
(Re) Organization model for decentralized management
and optimization of green data center: ParaMoise

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry

University of Luxembourg

January 29, 2013

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 1 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 2 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 3 / 27

Cloud computing and Autonomic computing

Cloud computing – virtualized data center(s) that processes any type
of workload. (It is a large-scale dynamic distributed system.)

Autonomic computing – bringing self-* properties to system
(*={management,optimization,healing,...}).

Both approaches include an underlying organization, e.g.:

Communication patterns

Authority

Responsibilities

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 4 / 27

Purpose of (re)organization

The purpose of organization is to facilitate reaching optimal states. In this
way, we can define organization’s1:

Cost

Benefit

Efficiency = Benefit − Cost

Efficiency of an organization depends on the system and environment.
In a dynamic system (cloud) both system and environment changes. There
is a need to reorganize to achieve optimal Efficiency .

1Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. “Decentralised
Structural Adaptation in Agent Organisations”. In: AAMAS-OAMAS. 2008, pp. 54–71.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 5 / 27

MAS organizations classification2

In context of MAS, we can always investigate its organization, even in a
systems that does not explicitly define it.

Bottom-up Top-down

Organisation awareness Organisation unawareness

Organisation Specification

Observed Organisation

Local Representation Designer / Observer

Organisation Entity

Agent

Centred

Organisation

Centred

(a) (b)

(d) (c)

Fig. 1. Comprehensive view on organisations in MAS: (a) Emergent Organisation MAS; (b)
Coalition Oriented MAS; (c) Agent Oriented Software Engineering; (d) Organisation Oriented
MAS. The Designer/Observer may be the Developer/User (exogenous case) or a set of agents
(endogenous case).

In the second column, we consider the cases where agents have some representation
of the organisation in which they are executing. In case (b), each agent has an internal
and local representation of cooperation patterns which it follows when deciding what to
do (e.g. social networks for coalition formations [40]). This local representation is ob-
tained either by perception, communication or explicit reasoning (e.g. social reasoning
as in [40]) since, in an agent-centred view, there isn’t, a-priori, any explicit global repre-
sentation of the organisation which is available to the agents. In case (d), agents have an
explicit representation of the organisation which has been defined (organisation-centred
view). The agents are able to reason about it and to use it in order to initiate cooperation
with other agents in the system.

In the literature, some agents’ organisation approaches fit to a specific case shown
in Fig. 1, others are based on multiple cases. For instance, proposals concerning reor-
ganisation approaches for formal organisations may combine cases (b) and (d) in the
sense that agents are using their internal mechanisms to adapt the organisation that was
imposed on the system. The bottom-up or top-down manipulation of the organisation
may be realised either endogenously (i.e. realised by the agents belonging to the or-
ganisation themselves) or exogenously (i.e. by an external designer, a human or agents
outside of the organisation).

source: 2

2G. Picard et al. “Reorganisation and self-organisation in multi-agent systems”. In:
International Workshop on Organizational Modeling. OrgMod’09. 2009, pp. 66–80.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 6 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 7 / 27

Distributed management system – Snooze3

Snooze is an example of a
Multi-Agent System (MAS) with
hierarchical organization for:

Management

Optimization

Reliability

Limitations:

One organization schema

Reorganization limited to
behavior predefined in the
schema

source: snooze.inria.fr
3E. Feller, L. Rilling, and C. Morin. “Snooze: A Scalable and Autonomic Virtual Machine

Management Framework for Private Clouds”. In: Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on. 2012, pp. 482 –489.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 8 / 27

Organizational frameworks – state of the art

Organizational frameworks:

Centralized (AgentCoRe,
GPGP/STAEM)

Limited reorg. capabilities

Offline or not specified

Sequential

Cloud system needs:

Decentralization (Performance,
Reliability)

Wide reorg. capabilities

Online reorg.

