

The Green Computing Observatory: from instrumentation to ontology

<u>Cécile</u> <u>Germain-Renaud</u>¹, Fredéric Fürst², <u>Gilles</u> <u>Kassel</u>², <u>Julien</u> <u>Nauroy</u>¹, Michel Jouvin³, Guillaume Philippon³

1: Laboratoire de Recherche en Informatique, U. Paris Sud, CNRS, INRIA

2: Université Picardie Jules Verne

3: Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3

GCO: a Digital Curation approach

- Establish long-term repositories of digital assets for current and future reference
 - Continuously monitoring a large computing facility
- Tackling the good data creation and management issues, and prominently interoperability,
 - Formal mainstream ontology, standard-aware
- Providing digital asset search and retrieval facilities to scientific communities through a gateway
 - Files in XML format
 - Available from the Grid Observatory portal

With the support of

- France Grilles French NGI member of EGI
- EGI-Inspire (FP7 project supporting EGI)
- INRIA Saclay (ADT programme)
- CNRS (PEPS programme)
- University Paris Sud (MRM pro

NIVERSITE

Comprendre le monde,

The GRIF-LAL computing room

13 racks hosting 1U systems, 4 lower-density racks (network, storage), resulting in ≈240 machines and 2200+ cores, and 500TB of storage.
Mainly a Tier 2 in the EGI grid, but also includes local services and the StratusLab Cloud testbed
High-throughput, worldwide workload, analysis-oriented production facility, accessible approximation of a data center

EGI grid: very large non-profit distributed system

GCO data representative significant

The Green Computing Observatory

Sensors

The Green Computing Observatory

Overview of gLite_3_2_Prod

The Green Computing Observatory

Information model

- There is no standard for
 - The output of the physical sensors
 - The integration of computational usage and physical sensors' output
- There are standards for
 - OS information: Ganglia
 - Virtual Machine definition: OVF
 - Centralized statistics publication: SDMX (Statistical Data and Metadata Exchange). Successful experience of porting to a Linked Data model.

GCO: a Digital Curation approach

- Establish long-term repositories of digital assets for current and future reference
 - Continuously monitoring a large computing facility
- Tackling the good data creation and management issues, and prominently interoperability,
 - Formal mainstream ontology, standard-aware
- Providing digital asset search and retrieval facilities to scientific communities through a gateway
 - Files in XML format
 - Available from the Grid Observatory portal

You said "ontology"!

Why use ontologies in GCO?

• Our purpose

- To clarify the *semantics* of data
 - To get a *computational* model
- To define an *ontological semantics* for the XML schema
- Our approach
 - To define a *semantically transparent* ontology
 - To reuse the *foundational* DOLCE¹ ontology
 - To use the OntoSpec² methodology (modularity + high expressiveness) which integrates the OntoClean¹ methodology
- ¹ Laboratory for Applied Ontology: <u>http://www.loa.istc.cnr.it/</u>
 ² <u>http://home.mis.u-picardie.fr/~site-ic/site/?lang=en</u>

DOLCE and the measurement of entities

The Green Computing Observatory

GreenDays@Lyon

Grid Observatory

Qualities are inherent to their host

Example of a Physical object/quality

The Green Computing Observatory

Example of a temporal object/quality

Other kinds of Physical objects: Motherboards and Machines

Measurement tools

The Green Computing Observatory

Ontological semantics of tuples (1/2)

("IPMI", "FAN1 TACH", 1323951805, 10000)

Ontological semantics of tuples (2/2)

("Ganglia", "Byte_in", 1323951925, NaN)

Ontological semantics of time series

GCO: a Digital Curation approach

- Establish long-term repositories of digital assets for current and future reference
 - Continuously monitoring a large computing facility
- Tackling the good data creation and management issues, and prominently interoperability,
 - Formal mainstream ontology, standard-aware
- Providing digital asset search and retrieval facilities to scientific communities through a gateway
 - Files in XML format
 - Available from the Grid Observatory portal

Ontology-compatible XML Format: Why XML ?

- Interchange format
 - Easy to define your own syntax (DTD, XSD)
- Easy to manipulate
 - Manipulation languages (XSLT, XPath, XQuery...)
 - Lots of available libraries and tools (libXML, databases)
- Easy to extend
- Drawbacks:
 - Parsing can be quite slow
 - Libraries are not adapted to parsing gigabytes of data

Acquisitions

- Currently, 220+ machines are monitored
 - Data (time series) and metadata is acquired
- Machine = motherboard + middleware
 - "middleware" refers to the OS or the hypervisor
- Time series always refer to a machine
 - Helps uniting different acquisitions
 - e.g.: processor temperature connected to processor usage
 - Forces evaluating the acquisition context
 - e.g.: chassis temperature depends on power consumption
- Metadata is decisive to interpret the acquisitions

