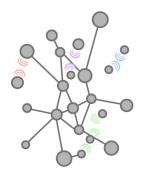
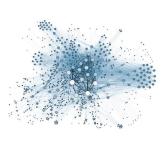
A Large-Scale Wired Network Energy Model for Flow-Level Simulations

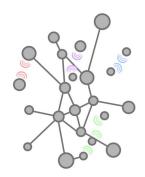
Loic Guegan, Betsegaw Lemma Amersho, Anne-Cécile Orgerie, Martin Quinson


Univ Rennes, Inria, CNRS, IRISA, Rennes, France


June 2019

Context

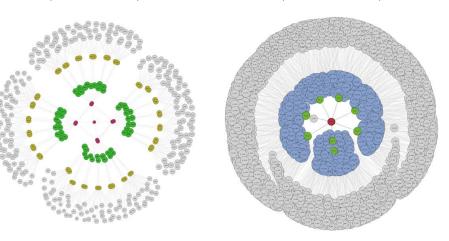
Constraints


- IoT, Fog, Cloud
- A lot of devices
- Energy consuming

Context

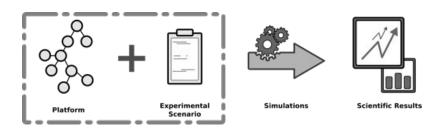
- IoT, Fog, Cloud
- A lot of devices
- Energy consuming

Simulations


- Reproducible experiments
- Save time and money
- Use any platform

Italy ISP [1]

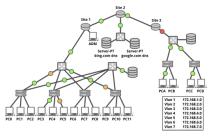
(372 Nodes, 718 Links)


3-tiers Data Center

(2072 Nodes, 2696 Links)

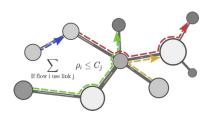
[1] L. Chiaraviglio, M. Mellia, et F. Neri, « Energy-aware backbone networks: a case study », in Communications Workshops, 2009. ICC Workshops 2009. IEEE International Conference on, 2009, p. 1–5.

Problem Statement



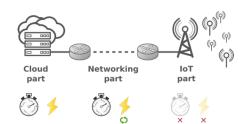
Simulator challenges

- Scalability ⇒ Big enough and Fast enough
- Validity ⇒ Ensure acceptable accuracy


Network Simulators Performance Models

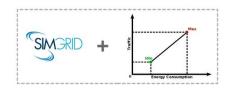
- Full network stack
- Close to reality
- Very slow
- Hard to instantiate

Flow-Level


- High level of abstraction
- Fast
- Easier to instantiate
- Challenging validity

Wired Networks Energy Simulators

ns-3/ECOFEN

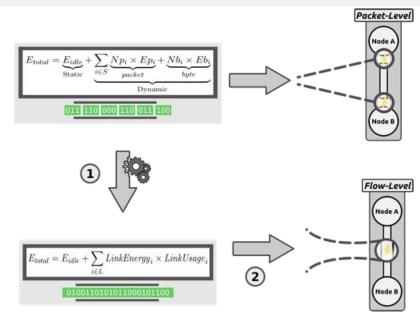

- \implies Accurate
- ⇒ Scalability 😦
- GreenCloud (ns-2)
 - ⇒ Cloud Only •
 - \Longrightarrow Scalability
- SimGrid
 - ⇒ High Scalability ••
 - ⇒ Energy Model

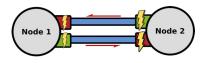
Methodology

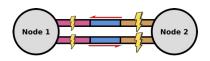
Step $1 \Longrightarrow$ Energy Models

- Propose energy models
- SimGrid integration

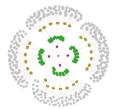
Step 2 \Longrightarrow Validation

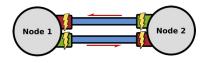

- Instantiation (How ?)
- Validity limits (When ?)

