

The architecture of Kaligreen V2: A middleware aware of hardware opportunities to

save energy

Author

Hernán Humberto Álvarez Valera

Supervisors Marc Dalmau, Philippe Roose Christina Herzog

efficit

1. Motivation

Shocking data: the reason to worry about energy...

...The **data center sector** was estimated to have consumed about **61 billion kilowatt/hours** (kWh) in 2006 (**1.5 percent** of total U.S. electricity consumption) for a total electricity cost of about **\$4.5 billion (2006 dollars).** The electricity use of the nation's servers and data centers in 2006 was more than double the electricity that was estimated to have been consumed for this purpose **in 2000.**.

Electricity demand increases from about 29 billion kWh in 2000 to nearly 73 billion kWh by 2020

...Consider CO2 emission ...

2. how software can save energy ?

Let's talk about load balancing...

Cloud: Strategies and policies to process environmental data

Data Center:Load balancing strategie: From the conception of a distributed application to its deployment.

Host: Load balancing algorithms and correct use of programming tools

3. What is our Problem?

KALIMUCHO

66 There is no decentralized way to deploy and manage an application based on microservices through user devices in order so save energy

4. So, What is Kaligreen?

It is an autonomic extension of Kalimucho middleware capable of running distributed applications based on microservices hosted on user devices. **Can move/remove/duplicate/change** microservices to save energy.

5. Kaligreen V1

Implementation...

			USE	R:Philip	peRoose:			- 0
IN DEVICES	******	•11			*****AP	PLICATION	15*****	
CreateDevice:	SP	-	Open	App:	D_ID	-		
CPU (Ghz):	2.4	-	MS++	APP.ID		CPU	RAM	NET
RAM (G.):	4				D.ID			••••••
NET (Gb/s):			Close App:			-		
Start Device:					appID	-		
Stop Device:			************************************					
Delete Device:	1		*****Start All Devices****					

{ "appID": "DOAO", "msID": "DOAOMO", "CPU": "1", "RAM": "1", "NET": "1"} { appID : "DOAO", "msID : "DOAOM1", "CPU": "2", "RAM": "1", "NET : "2"} {"appID": "DOAO", "msID": "DOAOM2", "CPU": "1", "RAM": "3", "NET": "3"} {"appID": "DOA1", "msID": "DOA1MO", "CPU": "1", "RAM": "1", "NET": "4"} {"appID":"DOA1","msID":"DOA1M1","CPU":"3","RAM":"2","NET":"5"} {"appID": "DOA2", "msID": "DOA2MO", "CPU": "1", "RAM": "2", "NET": "4"} { appID : "D0A2", "msID": "D0A2M1", "CPU": "3", "RAM": "1", "NET": "5" } {"appID": "DOA2", "msID": "DOA2M2", "CPU": "2", "RAM": "1", "NET": "5"} {"appID":"DOA2","msID":"DOA2M3","CPU":"1","RAM":"1","NET":"5"} {"appID": "DOA2", "msID": "DOA2M4", "CPU": "2", "RAM": "2", "NET": "40"] 13 {"msID": "D0A2M0", "CONNECTION": "D0A2M3", "TRATE": "200"} {"msID": "D0A2M1", "CONNECTION": "D0A2M3", "TRATE": "500"} 14 {"msID": "D0A2M2", "CONNECTION": "D0A2M3", "TRATE": "700"} {"msID": "D0A2M3", "CONNECTION": "D0A2M4", "TRATE": "800"}