Parallelism and concurrency

We have chosen a MOISE+ framework as a base, because of its
advancement and its elasticity.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 9 / 27

MOISE+

MOISE+ is an organizational framework. It defines Organization
Specification (OS) as:

Structural Specification (SS)(Roles and their interactions)

Functional Specification (FS) (Missions and goals)

Deontic Specification (DS) (Obligation and permissions to commit to
missions by roles), binds SS and FS.

The OS is a template used to create Organization Entity (OE), which is a
description of a deployed organization (essentially, agents and their
relations with organization).

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 10 / 27

MOISE+ Reorganization I

Reorganization is a process of chaining organization either on level of:

OS – e.g. changes in definitions of roles, interaction patterns,
missions, obligations.

OE – e.g. adopting roles, creating missions

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 11 / 27

MOISE+ Reorganization II

MOISE+ provides a reorganization
capabilities by a set of special roles.

group is identified by ReorgGr (the graphical notation of the MOISE+ specification
language is not detailed here, the reader is referred to [7] for more information). The soc
role is the root of the role hierarchy, thus every role defined in aMOISE+ organisation
inherits its properties.

The agent that assumes the OrgManager role is to be in charge of managing the
reorganisation process, it is able to change the current state of the MAS’s organisation
(OS and OE). It also has authority on the soc agents and so on all agents.

Monitored is an abstract role1 which is specialised by roles defined in the applica-
tion organisation. All agents that will be monitored must play aMonitored sub-role and
thus are under the Monitor agent authority since the Monitor role has authority on the
Monitored role.

Reorg is also an abstract role which allows us to easily distinguish the OrgManager
from the other roles in this group. Thus we can state, for example, that the Reorg and
therefore all its sub-roles has permission to communicate with the OrgManager.

OrgManager

ReorgExpert

Monitor

1..1

OrgParticipant

Reorg

Designer

soc

Historian

1..1

Monitored

ReorgGr

Selector
1..1

acq

aut

com

compat

intra-group

Key

min..max
composition

inheritance

role

Abs Role

inter-group

(def.: 0..infinity)

links

group

Fig. 3. The reorganisation group

The Historian agent maintains the
history of the organisation — a kind
of useful information for the monitoring
and design phases. Every change either
in the OE (role adoption, commitment
with missions, goal achievement, etc.) or
in the OS (role creation, link creation,
change in the cardinalities, etc.) is reg-
istered by this agent. The Historian will
ask the OrgManager to inform him all
changes it has executed. The agent which
adopts this role could be the same that
adopts the OrgManager role, since they
are compatible.

The Designer role contains the com-
mon properties for designers. Agents
playingReorgExpert role have the ability
(and the obligation) to analyse the current
organisation, identify its problems, and propose alternatives. They are invited to partic-
ipate to the ReorgGr just for the reorganisation process as a kind of outside analysts
which are able to see the organisation from a global point of view. Conversely, every
agent that plays a role in theMAS is also permitted to play theOrgParticipant role, since
OrgParticipant is compatible with the soc role. These agents have practical knowledge
about the way the organisation works. They are inside analysts and see the organisation
from a local point of view.

Finally, the agent that plays the Selector role is responsible for the selection of one
proposal from the reorganisation proposals developed by the Designer agents.

The set of agents that will play these roles is called reorgConf. While some of the
reorgConf agents must be developed for each specific domain (such as the monitor,
selector, and designers), some of them can be used in many applications (such as the
1 Abstract roles have only a specification purpose, no agent can play them.

