

Measuring and Characterizing HPC applications and CPU/GPU simulation

Georges Da Costa IRIT, Toulouse University

GreenDays@Lyon, 2012

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
Plan			

1 Context

- 2 Passive gathering of information
- 3 Experiments
- 4 Integrated behavioral dvfs method

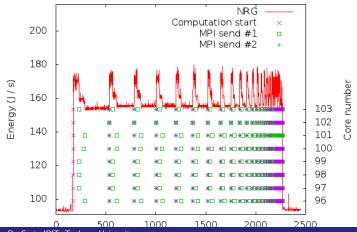
5 Hydrasim

- Hydrasim simulator
- Example

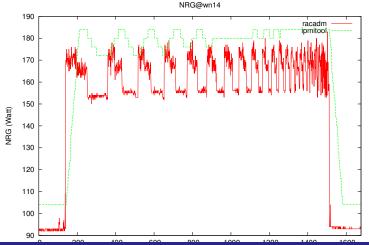
Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
Conte	ext		

To optimize a computing center:


- Gather insight on running applications
- Choose how to act
 - depends on application
 - More precise : phase of application
- Act (change frequency, switch on/off parts of nodes,...)

Optimize : reduce energy consumption at the same performance


Application modification

Energy consumption: wn4

Georges Da Costa IRIT, Toulouse University

Remark on monitoring: Choose the right tool

Georges Da Costa IRIT, Toulouse University

Measuring and Characterizing HPC applications and CPU/GPU simulation

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

Ignorance is bliss, really?

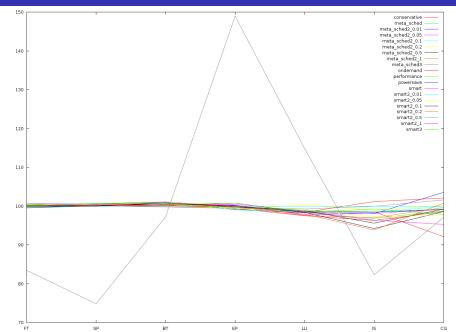
- *-AAS (PAAS, IAAS,...) leads to ignorance
- Ignorance leads to errors
- Errors lead to inefficiency

Focus :

How to optimize a computing center while knowing nothing?

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000


Know your enemy

What we know

- HPC applications
- Goal: Save energy
- No impact on performance (SLA,...)
- Name your weapon (constraints)
 - Minimum impact of monitoring
 - Closed application, no source
 - Even full OS freedom (Grid'5000, VMs)

Georges Da Costa IRIT, Toulouse University

Is it so important?

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
Plan			

1 Context

2 Passive gathering of information

3 Experiments

4 Integrated behavioral dvfs method

5 Hydrasim

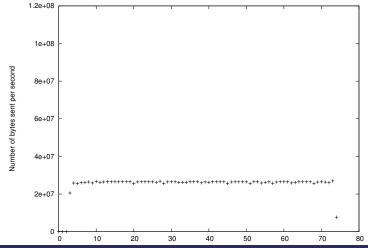
- Hydrasim simulator
- Example

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
	s Who		

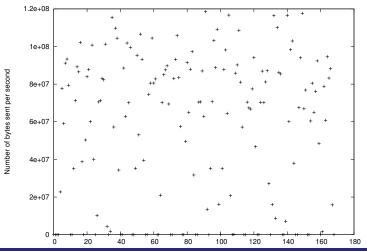
- Which application is running?
 - Ask the developer, but
 - Depends on library
 - Can cheat (if accounting is related to it)
 - Computers work for us, not the opposite
 - Application is not important, its behavior is!
 - Two different apps can have the same impact
 - System changes can have the same impact

We need Run-Time Behavioral Detection

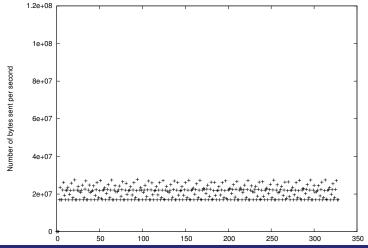

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

BigBrother is watching

Run-time detection


- Behavioral pattern
- Extract information
 - Fine grained : performance counters, system values
 - Coarse grained : network, disk, power consumption
- Classical remark: impact of the monitoring infrastructure

