Théorie des jeux pour la négociation entre la production d'énergie et les tâches informatique dans un datacenter à énergies renouvelables

> Jean-Marc Pierson Jean-Marc.Pierson@irit.fr

> GreenDays, June 25th, 2019

∃ ▶ ∢

Context

・ロト・日本・日本・日本・日本・今日・

- ⇒ IT consumes a huge amount of energy
 - sending an email with an attach file consumes as much as one low-power bulb of high power for one hour
- \Rightarrow Data Centers in the US consumed 91 billions of kWh in 2013
- \Rightarrow Data Centers in Europe consumed 56 billions of kWh in 2013

 increasing the energy efficiency of data-centers supplying data-centers with only green energy

< 回 ト < 三 ト < 三

⇒ IT consumes a huge amount of energy

- sending an email with an attach file consumes as much as one low-power bulb of high power for one hour
- \Rightarrow Data Centers in the US consumed 91 billions of kWh in 2013
- \Rightarrow Data Centers in Europe consumed 56 billions of kWh in 2013

 increasing the energy efficiency of data-centers supplying data-centers with only green energy

→ Ξ → < Ξ</p>

- ⇒ IT consumes a huge amount of energy
 - sending an email with an attach file consumes as much as one low-power bulb of high power for one hour
- ⇒ Data Centers in the US consumed 91 billions of kWh in 2013
- \Rightarrow Data Centers in Europe consumed 56 billions of kWh in 2013

Data Centers reached 4% of the global energy consumption in 2015

 increasing the energy efficiency of data-centers supplying data-centers with only green energy

- ⇒ IT consumes a huge amount of energy
 - sending an email with an attach file consumes as much as one low-power bulb of high power for one hour
- \Rightarrow Data Centers in the US consumed 91 billions of kWh in 2013
- \Rightarrow Data Centers in Europe consumed 56 billions of kWh in 2013

Data Centers reached 4% of the global energy consumption in 2015

 increasing the energy efficiency of data-centers supplying data-centers with only green energy

DATAZERO : an innovative data-center model

DATAZERO : an innovative data-center model

Adapting the IT load to the available power & Adapting the power to the incoming IT load

while using a mix of only green energy sources (without grid power usage)

DATAZERO : the big picture

3

< □ > < □ > < □ > < □ > < □ >

Outline

- 1. Context
- 2. Negotiation between ITDM and PDM Context and overview of the problem
- 3. Pareto front
- 4. SAN and GAN : Turn based approaches
- 5. SCHEDULING BASED NEGOTIATION (SAN) Formulation Example
- 6. GAME BASED NEGOTIATION (GAN)
 - Model Negotiation Model Algorithm ITDM Formulation PDM Formulation Example
- 7. EXPERIMENT

∃ ► < ∃ ►</p>

Negotiation between ITDM and PDM

- 세종 - 세

Context and overview of the problem

Problem statement

2

イロト イロト イヨト イヨト

- Ability to evaluate power plan impact
- Internal objective (utility)
- Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive

크

- Ability to evaluate power plan impact
- Internal objective (utility)
- Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive

A B F A B F

- Ability to evaluate power plan impact
- Internal objective (utility)
- Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive

< ロ > < 同 > < 回 > < 回 >

- Ability to evaluate power plan impact
- Internal objective (utility)
- Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive

< ロ > < 同 > < 回 > < 回 >

- Each DM has one or more objectives to satisfy
- Objectives may differ between DM
 - QoS related for ITDM, environmental impact for PDM

Managing different objectives

3 options studied :

- ► Finding a set of good solutions (set of possible trade-offs) (Pareto-based approach)
- Maximizing the weighted sum of the utilities, under the constraint of a distance between the two resulting profiles (SAN approach)
- Playing a game between the PDM and the ITDM so that each one maximizes its profit (GAN approach)

- Each DM has one or more objectives to satisfy
- Objectives may differ between DM
 - QoS related for ITDM, environmental impact for PDM

Managing different objectives

3 options studied :

- Finding a set of good solutions (set of possible trade-offs) (Pareto-based approach)
- Maximizing the weighted sum of the utilities, under the constraint of a distance between the two resulting profiles (SAN approach)
- Playing a game between the PDM and the ITDM so that each one maximizes its profit (GAN approach)

Pareto front

DQC

2

イロト イ団ト イヨト イヨト

Multi-Objective Evolutionary Algorithms

- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm). Maximization of the hypervolume of solutions

• • • • • • • • • • • •

Multi-Objective Evolutionary Algorithms

- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm). Maximization of the hypervolume of solutions

< A

Multi-Objective Evolutionary Algorithms

- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm). Maximization of the hypervolume of solutions