However, the only proposed
reorganization implementation
(JaCaMo)a requires:

1 halting an organization

2 applying changes to organization

3 resuming the organization

It is not feasible in a cloud system.

aO. Boissier et al. “Multi-agent oriented
programming with JaCaMo”. In:
Science of Computer Programming (2011).

source:4

4J. Hübner, J. Sichman, and O. Boissier. “Using the Moise+ Model for a
Cooperative Framework of MAS Reorganisation”. In: Advances in Artificial Intelligence,
SBIA 2004. Vol. 3171. Springer Berlin / Heidelberg, 2004, pp. 481–517.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 12 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 13 / 27

ParaMoise

ParaMoise enables parallel, distributed reorganization on OS or OE level at
runtime. It is based on the following changes:

Introducing a new functional specification

Adding the lock mechanism

Enabling multiple organization managers

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 14 / 27

Workflow Specification – novel FS

Basic MOISE+ FS is based on tree structure:

team = �{ρcoach}, {def , att}, {}, {link(ρplayer, ρplayer), com),
link(ρleader, ρplayer), aut), link(ρplayer, ρcoach), acq), link(ρcoach, ρplayer), aut)},
{}, {}, {ρleader �→ (1, 1), ρcoach �→ (1, 2)}, {def �→ (1, 1), att �→ (1, 1)}�

A team is well formed if it has one defense group, one attack group, one or two agents
playing the coach role, one agent playing the leader role, and the two sub-groups are
also well formed. The group att is specified only by the graphical notation presented
in the Fig. 2. In this structure, the coach has authority on all players by an inter-group
authority link. The players, in any group, can communicate with each other and are
allowed to represent the coach. There must be a leader either in the defense or attack
group. In the defense group, the leader can also be a back and in the attack group it
can be a middle. The leader has authority on all players on all groups, since it has an
inter-group authority link on the player role. In this group, an agent ought to belong to
just one group because there is no inter-group compatibilities. However, notice that a
role may belong to several group specifications (e.g., the leader).

Based on those definitions, the SS of a MAS organization is formed by a set of
roles (Rss), a set of root group specifications (which may have their sub-groups, e.g. the
group specification team), and the inheritance relation (�) onRss.

3 Functional Specification

sequence choice parallelism
goal

missions
success rateke

y

g8g7

g6

m1 m1
g14g13

m1,2,3

g9 m1m1 g11

g21 g22
m2 m3

m2,3

m4,5

g2
.7
m1 g3.9

m6

g24 g25m4 m5

g4.5
m4,5

g0 m7
.8

g16 g17
m3m2 m4 m5

g18 g19

Fig. 3. An example of Social Scheme to
score a soccer goal

The FS in MOISE+ is based on the con-
cepts of missions (a set of global goals2)
and global plans (the goals in a struc-
ture). These two concepts are assem-
bled in a Social Scheme (SCH) which
is essentially a goal decomposition tree
where the root is the SCH goal and where
the responsibilities for the sub-goals are
distributed in missions (see Fig. 3 and
Tab. 3 for an example). Each goal may be
decomposed in sub-goals through plans
which may use three operators:

– sequence “,”: the plan “g2 = g6, g9”
means that the goal g2 will be
achieved if the goal g6 is achieved
and after that also the goal g9 is
achieved;

– choice “|”: the plan “g9 = g7 | g8” means that the goal g9 will be achieved if one,
and only one, of the goals g7 or g8 is achieved; and

– parallelism “�”: the plan “g10 = g13 � g14” means that the goal g10 will be
achieved if both g13 and g14 are achieved, but they can be achieved in parallel.

2 Regarding the terminology proposed in [3], these goals are collective goals and not social
goals. Since we have taken an organizational centered approach, it is not possible to concept
the social goal which depends on the agents internal mental state.

Key

ParaMoise introduces Workflow
Specification (WFS):

6

7 8

16 17 18 19

21 22

24 25

Alternative
precedences

Precedence

Primitive
Goal

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Key

source:5

5J. Hübner, J. Sichman, and O. Boissier. “A Model for the Structural, Functional,
and Deontic Specification of Organizations in Multiagent Systems”. In: Advances in
Artificial Intelligence. Vol. 2507. Springer Berlin / Heidelberg, 2002, pp. 439–448.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 15 / 27

Workflow execution

Workflow enables:

arbitrary dependencies

parallel execution

correct execution: mutual
exclusion,progress, deadlock free

repetition of goals

Additional features:

progress tracking

alternative execution paths

repetitions (failure handling)

