
Théorie des jeux pour la négociation entre la production
d’énergie et les tâches informatique dans un datacenter à

énergies renouvelables

Jean-Marc Pierson
Jean-Marc.Pierson@irit.fr

GreenDays, June 25th, 2019

J-M. Pierson 1 / 57



Context

J-M. Pierson 2 / 57



Data Centers and energy efficiency

Does using IT technologies have any consequences ?

) IT consumes a huge amount of energy
I sending an email with an attach file consumes as much as one low-power

bulb of high power for one hour

) Data Centers in the US consumed 91 billions of kWh in 2013
) Data Centers in Europe consumed 56 billions of kWh in 2013

Data Centers reached 4% of the global energy consumption in 2015

I increasing the energy efficiency
of data-centers

I supplying data-centers with only
green energy
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DATAZERO : an innovative data-center model
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DATAZERO : an innovative data-center model

Adapting the IT load to
the available power

&
Adapting the power to
the incoming IT load

while using a mix of only green energy sources (without grid power usage)
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DATAZERO : the big picture
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Negotiation between ITDM and PDM

J-M. Pierson 8 / 57



Context and overview of the problem



Problem statement

Negotiation
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Infrastructure and negotiation

Optimization 
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evaluation 

Separated IT and electrical optimizations

I Ability to evaluate power plan impact
I Internal objective (utility)
I Black box functions RT ! R
I Computationally expensive
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Multi-objective aspect

I Each DM has one or more objectives to satisfy
I Objectives may differ between DM

I QoS related for ITDM, environmental impact for PDM

Managing different objectives

3 options studied :
I Finding a set of good solutions (set of possible trade-offs) (Pareto-based

approach)
I Maximizing the weighted sum of the utilities, under the constraint of a

distance between the two resulting profiles (SAN approach)
I Playing a game between the PDM and the ITDM so that each one

maximizes its profit (GAN approach)

J-M. Pierson 12 / 57



Multi-objective aspect

I Each DM has one or more objectives to satisfy
I Objectives may differ between DM

I QoS related for ITDM, environmental impact for PDM

Managing different objectives

3 options studied :
I Finding a set of good solutions (set of possible trade-offs) (Pareto-based

approach)
I Maximizing the weighted sum of the utilities, under the constraint of a

distance between the two resulting profiles (SAN approach)
I Playing a game between the PDM and the ITDM so that each one

maximizes its profit (GAN approach)

J-M. Pierson 12 / 57



Pareto front
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Pareto front : Multi-objective optimization and heuristics

I Find Pareto front (best
trade-offs)
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Multi-Objective Evolutionary Algorithms

I Well studied area, various approaches
I Focused on SPEA2 (genetic algorithm). Maximization of the

hypervolume of solutions
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SAN and GAN : Turn based approaches
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Overview of SAN and GAN approaches

Main points
I Both algorithms are based on scheduling

I DMs generate multiple scheduling solutions
I Then we find negotiation solution from those scheduling solutions

I Both SAN and GAN negotiates in turn-based strategy
I When ITDM runs scheduling (to follow PDM), PDM does not, and vice versa
I We define 2 modes : "Follow PDM" mode (FLW_PD) and "Follow ITDM"

mode (FLW_IT)
I For both SAN and GAN (for the entire of the presentation), the whole system

is executed under only 1 mode at a time

Parallel Turn-based
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SCHEDULING BASED NEGOTIATION (SAN)
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SAN algorithm

Definitions
I The set of ITDM profiles is {x1, x2, ..., xm}
I The set of PDM profiles is {y1, y2, ..., yn}
I Depending on each specific context, a profile may also be named "hint"

or "candidate"
2 stages

I Stage 1 : Checking for matched pair
I Decision variable : the pair {PDM profile, ITDM profile} :

{x 2 {x1, x2, ..., xm}, y 2 {y1, y2, ..., yn}}
I Objective : maximize sum of utility

max
{x,y}

(u(x) + u(y)) (1)

I Constraint : d(x , y) < ✏
where d() is the distance between x and y

I If we can’t find any matched pair, run Stage 2 : Negotiating.
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SAN Algorithm