Acquisition

- ~25 time series from Ganglia
 - CPU usage, memory usage, network traffic, etc
- 30 to 50 time series from IPMI
 - Temperatures, fans speed, voltages, power consumption
 - Not all are relevant! e.g.: "Drive 1 Status"
 - Some give erroneous values! e.g.: "MCH Temp " = -1°?
- 1 time series for each power outlet
 - May be shared by multiple machines
- Metadata is acquired with the same tools

Different types of acquisition

- Identity properties: never change
 - e.g.: motherboard information, middleware version
 - Used to fully identify the entity
- Slowly mutable properties: can sometimes change
 - e.g.: IP address, Firmware version
 - Keep a history of the modifications
- Time series: values can constantly change
 - e.g.: CPU activity, power consumption
 - Keep track of every value and acquisition date

Slowly mutable properties

- Slowly mutable properties include:
 - The last known value
 - A history of previous values
- Gap every time a value changes, e.g.:
 - [t1, t2] = X
 - [t3, t4] = Y
 -]t2, t3[= ?

The Green Computing Observatory

XML format and specificities

- A time series refers to a machine
 - A measurement needs a context !
- Hosts are not directly represented
 - Difference with the ontology
- "Middleware" accommodates virtual and non-virtual cases

Definition of a time series

- A time series is a collection of **a**cquisitions represented by a couple (**t**imestamp, **v**alue)
 - Acquisition frequency not guaranteed! bugs, slowdowns,...
- A time series refer to a machine and a sensor
- Typically, one time series per day

Example of time series

<timeseries machineID="1" machineName="grid120" instrumentID="2"> </timeseries>

The Green Computing Observatory

Definition of a motherboard

- A motherboard is fully defined by:
 - Vendor ("DELL")
 - Serial number ("CN0D61XP747510BN0926A00")
- Other immutable features:
 - Manufacturer ("DELL")
 - Manufacturing date ("Sun Nov 28 12:05:00 2010")
 - Product name ("PowerEdge")
 - Part number ("VJ0BMP0878")
- Slowly mutable features:
 - Firmware revision ("1.27")
 - IPMI version ("2.0")

Example of motherboard


```
<motherboard ID="1" dateFrom="1325942960"
        name="Dell-CN0D61XP747510BN0926A00"
        vendor="Dell"
        product="PowerEdge"
        partNumber="VJ0BMP0878"
        serial="CN0D61XP747510BN0926A00"
        manufacturingDate="Sun Nov 28 13:09:00 2010">
    <property name="firmwareRevision"></property name="firmwareRevision">
        <history value="1.27" from="1325942960"</pre>
                  to="1325943080" lastKnown="true" />
    </property>
    <property name="IPMIVersion"></property
        <history value="2.0" from="1325942960"
                  to="1325943080" lastKnown="true" />
    </property>
</motherboard>
```

Definition of a middleware

- A middleware is fully defined by:
 - Type: OS or hypervisor
 - Product name and version ("SL 5.5")
 - Kernel name and version ("Linux 2.6.18")
- Other immutable features:
 - Architecture (e.g.: "x86", "x86_64")
- Slowly mutable features:
 - Any ? Information retrieved at the "running OS" level generally belong to the machine
 - e.g. hostname : one per machine, not one per middleware

Example of middleware


```
<middleware ID="1"
    hostname="grid120.lal.in2p3.fr"
    productName="SL"
    productVersion="release 5.5 (Boron)"
    kernelName="Linux"
    kernelVersion="2.6.18-238.12.1.el5"
    OSArchitecture="x86 64" />
```

Definition of a machine

- A machine is fully defined by:
 - Its hardware
 - Its middleware
- Changing the association = creating a new machine
 - For a given hardware, a different middleware can be used
- Immutable features:
 - Resources attribution: memory, cores (threads), etc
- Slowly mutable features:
 - Hostname (name + domain : "grid200.lal.in2p3.fr")
 - IP address ("134.158.73.96")

Example of machine

```
<machine ID="1"
         dateFrom="1325942960"
         motherboardInstanceID="1"
         middlewareInstanceID="1">
    <property name="name">
         <history value="grid120" from="1325942960"</pre>
                  to="1325943080" lastKnown="true" />
    </property>
    <property name="domain"></property name="domain">
         <history value="lal.in2p3.fr" from="1325942960"
                  to="1325943080" lastKnown="true" />
    </property>
    <property name="IP Address"></property name="IP Address">
         <history value="134.158.73.96" from="1325942960"</pre>
                  to="1325943080" lastKnown="true" />
    </property>
</machine>
```