< □ ▶ < 同

Multi-Objective Evolutionary Algorithms

- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm). Maximization of the hypervolume of solutions

SAN and GAN : Turn based approaches

J-M. Pierson

15 / 57

Overview of SAN and GAN approaches

Main points

- Both algorithms are based on scheduling
 - DMs generate multiple scheduling solutions
 - Then we find negotiation solution from those scheduling solutions
- Both SAN and GAN negotiates in turn-based strategy
 - When ITDM runs scheduling (to follow PDM), PDM does not, and vice versa
 - We define 2 modes : "Follow PDM" mode (FLW_PD) and "Follow ITDM" mode (FLW_IT)
 - ► For both SAN and GAN (for the entire of the presentation), the whole system is executed under only 1 mode at a time

< ロ > < 同 > < 回 > < 回 >

SCHEDULING BASED NEGOTIATION (SAN)

J-M. Pierson

Definitions

- ▶ The set of ITDM profiles is {*x*₁, *x*₂, ..., *x*_m}
- The set of PDM profiles is $\{y_1, y_2, ..., y_n\}$
- Depending on each specific context, a profile may also be named "hint" or "candidate"

2 stages

- Stage 1 : Checking for matched pair
 - Decision variable : the pair {PDM profile, ITDM profile} :

$$\{x \in \{x_1, x_2, ..., x_m\}, y \in \{y_1, y_2, ..., y_n\}\}$$

Objective : maximize sum of utility

$$\max_{\{x,y\}} (u(x) + u(y))$$
 (1)

イロト イポト イヨト イヨト

- Constraint : $d(x, y) < \epsilon$ where d() is the distance between x and y
- If we can't find any matched pair, run Stage 2 : Negotiating.

Stage 2 : Negotiating :

- General mechanism
 - At a time, the whole system is executed under only 1 mode : follow ITDM (FLW_IT) or follow PDM (FLW_PD)
 - NM decides to switch between two modes using "verify quality of rescheduling"
 - Repeat until matched pair found
- Two modes :
 - FLW_IT : Follow the ITDM
 - NM sends the ITDM hints to PDM
 - PDM uses an algorithm (e.g. greedy, linear program) to find multiple scheduling solutions as candidates
 - PDM evaluates quality of candidates by "weighted similarity" to hints
 - PDM selects candidates with high "weighted similarity" as its news hints and sends back to NM
 - FLW_PD : Similar to FLW_IT, following the PDM

イロト イポト イヨト イヨト

(*) verifiy quality of rescheduling: compare "distance between the best ITDM hint and the best PDM hint" before and after rescheduling

2

イロト イロト イヨト イヨト

Formulation

▶ Mean Square Error between profile $x = \{x_1, ..., x_T\}$ and $y = \{y_1, ..., y_T\}$:

$$d(x,y) = \frac{1}{T} \sum_{i=1}^{T} (x_i - y_i)^2$$
(2)

Pearson correlation between them :

$$d(x,y) = \frac{\sqrt{\sum_{i=1}^{T} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{T} (y_i - \bar{y})^2}}{\sum_{i=1}^{T} (x_i - \bar{x})(y_i - \bar{y})},$$
(3)

Ξ.

$$w(x,Y) = \sum_{n=1}^{N} (u(x) + u(y^n)) \frac{1}{d(x,y^n)},$$
(4)

Or, if we want to adjust impact of utility and distance :

$$w(x, Y) = \sum_{n=1}^{N} \left(\alpha(u(x) + u(y^{n})) + (1 - \alpha) \frac{1}{d(x, y^{n})} \right),$$
 (5)

where $Y = \{y^1, ..., y^n, ... y^N\}$ and $y^n = \{y_1^n, ..., y_T^n\}$, and the values are normalized to (0,1]

イロト イポト イヨト イヨト

Follow ITDM

Follow PDM

J-M. Pierson

GAME BASED NEGOTIATION (GAN)

→ ∃ →

Model

< □ > < //>

Model

Motivation

- The buying-selling nature of the system
 - ▶ Selling : PDM is selling power → controls the price
 - Buying : ITDM is buying power \rightarrow decide the order/purchase
- Advantages of pricing
 - Power source availability can be reflected in price
 - \blacktriangleright Through price, pattern of order reflects pattern of PDM's desirable supply \rightarrow drive demand toward supply

< ロ > < 同 > < 回 > < 回 >

Model

Preliminary

- Players are selfish
 - They try to maximize their utility
 - Each player negotiates just because he foresees some benefit
 - ► We introduce *incentive pricing mechanism* : each player tries to find offers that are attractive to the other player.
- An unexpected situation may occurred : all players can't foresee their benefit and stop negotiate without reaching any agreement.
 - From the view of the whole system, this situation is unacceptable, no transaction is done, the players obtain zero utility
 - ► If this situation occurred, we introduce *sacrifice mechanism*, in which the players gradually sacrifice their utility until they reach an agreement.