	DEV	0-SMARTPH	IONE	- 6
	*****Sta	te:****	App. List	App. M.S.
Status:	On		DOAO	D0A0M1 D0A0M2 D0A1M0 D0A1M1
CPU(Usd/Cap)	1.1	8.0 8.0	DOA1	
RAM(Usd/Cap)	2.82000		DUAZ	
NET(Usd/Cap)	1.92000	300.0		D0A2M0
BAT(Usd/Cap)	5	100		D0A2M1
POW. NOW				
POW. ALL				
Upd	ate State			
		-		
	DEV	1-SMARTPH	IONE	- 6
	DEV	1-SMARTPH	App. List	App. M.S.
Status:	DEV *****Sta	1-SMARTPH	App. List	App. M.S. DOAOMO
Status: CPU(Usd/Cap)	DEV *****Sta On 0.1	1-SMARTPH	App. List	App. M.S. DOAOMO
Status: CPU(Usd/Cap) RAM(Usd/Cap)	DEV *****Sta 0n 0.1 0.1	(1-SMARTPH ate: ***** 8.0 8.0	App. List DOA0	App. M.S. DOAOMO
Status: CPU(Usd/Cap) RAM(Usd/Cap) NET(Usd/Cap)	DEV *****Sta 0n 0.1 0.1 1.0	8.0 8.0 300.0	App. List	App. M.S. DOAOMO
Status: CPU(Usd/Cap) RAM(Usd/Cap) NET(Usd/Cap) BAT(Usd/Cap)	0n 0.1 0.1 1.0 100	8.0 8.0 300.0 100	App. List DOAO	App. M.S. DOAOMO
Status: CPU(Usd/Cap) RAM(Usd/Cap) NET(Usd/Cap) BAT(Usd/Cap) POW. NOW	0n 0.1 1.0 100	8.0 8.0 8.0 100	App. List DOAO	App. M.S. DOAOMO
Status: CPU(Usd/Cap) RAM(Usd/Cap) NET(Usd/Cap) BAT(Usd/Cap) POW. NOW POW. ALL	0n 0.1 1.0 100	8.0 8.0 300.0 100	App. List DOA0	App. M.S. DOAOMO

Results...

Number of Devices	MS per Dvice	Avg. Applications execution time before the Algorithm	Avg. Applications execution time after the Algorithm.
2	150	2.335	2.4
3	100	2,4	2,43
4	75	2.45	2.99
5	60	2,43	3.71
6	50	2.44	3.76

Kaligreen: Pros and Cons

PROS	CONS
 Scalable Increases the execution time of applications on devices with battery and improve battery usage. Does not overload the network Decentralized and autonomous. 	 Does not consider device disconnection situations. Does not prevent infinite cyclical reconfigurations. Does not study the opportunities of hardware components. Does not consider the user's actual needs Does not save energy

5. Kaligreen V2

Kaligreen is now capable to decide

- How to deploy an application (ie. where to deploy microservices which host devices)
- Considers hardware component offers (will be explained in the next slide).
- Kaligreen can decide to move and duplicate microservices to save energy.

Microservi	ce Features	CPU features			
Persistent Microservice	High CPU Consumption	Boosting	PCPG	DVFS	
NO	YES	Candidate	Candidate	Candidate	
NO	NO				
YES	YES	Candidate	Candidate	Candidate	
YES	NO		Candidate	Candidate	

THE CPU

77

Boosting, PCPG, FVFS!

THE NETWORK

			Microservice F	Network operations				
P	Persiste nt MS	Heavy MS	Use a lot of Bandwidth	A lot of dependencies with others MS and Data in device	large MS data	Move MS	Duplicate MS	Move MS Data
	YES	YES	YES	YES	YES	Candidate	Candidate	
	YES	YES	YES	YES	NO	Candidate	Candidate	Candidate
	YES	YES	YES	NO	YES	Candidate	Candidate	
	YES	YES	YES	NO	NO	Candidate	Candidate	Candidate
	YES	YES	NO	YES	YES		Candidate	
	YES	YES	NO	YES	NO		Candidate	Candidate
	YES	YES	NO	NO	YES	Candidate	Candidate	
	YES	YES	NO	NO	NO	Candidate	Candidate	Candidate
	YES	NO	YES	YES	YES	Candidate	Candidate	-
	YES	NO	YES	YES	NO	Candidate	Candidate	Candidate
	YES	NO	YES	NO	YES	Candidate	Candidate	-

I can save energy too: Reduce power; but it is not important at middleware level

THE HARD DISK

I can save energy if I'm off!

Condition	Action
f Hdd requirements of Application M.S. == total load of hard disk now	Candidate to move (Hdd will be able to turn off itself)

Algorithm 1 Algorithm 1: Selecting candidate microservices

- 1: $L_M \leftarrow List_of_all_Microservices$
- 2: while true do
- 3: $L_CPU \leftarrow filter_by_Table1(L_M)$
- 4: $L_DISK \leftarrow filter_by_Table3(L_M)$
- 5: $L_NETWORK \leftarrow filter_by_Table2(L_M)$
- 6: SLEEP(T)
- 7: end while

66 Then, Kaligreen can order the lists according to CPU, network, disk and overall microservice consumption

 $MS_Cons = T*(F(N+extern)+F(D)+F(C)) (1)$

In this moment, we are working on a scheduling algorithm based on P2P, graph theory and statistical approaches

Figure donne by Piyush Chauhan and Nitin: Decentralized Scheduling Algorithm for DAG Based Tasks on P2P Grid

Thanks!

Time for questions!...