Definition of a sensor

Grid Observatory

- A sensor is fully defined by:
 - The machine it belongs to
 - Its acquisition tool (IPMI, Ganglia, PDU)
 - Its name inside the acquisition tool
- Slowly mutable features:
 - The unit of the measurement (Volt, Watt, RPM, etc)
 - Qualities of the measurement process
 - Resolution
 - Accuracy
 - Precision
 - Response time
 - etc

Example of sensor

Qualities are not yet completely defined

File representation

- One file for metadata, each week
 - e.g.: "metadata2012W03.xml"
 - Contains machines, hardware, middleware, sensors
 - Contents of week X fully represented in week X+1
 - Expected size :1/1000th of the time series size
- One file for time series :
 - Per day
 - Per machine
 - Per acquisition source
 - e.g.: <grid120>-<20120119>-IPMI.xml
 - 2,5MB per day for IPMI, 2MB for Ganglia, 50kB for PDU

How to

Get an account

Grid Observatory Sign up - Microsoft	Internet Explorer	
Fichier Edition Affichage Favoris Outils		
G Précédente 🔹 🜍 - 📓 🛃 🎸) 🔎 Rechercher 📌 Favoris 🚱 🎯 - 🌺 🕅 - 🛄 🎇 🥸	
Adresse a http://query.grid-observatory.org/si	gnup	🖌 🄁 OK 🛛 Liens 🌺
Google 8 -	🔽 Rechercher 🕫 🐗 • 🥥 🌵 • 🔯 • 🏠 Mes favoris • 🖳 Trouver • 🏷 Orthographe • » 🔍	🗧 🔹 🔘 Connexion 🔹
	Sign up	<u>a</u>
	Your account	N
Grid Observatory	Login:	
did observatory	Full name:	
Grid Observatory About Data Presentation Query Documents Registration Related news Contact Site map Admin Lates news News Devents	Email: Homepage: Affiliation: Country: Please select Password: Confirmation: Save In order to use our website, please ensure that both JavaScript and cookies are	e allowed.
eeee		×
E Terminé	Ø Inte	rnet
🐉 démarrer 🔰 🖆 2 Explora	🖌 🍯 3 Mozila 🔹 🧭 3 Interne 🔹 🥵 acces.in.itr 🔯 5 Microso 🔹 📑 COLLOQUE FR 🤇 🖄 🕯	🔊 🛜 🖕 🛄 18:15

Download files

	aces				🟠 • 🖾 - 🖶 • 🕞 Page • 🕻
ervatory observatory servatary entation station news	Search Filters a Prom.	for Traces See OFF 14. Trace Information System Trace 2000 0+22 m200 Search entation about the	e traces 9 mm	Logod Search	
P	Query n	esults a man			
	Affiliation	Service	Period	Download?	
ews	GRIF-LAL	Information System	2008-07-28 2008-08-03	Download (288 MB)	
s 🖹 Events	GRIF-LAL	Information System	2008-08-11 2008-08-17	Download (198 MB)	
	GRIF+LAL	Information System	2008-08-18 2008-08-24	Download (295 MB)	
	GRIF-LAL	Information System	2008-08-25 2008-08-31	Download (306 MB)	
0600	a second second second			man influence of statements and	
egee Inability Crids	GREF-LAL	Information System	2008-09-01 2008-09-07	UDWNIDad (408 MB)	
CGCC Enabling Grids for E-science	GRIF-LAL GRIF-LAL Displaying :	Information System Information System all 6 tracoc	2008-09-81 2008-09-07 2008-09-08 2008-09-14	Download (299 MB)	

www.grid-observatory.org

The Green Computing Observatory

Preliminary: different regimes

All are time averages

The Green Computing Observatory

Preliminary: multivariate regression

Power as a function of load AND « fan speed »Active machinesIdle machines

Status and Roadmap

- Acquisition of timeseries and metadata for IPMI, Ganglia, PDU and temperature are in production
- Examples of raw timeseries for IPMI, PDU and Ganglia released
- Metadata integration and temperature timeseries, stable XML schema V1 Q1 2012
- Monitoring Virtual Machines from the StratusLab platform Q4 2012
- Global energy consumption Q4 2012
- Also: rack monitoring

Conclusion

The Green Computing Observatory

Discussion

- Même objectif général: publication, mise à disposition
- Tout le reste est différent !
 - Complémentaire
 - Basse fréquence : les conditions (charge-température) varient peu
 - Moins complémentaire
 - Multi-protocole, interopérable
 - Multi-senseurs, extensible sémantiquement
 - Contexte d'acquisition, charge : anti-confidentiel
 - Data curation
 - Format texte
 - Stockage illimité : sur la grille
 - Extensibilité interne à la grille EGI : protocole interne (ActiveMQ)
- Quelques pistes de standards pour l'interopérabilité
 - Multi –source pour l'acquisition : SDMX Statistical Data and Metadata Exchange
 - Multi-source pour les données : SDMX -> Linked Data