< 同 ト < 三 ト < 三 ト

Definition 1

- ► T : Time window
- \hat{x}, x^{IT}, x^{PD} are profiles

•
$$\hat{x} = \{\hat{x}_1, \hat{x}_2, ..., \hat{x}_T\}, x^{IT} = \{x_1^{IT}, x_2^{IT}, ..., x_T^{IT}\} x^{PD} = \{x_1^{PD}, x_2^{PD}, ..., x_T^{PD}\}$$

2

イロト イロト イヨト イヨト

Definition 2

• $\pi = \{\pi_1, \pi_2, ..., \pi_T\}, \pi^{IT} = \{\pi_1^{IT}, \pi_2^{IT}, ..., \pi_T^{IT}\}, \pi^{PD} = \{\pi_1^{PD}, \pi_2^{PD}, ..., \pi_T^{PD}\}$

pd sched()

pd_est_price() pd_propose_price()

Negotiation Model

Turn-based play

- ► There are 3 variables :
 - ► ITDM local variable *it_mod* = {*FLW_IT*, *FLW_PD*},
 - ▶ PDM local variable $pd_mod = \{FLW_IT, FLW_PD\},\$
 - global variable $mod = \{FLW_IT, FLW_PD\}.$
- The mode of the system is only depended on mod. Two local variables only show the capability of the DMs.
- At a time, the system is executed under only one mode
- However, each player is selfish, he always wants the other player to follow himself, i.e., *it_mod* = *FLW_IT*, *pd_mod* = *FLW_PD*. In this situation, the negotiation can't be processed.
- Therefore
 - ▶ if ITDM is also capable of following PDM, we will set *it_mod* = *FLW_PD*
 - if PDM is also capable of following ITDM, we set $pd_mod = FLW_l\overline{T}$

イロト イポト イヨト イヨト

Negotiation solution

- Stopping criteria : \hat{x} approximates both x^{T} and x^{PD}
- Final solution is the last \hat{x}

Incentive pricing mechanism :

ITDM follows PDM : when x^{PD} and π^{PD} are attractive * : it_cost(aspiration supply, PD incentive price) < it_cost(order, price) :</p>

$$c(x^{PD}, \pi^{PD}) < c(\hat{x}, \pi)$$
(6)

PD follows ITDM : when ITDM's offers are attractive : pd_revenue(aspiration order, IT incentive price) > pd_revenue(order, price)

$$r(x^{T}, \pi^{T}) > r(\hat{x}, \pi)$$
 (7)

(*) next page

(*) How π^{PD} can be attractive to ITDM :

- ► Given :
 - Definition : x^{PD} is the PDM's desirable supply
 - Then, the cost associated with this supply is lower than the cost associated with other supplies
- As a result
 - ► the PDM estimates the amount of cost it can reduce when it provides the ITDM with x^{PD} , instead of \hat{x} .
 - the PDM computes a π^{PD} such that its total utility increases

$$u(x^{PD}, \pi^{PD}) > u(\hat{x}, \pi) \tag{8}$$

How π^{T} can be attractive to PDM : similarly

• • = • • = •

Sacrifice mechanism

- Unexpected situation : both ITDM and PDM are not capable of following each other, but an agreement is not reached
- Solution : ITDM gradually increases its *sacrifice variable* α :

$$\alpha \leftarrow \alpha + \gamma \tag{9}$$

then the incentive pricing mechanism at ITDM becomes :

$$\boldsymbol{c}(\boldsymbol{x}^{PD}, \pi^{PD}) - \alpha < \boldsymbol{c}(\hat{\boldsymbol{x}}, \pi)$$
(10)

Similarly, incentive pricing mechanism at PDM becomes :

$$r(\boldsymbol{x}^{IT}, \pi^{IT}) + \alpha > r(\hat{\boldsymbol{x}}, \pi)$$
(11)

Note :

- At a time, the whole system is executed under only one mode : FLW_IT or FLW_PD
- DMs only exchange data that have been updated/modified, other data can be stored and reused