Stage 2 : Negotiating :
I General mechanism

I At a time, the whole system is executed under only 1 mode : follow ITDM
(FLW_IT) or follow PDM (FLW_PD)

I NM decides to switch between two modes using "verify quality of
rescheduling"

I Repeat until matched pair found
I Two modes :

I FLW_IT : Follow the ITDM
I NM sends the ITDM hints to PDM
I PDM uses an algorithm (e.g. greedy, linear program) to find multiple scheduling

solutions as candidates
I PDM evaluates quality of candidates by "weighted similarity" to hints
I PDM selects candidates with high "weighted similarity" as its news hints and

sends back to NM
I FLW_PD : Similar to FLW_IT, following the PDM
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Algorithm

ITDM NM

ITDM hints

check for matched pair

PDM

Final solution Final solution

reschedule
evaluate candidates,

select new hints

ITDM hints

New PDM hints

reschedule,
evaluate candidates,
select new hints

PDM hints

Checking for 
matched pair

FLW_IT

FLW_PD

PDM hints

verify quality of rescheduling

New ITDM hints

verify quality of rescheduling

Negotiating

Verify quality 
of rescheduling *

(*) verfify quality of rescheduling: compare “distance between the best ITDM hint and the best PDM hint” before and after rescheduling
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Formulation : Distance measurement

I Mean Square Error between profile x = {x1, ..., xT} and y = {y1, ..., yT} :

d(x , y) =
1
T

TX

i=1

(xi � yi)
2 (2)

I Pearson correlation between them :

d(x , y) =

qPT
i=1 (xi � x̄)2

qPT
i=1 (yi � ȳ)2

PT
i=1 (xi � x̄)(yi � ȳ)

, (3)
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Formulation : Weighted similarity

w(x ,Y ) =
NX

n=1

(u(x) + u(yn))
1

d(x , yn)
, (4)

Or, if we want to adjust impact of utility and distance :

w(x ,Y ) =
NX

n=1

✓
↵(u(x) + u(yn)) + (1� ↵)

1
d(x , yn)

◆
, (5)

where Y = {y1, ..., yn, ...yN} and yn = {yn
1 , ..., y

n
T}, and the values are

normalized to (0,1]
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Example

Follow ITDM

step ITDM NM PDM

1

FLW_IT

2

3

Evaluate

FLW_PD

...

x̂
1

x̂
2

x̂
1

x̂
2
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y
1

u=15

y
2

u=45
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w=12+10=22

w=30+4=34

Hints Candidates

ŷ '
1

repeat

min{δ( x̂ , ŷ ' )}

ŷ
1

Recheduling

x̂ ŷ

ŷ '

d ( x̂1 , y1)=5

d ( x̂2 , y1)=2

d ( x̂1 , y2)=2

d ( x̂2 , y2)=5

<min {δ( x̂ , ŷ)}

PDM profile

ITDM profile

false true

Notation:
- candidates don’t have “hat”
- hints have “hat”
- hints of next round have “prime”

Scheduling example

Job

power

time
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Example

Follow PDM
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GAME BASED NEGOTIATION (GAN)
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Model

ITDM: 

● Objective: 

– max {payment from users – payment to PDM}

● Decision variables: 

– price

– scheduling

PDM:

● Objective: 

– max {payment from ITDM – (opex + capex cost}

● Decision variables: 

– purchased power

– scheduling

12

21

1

2

2

1

revenue - cost

Hybrid model

● Non-cooperative: each player maximizes their 
own utility

● Cooperative: sometimes a player follows the 
other’s suggestion

Supplier-buyer game diagramGame players

Game model
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Model

Motivation
I The buying-selling nature of the system

I Selling : PDM is selling power! controls the price
I Buying : ITDM is buying power! decide the order/purchase

I Advantages of pricing
I Power source availability can be reflected in price
I Through price, pattern of order reflects pattern of PDM’s desirable supply!

drive demand toward supply
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Model