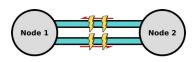

Flow-Level Network Energy



Flow-Level Network Energy

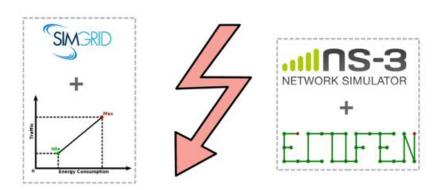

Heterogeneous Energy Model




Properties:

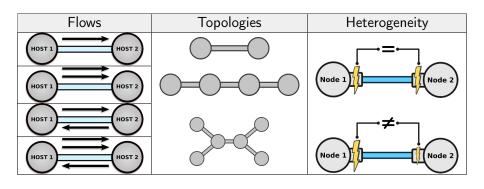
- Fit with reality
- Harder instantiation
- A lot of links ! $\times 3$ ltaly ISP: 718 \rightarrow 2154

Homogeneous Energy Model

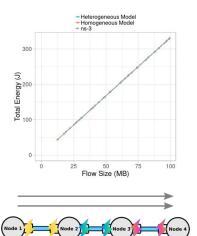


Properties:

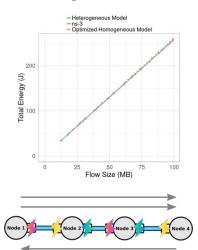
- Instantiation \rightarrow Easy
- Faster
- Homogeneous Platforms



Validation

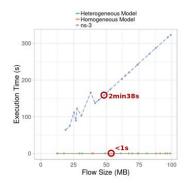

A.-C. Orgerie et al., « Simulation Toolbox for Studying Energy Consumption in Wired Networks », in CNSM: International Conference on Network and Service Management, 2017, p. 1–5.

Micro-Benchmarks

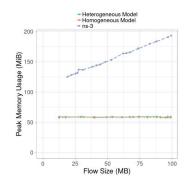


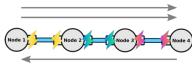
Validity

Homogeneous Platform

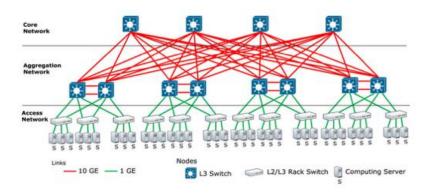


Heterogeneous Platform

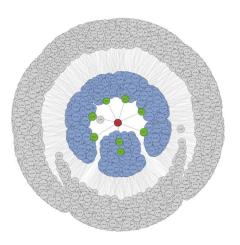



Scalability

Execution Time



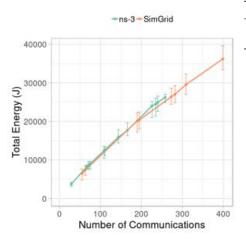
Memory Usage



A real use case from the literature

D. Kliazovich, P. Bouvry, et S. U. Khan, « GreenCloud: a packet-level simulator of energy-aware cloud computing data centers », The Journal of Supercomputing, vol. 62, n°3, p. 1263-1283, déc. 2012

2072 Nodes, 2696 Links

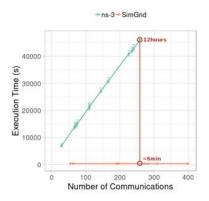


Parameters:

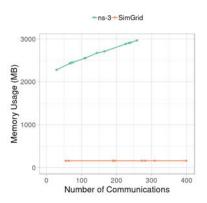
- Heterogeneous Platform
- #Communications:
 - $\bullet \ \mathsf{ns}\text{-}3 \to [10,300]$
 - SimGrid \rightarrow [10, 1000]
- Energy Models:
 - 4 Homogeneous
 - 2 ns-3

Overall port energy consumption

Power Profile



BW	Energy/Byte	Energy/Packet
1Gbps	3.4nJ	197.2nJ
10Gbps	14nJ	1504nJ


Relative Error < 4%

Scalability

Execution Time

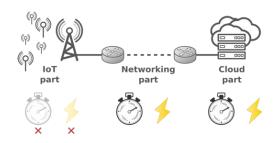
Memory Usage

Conclusion

Problem:

- Futur platforms are larger
- No scalable energy models

Major Contributions:


- Efficient and accurate energy model of wired networks
- Validation process

Reproducible Artefacts

- Energy model ⇒ Part of SimGrid release
- Experiments: https://gitlab.inria.fr/lguegan/flowlvlwiredenergy

loic.guegan@irisa.fr

WIFI performance/energy models

Futur work:

- Wireless Performance Model
- Wireless Energy Model