An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution

Y. Kessaci, N. Melab et E-G. Talbi

Dolphin Project Team, Université Lille 1, LIFL-CNRS, INRIA Lille-Nord Europe

Outline

- Motivation
- Cloud Models
- Problem formulation
- Problem resolution
- Experiments and Results
- Conclusion and Perspectives

Innía

Motivation

> Energy consumption represents more than 42% of the total data center budget.

The total electricity consumed by servers doubled over the period 2005 to 2010 in worldwide.

Information and Communications Technology (ICT) industry accounts for approximately 2% of CO2 emissions.

Source: Hamilton 2009

Cloud Models

> Different according to the provided service

- ✓ IaaS (Infrastructure as a Service)
- ✓ PaaS (Platform as a Service)
- ✓ SaaS (Software as a Service)

> The cloud provider deals with: the virtualization, server hardware, storage and networks.

> The client deals with: applications, runtimes, SOA integration, databases and server software.

✓ Two-tier model (Client, Provider).

✓ Payment on demand (pay as you go).

Overview (two-tier architecture)

Virtual Machines for High Performance Computing Usage

➤ The VM template file (in OpenNebula) contains information about the number of CPU, memory, disk capacity, the CPU clock frequency, the time reservation ...

> The information used by our scheduler are given by the triplet:

 (e_j, n_j, m_j)

 e_j the execution time of the application (booking) – reservation time of VMs n_j the number of reserved processors m_j the required memory

OpenNebula

- Infrastructure information (CPU, memory, disk, clock frequency ...)→ Hypervisor (KVM, XEN,...)
- Client requests (VM features) → VM templates
- Information exchange process → XML-RPC

Scheduler

≻ Tool

> Metaheuristic : Multi-start Local Search MetaHeuristic (EMLS-ONC).

➢ Solution

> Optimal application assignment based on **objective functions** and **constraints**.

Problem formulation

Input

 \checkmark Scheduling J VMs requests on N geographically distributed hosts (NP hard) respecting the constraints...

• ...Each VM can be affected to one and only one host.

• ... The host have to provide the total number of requirements requested (memory, CPU) by the VM to host the VM.

Objectives

✓ Meet maximum client's requests ...

• ... while optimizing the energy consumption

Metrics (CMOS architectures)

≻Energy

- > Using always the combination of host that **minimize** the energy consumption
 - \checkmark Energy needed for the computation (E^c)
 - \checkmark Energy required for cooling the host

$$E_{ij}^c = (\beta_i + \alpha_i f_{ij}^3) \times n_j \times e_{ji}$$

Assumption (The higher the CPU frequency is, the more cooling energy is required)

Minimizing the energy consumption =
$$\sum_{i}^{N} \sum_{j}^{J} (E)_{ij}$$

≻CO2

> Deducing the amount of CO2 emissions of each host of the cloud.

$$CO_2 = E_{total} \times Taux CO_2$$

CPU usage Vs Fan speed (cooling) Ex: AMD Cool'n'Quiet technology

Clouds Federation

✓ Geographically distributed cloud (OpenCirrus)

✓ 3 continents (America, Europe et Oceania)

Location	Co2 Rate	Electricity price	Cpu Alpha	Cpu Beta	Max Frequency	Opt Frequency	Nb processor	
Location	(kg/kW h)	(\$/kW h)			(Ghz)	(Ghz)		
New York, USA	0.389	0.15	65	7.5	1.8	1.630324	2050	
Pennsylvania, USA	0.574	0.09	75	5	1.8	1.8	2600	
California, USA	0.275	0.13	60	60	2.4	0.793701	650	
Ohio, USA	0.817	0.09	75	5.2	2.4	1.93201	540	
North Carolina, USA	0.563	0.07	90	4.5	3.0	2.154435	600	
Texas, USA	0.664	0.1	105	6.5	3.0	2.00639	350	
France	0.083	0.17	90	4.0	3.2	2.240702	200	
Australia	0.924	0.11	105	4.4	3.2	2.285084	250	

CO2 rate Electricity price

→ Department Of Energy (DOE)

Electricity price \rightarrow Energy Information Administration (EIA)

High-level template of S-metaheuristics

Main common concept of metaheuristics

- Representation
- Objective function
- Constraint satisfaction

Fig. 2.1 Main principles of single-based metaheuristics.

Common concepts for S-metaheuristics

- Neighborhood, very large neighborhoods
- Initial solution
- Incremental evaluation of neighbors

Scheduling Approach

Local Search

Initial solution

> The encoding of a solution

> The neighborhood operator is a switch of the hosts of each VM (exhaustive, random)

Escaping from local optima

Ínría_

Experiments

Experiment parameters

≻VM and host features generation, to fit the OpenNebula parser (XML format).

> Random generation of the VM requirements:

- 1- The execution time in the interval [1,10] hours.
- 2- The processor requirement from [0.5,9].
- 3- The memory needs from [1,3] GBs.