Preliminary
I Players are selfish

I They try to maximize their utility
I Each player negotiates just because he foresees some benefit
I We introduce incentive pricing mechanism : each player tries to find offers

that are attractive to the other player.
I An unexpected situation may occurred : all players can’t foresee their

benefit and stop negotiate without reaching any agreement.
I From the view of the whole system, this situation is unacceptable, no

transaction is done, the players obtain zero utility
I If this situation occurred, we introduce sacrifice mechanism, in which the

players gradually sacrifice their utility until they reach an agreement.
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Definition 1

I T : Time window
I x̂ , xIT , xPD are profiles
I x̂ = {x̂1, x̂2, ..., x̂T}, xIT = {xIT

1 , xIT
2 , ..., xIT

T } xPD = {xPD
1 , xPD

2 , ..., xPD
T }

time step

job 1
job 2 job 3

job

x
IT

1 2 3

power

(a)

x
PD

available energy

1 2 3

power

time step

(b) time step

x
PD

x̂

x
IT

power

1 2 3
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Definition 2

I ⇡ = {⇡1,⇡2, ...,⇡T}, ⇡IT = {⇡IT
1 ,⇡IT

2 , ...,⇡IT
T }, ⇡PD = {⇡PD

1 ,⇡PD
2 , ...,⇡PD

T }

2006__Krause__Bargaining Stances and Outcomes in Buyer–

Seller Nego�a�ons: Experimental Results (The Journal of Supply 

Chain Management)
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Negotiation Model

Turn-based play
I There are 3 variables :

I ITDM local variable it_mod = {FLW_IT ,FLW_PD},
I PDM local variable pd_mod = {FLW_IT ,FLW_PD},
I global variable mod = {FLW_IT ,FLW_PD}.

I The mode of the system is only depended on mod . Two local variables
only show the capability of the DMs.

I At a time, the system is executed under only one mode
I However, each player is selfish, he always wants the other player to

follow himself, i.e., it_mod = FLW_IT , pd_mod = FLW_PD. In this
situation, the negotiation can’t be processed.

I Therefore
I if ITDM is also capable of following PDM, we will set it_mod = FLW_PD
I if PDM is also capable of following ITDM, we set pd_mod = FLW_IT
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Negotiation Model

Negotiation solution
I Stopping criteria : x̂ approximates both xIT and xPD

I Final solution is the last x̂

Incentive pricing mechanism :
I ITDM follows PDM : when xPD and ⇡PD are attractive * :

it_cost(aspiration supply, PD incentive price) < it_cost(order, price) :

c(xPD,⇡PD) < c(x̂ ,⇡) (6)

I PD follows ITDM : when ITDM’s offers are attractive :
pd_revenue(aspiration order, IT incentive price) > pd_revenue(order,
price)

r(xIT ,⇡IT ) > r(x̂ ,⇡) (7)

(*) next page

J-M. Pierson 36 / 57



Negotiation Model

(*) How ⇡PD can be attractive to ITDM :
I Given :

I Definition : xPD is the PDM’s desirable supply
I Then, the cost associated with this supply is lower than the cost associated

with other supplies
I As a result

I the PDM estimates the amount of cost it can reduce when it provides the
ITDM with xPD , instead of x̂ .

I the PDM computes a ⇡PDsuch that its total utility increases

u(xPD ,⇡PD) > u(x̂ ,⇡) (8)

How ⇡IT can be attractive to PDM : similarly
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Negotiation Model

Sacrifice mechanism
I Unexpected situation : both ITDM and PDM are not capable of following

each other, but an agreement is not reached
I Solution : ITDM gradually increases its sacrifice variable ↵ :

↵ ↵+ � (9)

then the incentive pricing mechanism at ITDM becomes :

c(xPD,⇡PD)� ↵ < c(x̂ ,⇡) (10)

I Similarly, incentive pricing mechanism at PDM becomes :

r(xIT ,⇡IT ) + ↵ > r(x̂ ,⇡) (11)
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Algorithm

