central server routing client (read &
write) requests to back ends

Decoupling control and data flow allows
to bypass the router for data transfers

Latency reduction up to:
9% for small transfers (4-8 kB)
43% for bulk transfers (64-128 kB)

23

Overhead of the framework
Reengineering of our distributed storage application

For a given transfer strategy, performance comparison of
IODSM based version versus a “hard-wired” version

Gigabit-Ethernet : packet-based, sender-driven strategy
SCI : RDMA, server-driven strategy

Various I/O benchmarks with cold caches
mkfs, file and directory copy, Bonnie, linux kernel compilation,
etc.
monitoring of latency of individual I/O requests and total
running time

Results
3-5% overhead, for small (4-8 kB), sequentially synchronized
requests
No noticeable overhead otherwise

24

Conclusion
Proposition : a programming model and the
associated framework that allow

to tune the data transfers for a given setup
(networking hardware, topology)
by (possibly) decoupling control messages and data
transfers
with no modification to the core applicative code and
an acceptable overhead

Perspectives
Dynamically choose transfer strategy according to
the operating conditions

Handled either with a meta-IODSM or at the
application level

Open issue : support for a wider range of data access
patterns (e.g. partial updates of buffers)

	A Distributed Shared Buffer Space for Data-intensive Applications
	Context
	Motivation (1/2)
	Motivation (2/2)
	Key Ideas
	Outline
	Application data exchange
	Buffer Aggregate (BA)
	Buffer aggregate (2)
	Global buffer address space
	Buffer mappings
	Different IODSM implementations can coexist
	IODSM implementations
	Putting it all together
	A picture may help (?!)
	Outline
	Programming model (1/3)
	Programming model (2/3)
	Programming model (3/3)
	Examples and experiments
	Example 1: Delayed allocation of data payload
	Example 2: Elimination of data copies on router nodes
	Overhead of the framework
	Conclusion