3

イロト イポト イヨト イヨト

Graphical interpretation of the algorithm

DQC

æ

ITDM Formulation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

$$u(x,\pi) = r(x) - c(x,\pi) = \sum_{i=1}^{J} u_i(x) - \sum_{k=1}^{T} \pi_k x_k,$$
 (12)

where

- $r(\cdot)$: revenue of ITDM
- $c(\cdot)$: ITDM's payment to PDM
- ► J : the number of ITDM's jobs
- $u_i(\cdot)$: the payment of the users' *i*-th job to ITDM

The payment from users is computed based on the Amazon EC2 pricing

A B F A B F

PDM Formulation

$$u(x,\pi,S) = r(x,\pi) - c(x,S) = \sum_{i=1}^{T} \pi_i x_i - \sum_{j \in S} c_j^{OP}(x) c_j^{CAP}$$
(13)

where

- ► $c_j^{OP}(\cdot)$: operational rate of the j-th power source component
- $c_i^{CAP}(\cdot)$: the capital cost
- S is the number of utilized power source components

3

イロト イポト イヨト イヨト

- it_sched() : Generate x^{IT} from the scheduling solution, such that
 - Utility $u(x^{IT}, \pi)$ is maximized
 - Revenue of x^{it} must be larger than revenue of previous round's aspiration order x^{it}
 - And x^{IT} has to be closer to x^{PD} than previous round's aspiration order \dot{x}^{IT}

$$x^{IT} = \arg\max_{x} \ u(x,\pi) \tag{14}$$

$$s.t r(x) > r(\dot{x}^{T}) (15)$$

$$d(x, x^{PD}) < d(\dot{x}^{IT}, x^{PD})$$
(16)

向下 イヨト イヨト

 it_place_order() : ITDM finds x̂ that maximizes the ITDM's utility function u(x, π)

$$\hat{x} = \arg\max_{x} u(x, \pi) \tag{17}$$

► it_est_price() : ITDM estimates new π^{IT} that is more attractive to PDM than previous round's IT incentive price $\dot{\pi}^{IT}$, while keeping the ITDM's total utility non-decreased :

$$\mathbf{p} = \pi^{IT} = \dot{\pi}^{IT} \tag{18}$$

while
$$u(x^{lT}, \boldsymbol{\rho}) \ge u(\hat{x}, \pi)$$
 (19)

$$\pi^{\prime T} = \rho \tag{20}$$

$$p_i = p_i + p_i/N, \quad i = 1, ..., T$$
 (21)

where N is an integer, set through experiment parameters

ļ

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• pd_propose_price(x^{PD}) : the price π is generated such that

$$\pi_i = \frac{1}{X_i^{PD}}, \quad i = 1, ..., T$$
 (22)

where x_i^{PD} is normalized to (0,1]

pd_est_price() : Similar to it_est_price(), PDM estimates a new π^{PD} that is more attractive to ITDM than previous round's PD incentive price π^{PD}, while keeping PDM's utility non-decreased :

$$\rho = \pi^{PD} = \dot{\pi}^{PD} \tag{23}$$

while
$$u(x^{PD}, p) \ge u(\hat{x}, \pi)$$
 (24)

$$\pi^{PD} = \rho \tag{25}$$

$$p_i = p_i - p_i/N, \quad i = 1, ..., T$$
 (26)

- pd_sched() : Generate x^{PD} from the scheduling solution, such that
 - Utility $u(x^{PD}, \pi, S)$ is maximized
 - Cost of x^{PD} must be smaller than cost of previous round's aspiration supply \dot{x}^{PD}
 - New price π has to be closer to π^{IT} than the previous round's price $\dot{\pi}$

$$x^{PD} = \arg\max_{x} \ u(x, \pi, S)$$
(27)

$$s.t \qquad c(x) < c(\dot{x}^{PD}) \qquad (28)$$

$$d(\pi, \pi^{IT}) < d(\dot{\pi}, \pi^{IT})$$
 (29)

向下 イヨト イヨト

where $\pi \leftarrow pd_propose_price(x)$

Simplified example

J-M. Pierson

Ξ.

EXPERIMENT

590

2

<ロト <回ト < 回ト < 回ト -

Real PDM & ITDM

- PDM weather information : 1 month
- Time window : 3 days or 72 hours
- Timestep : 1 hour or 3,600,000 ms
- ▶ PDM sizing : ≈1kW
- ► Run time : ≈10 minutes

1

→ Ξ > < Ξ</p>

< A

Distance

- Calculation : using Pearson correlation
- Distance is not always decreasing because the profiles are evaluated by both utility and distance
- Negotiation results depend a lot on the series of utilities from DMs

Violation

- Calculation : sum of the amount that the ITDM profiles excesses PDM's profiles
- A significant reason for this result : DMs scheduling algorithms

Visit www.datazero.org for more information !!

2

イロト イ団ト イヨト イヨト