Note :
I At a time, the whole system is executed under only one mode : FLW_IT

or FLW_PD
I DMs only exchange data that have been updated/modified, other data

can be stored and reused

ITDM PDM PDMITDM
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Algorithm

Graphical interpretation of the algorithm
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ITDM Formulation

u(x ,⇡) = r(x)� c(x ,⇡) =
JX

i=1

ui(x)�
TX

k=1

⇡k xk , (12)

where
I r(·) : revenue of ITDM
I c(·) : ITDM’s payment to PDM
I J : the number of ITDM’s jobs
I ui(·) : the payment of the users’ i-th job to ITDM

The payment from users is computed based on the Amazon EC2 pricing
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PDM Formulation

u(x ,⇡,S) = r(x ,⇡)� c(x ,S) =
TX

i=1

⇡i xi �
X

j2S

cOP
j (x)cCAP

j (13)

where
I cOP

j (·) : operational rate of the j-th power source component
I cCAP

j (·) : the capital cost
I S is the number of utilized power source components
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ITDM Procedures

I it_sched() : Generate xIT from the scheduling solution, such that
I Utility u(xIT ,⇡) is maximized
I Revenue of xIT must be larger than revenue of previous round’s aspiration

order ẋ IT

I And xIT has to be closer to xPD than previous round’s aspiration order ẋ IT

xIT = arg max
x

u(x ,⇡) (14)

s.t r(x) > r(ẋ IT ) (15)

d(x , xPD) < d(ẋ IT , xPD) (16)
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ITDM Procedures

I it_place_order() : ITDM finds x̂ that maximizes the ITDM’s utility function
u(x ,⇡)

x̂ = arg max
x

u(x ,⇡) (17)

I it_est_price() : ITDM estimates new ⇡IT that is more attractive to PDM
than previous round’s IT incentive price ⇡̇IT , while keeping the ITDM’s
total utility non-decreased :

p = ⇡IT = ⇡̇IT (18)

while u(xIT , p) � u(x̂ ,⇡) (19)

⇡IT = p (20)
pi = pi + pi/N, i = 1, ...,T (21)

where N is an integer, set through experiment parameters
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PDM Procedures

I pd_propose_price(xPD) : the price ⇡ is generated such that

⇡i =
1

xPD
i

, i = 1, ...,T (22)

where xPD
i is normalized to (0,1]

I pd_est_price() : Similar to it_est_price(), PDM estimates a new ⇡PD that
is more attractive to ITDM than previous round’s PD incentive price ⇡̇PD ,
while keeping PDM’s utility non-decreased :

p = ⇡PD = ⇡̇PD (23)

while u(xPD, p) � u(x̂ ,⇡) (24)

⇡PD = p (25)
pi = pi � pi/N, i = 1, ...,T (26)
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PDM Procedures

I pd_sched() : Generate xPD from the scheduling solution, such that
I Utility u(xPD ,⇡,S) is maximized
I Cost of xPD must be smaller than cost of previous round’s aspiration supply

ẋPD

I New price ⇡ has to be closer to ⇡IT than the previous round’s price ⇡̇

xPD = arg max
x

u(x ,⇡,S) (27)

s.t c(x) < c(ẋPD) (28)

d(⇡,⇡IT ) < d(⇡̇,⇡IT ) (29)

where ⇡  pd_propose_price(x)
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Example

Simplified example
row PD-Player Common Space IT-Player
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false
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New scheduling solution

Job
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EXPERIMENT

J-M. Pierson 52 / 57



Setup of Experiment

Real PDM & ITDM
I PDM weather information : 1 month
I Time window : 3 days or 72 hours
I Timestep : 1 hour or 3,600,000 ms
I PDM sizing : ⇡1kW
I Run time : ⇡10 minutes
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Distance

I Calculation : using Pearson correlation
I Distance is not always decreasing because the profiles are evaluated by

both utility and distance
I Negotiation results depend a lot on the series of utilities from DMs
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Violation

I Calculation : sum of the amount that the ITDM profiles excesses PDM’s
profiles

I A significant reason for this result : DMs scheduling algorithms
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Power level

PDM

ITDM
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Distance

FLW_PD FLW_PD FLW_IT
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Visit www.datazero.org for more information ! !
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