6

7 8

16 17 18 19

21 22

24 25

Alternative
edges
Active
Edge

Waiting
Goal

Possible
Goal

Executing
Goal

Achieved
Goal

Discarded
Goal

Discarded
Edge

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Suspended
Goal

Inactive
Edge

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 16 / 27

Locks

A reorganization modifies the state of the organization.
The proposed method of minimal interaction with organization are locks:
A lock defines elements of organization that must remain unchanged as
long as the lock exists.
There are two types of locks:

1 read – can overlap with other read locks

2 write – can not overlap with other locks

Write locks are used when an element is modified or removed. Read locks
are used when an element existence is needed (e.g. definition of a role if
reorganization includes the adoption of that role).

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 17 / 27

Concurrent and parallel reorganization

Locks enable concurrent
reorganizations (the only
requirement is that existing
locks do not overlap).

Additional requirement: multiple
organization managers (as
OrgManager is the only role
that has permission to change
elements of organization).

Multiple OrgManagers: removal
of the potential bottleneck and
single point of failure.

Org

OrgManager

Monitor

Monitored

SelectorDesigner

Reorg

Communication link
Compatibility link

role

InheritanceAuthority link

Group

soc

Composition

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 18 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 19 / 27

Sample Organization of Cloud Computing system

Hypervisor VM Allocator Auditor

soc

Org System

Database
Web-server

Scheduler
Load Balancer

Web
Service

AuditorsAllocatorsHypervisors VMs

HPC

HPC
Service

AuditorsAllocatorsHypervisors VMs

Underutilized Overutilized

0…* 0…*

1 The tree
structure presents
the roles and
their inheritance.

2 The boxes
presents the
groups.

3 Group can
consist of roles or
other groups.

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 20 / 27

Small HPC Job – sample workflow

1

2 3

4 5 6

7 8 9

10 11

m1

m2 m3

m4 m5 m6

m2 m3

m9m8m7

Goals description:

g1 is the job acceptance goal

g2 is the preparation of VMs

g3 is preparation of the audit

g4 − g6 are three data preprocessing
goals,

g7 − g9 are three Monte Carlo
simulation goals

g10 is deactivation of unnecessary VMs

g11 finishes the audit and creates its
result

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 21 / 27

Sample structural reorganization

In case of thermal emergency stop consolidation and decrease utilization of
affected nodes.

Hypervisor VM Allocator Auditor

soc

Org System

Database
Web-server

Scheduler
Load Balancer

Web
Service

AuditorsAllocatorsHypervisors VMs

HPC

HPC
Service

AuditorsAllocatorsHypervisors VMs

Underutilized Overutilized

0…* 0…*

Thermal
Emergency

0…*

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 22 / 27

Thermal emergency – sample reorganization

1 2

3 4 65

m0 m0

m0 m0 m0m0

Goals description:

g1: Identify all affected hypervisors
(WFS),

g2: Create a group Thermal Emergency
for affected hypervisors,

g3: The affected hypervisors join
Thermal Emergency group,

g4: Notify VMs

g5: Notify Auditors

g6: Notify Allocators

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 23 / 27

1 Introduction
Context and Motivation
State of the art

2 ParaMoise
Description
Examples

3 Summary

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 24 / 27

Summary

ParaMoise allows to model:

Parallel execution

Concurrent and parallel reorganization

Distributed organization management

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 25 / 27

Future work

Designing exact implementation of organization description and locks

Designing reorganization phase: monitoring, design, selection.

Distributed optimization of cloud system

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 26 / 27

The End

Thank you for your attention.

Any questions?

Mateusz Guzek, Grégoire Danoy, Pascal Bouvry (University of Luxembourg) January 29, 2013 27 / 27

	Introduction
	Context and Motivation
	State of the art

	ParaMoise
	Description
	Examples

	Summary