> Different types of hosts, changing each time their features randomly.

- 1- The number of cores generated between [1,24] cores.
- 2- The memory capacity from [2,24] GB.
- 3- The CPU speed from [1,3] Ghz.
- 4- The number of VMs already running on it [0,10].

> One scheduling cycle run (30sec), to compare the ability of both algorithms to handle a big number of VMs requests at the same time and their processing time.

> 4 VM arrival rates (1, 10, 40, 100) VMs.

> 4 cloud sizes (5, 80, 320, 1280) machines.

Comparison

> No previous energy aware scheduler on OpenNebula Cloud Manger to compare with.

> Comparison done with the default OpenNebula scheduler.

> For each VM, takes the first host that satisfies the VM requirements.

Results (1)

# VMs				Energy	Time			
Number of VMs			1		1			
			Number of	Con	sumed Energy		Time	
Number of hosts			scheduled VMs	(I	nergy Unit)		(s)	
	EN	LS-O	NC OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	
5		1	1	453035	453035	10e-04	10e-06	
80		1	1	2505407.9 3973660		10-e03	203 10e-06	
320		1	1	2841140.6 3973660		10-e03	10e-06	
1280		1	1	181747.4	226517	10-e02	10e-06	
Number of VMs					10			
			Number of	Con	sumed Energy		Time	
Number of hosts			scheduled VMs	()	(Energy Unit)		(s)	
	EM	LS-O	NC OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	
5		6	7	3328294.6	3624280	10e-03	10e-06	
80		10	10	22162200	19340900	10e-02	10e-05	
320		10	10	22108773.3	34809800	10e-02	10e-02	
1280		10	10	12144173.3	13509200	0.2	10e-04	
Number of VMs	r of VMs		40					
27 1 61			Number of	Con	sumed Energy		Time	
Number of hosts	-	T C O	scheduled VMs		(Lnergy Unit)		(s)	
	EN	LS-O	NC OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	EMLS-ONC	OpenNebula scheduler	
3		11.6	12	25837606.7	18146400	10e-02	10e-04	
80		40	40	56091493.3	/366/200	0.1	10e-04	
320		40	40	68386173.3	84563000	0.2	10e-04	
1280		40	40	59823060	65303900	0.8	10e-04	
Number of VMc		Į		100				
Number of VIVIS			Normali an af	100 Contempod Energy			There	
Number of bosts			Number of	(Therew Linit)			(n)	
Number of nosts	EN	T S O	scheduled VMs		(nergy Unit) OnerNahula sahadular	EMIS ONC	(S) OnerNahula sehedular	
5	EIV	13.0		3100007 2		LIVILS-UNC		
80		01.7	14 94	175020600	181780000	0.7	100-04	
320		100	0 4 100	132230022	140678000	0.7	100-03	
1280		100	100	132239933	161002000	2.4	100-03	
1200		100	100	133002200	101002000	2.4	100-05	

Results (2) – 20 cycles – 10 mn

1 3 5 7 9 11 13 15 17 19

Scheduling Cycle

Ínría

1

35

7 9 11 13 15 17 19

Scheduling Cycle

20/29

Results (3)

Scheduling Success Rate Improvement

> The improvement compared to the default OpenNebula's scheduler concerning the number of scheduled VMs is 2.75%.

Energy Improvement

> The total energy consumption of the distributed cloud have been reduced on average by 28.6%.

Scheduler's time processing

> Scheduling cycle **30** sec.

EMLS-ONC maximum scheduling time 24.3 sec (5 s in average).

Conclusion

> We presented a new scheduler for the cloud manager OpenNebula using a multi-start local search algorithm to minimize the energy consumption.

 \succ The energy saving of our approach exploits the disparity and the differences in the features of the hosts that compose the distributed cloud.

> Our approach satisfies the clients QoS by assigning the maximum VMs.

> EMLS-ONC gives a higher rate of scheduled VMs compared with the default OpenNebula scheduler.

> EMLS-ONC allows an improvement of the energy consumption.

> EMLS-ONC never override the scheduling cycle time.

Perspectives

> Use Grid5000 as a test bed cloud for our next experiments. (Done, interesting preliminary results) \rightarrow Validate the simulation

> Propose a better energy reduction by including other energy consumption resources like memory and hard drives.

> Integrate dynamicity in the scheduler for a real time VM's Reallocation (VM migration).

Deploy our approach on the EGI production grid and benefit from the geographical dispersion offered by Europe to reduce the energy consumption.

Source: EGI

Perspectives (2)

➤ A multi-objective scheduler to generate non-dominated Pareto solutions (Cost of energy, CO2 emission, ...).

Where f₁ is the energy criterion and f₂ the VM performance.
Energy criterion can be decomposed in : Cost of energy, Green aspects – CO2 emission, cooling, ...

Thank you for your attention Questions i