Finding patterns, NPB example, CG



Finding patterns, NPB example, FT

Georges Da Costa IRIT, Toulouse University

Finding patterns, NPB example, SP

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

Model creation

First create a model

- Run and monitor reference applications
- Cluster subset of characteristic
- Choose the most best subset
 - The most discriminating
 - The one with less impact
 - The one with best stability

Using a clear metric reduces bias

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

Use your creation

Simple to use the model once it is created:

- Step 1: Measure some characteristics
- Step 2: Compare to reference
- Step 3: Categorize application (or phase)

Low impact method:

- Low computing cost
- Network and power characteristics have low monitoring costs

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Experiments	Integrated behavioral dvfs method	Hydrasim 00000 000000
Plan				

1 Context

2 Passive gathering of information

3 Experiments

4 Integrated behavioral dvfs method

5 Hydrasim

- Hydrasim simulator
- Example

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Experiments	Integrated behavioral dvfs method	Hydrasim 00000 000000

Configuration

Usecase : Nas Parallel Benchmark

- Different type of workload
- Representative of HPC applications
- Seven benchmarks
 - Embarrassingly parallel
 - Communication intensive

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Experiments	Integrated behavioral dvfs method	Hydrasim 00000 000000

Monitoring infrastructure

Performance Counters

- Standard Linux perfcounters (>2.6.31)
- 1 measure/second/core/perfcounter
- Network IO
 - Inbound and outbound packets and bytes
 - 1 measure/second/host
- Disk IO
 - Read and write
 - 1 measure/second/host

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Experiments	Integrated behavioral dvfs method	Hydrasim 00000 000000

Post-measure processing

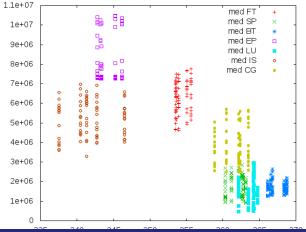
- Instantaneous measures fluctuate widely
- Need for low cost post-processing
- Small window processing
 - To react to application phase
 - Low memory/processing cost of processing (ie no FFT)
- Simple statistical processing:
 - Mean, median, standard deviation, decile

Context	Passive gathering of information	Experiments	Integrated behavioral dvfs method	Hydrasim 00000 000000

Characteristic choice

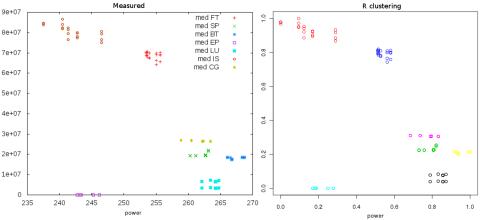
Characteristics relevance depends heavily on applications

For HPC application


- Disk is of no use
 - Disk IO only at beginning and end
 - Can change on low memory condition (swaping)
- Perfcounters are expected to be relevant
- Network and power also

Georges Da Costa IRIT, Toulouse University

Perfcounters: unexpectedly bad


One of the best: **HW_BRANCH_MISS** (with power on x-axis)

Georges Da Costa IRIT, Toulouse University

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
Plan			

1 Context

2 Passive gathering of information

3 Experiments

4 Integrated behavioral dvfs method

5 Hydrasim

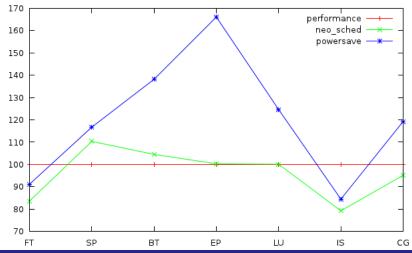
- Hydrasim simulator
- Example

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

Energy efficient dvfs

Using HPC application detection


- Categorize application (or phase)
- Apply a rule-based algorithm
- Change processor speed to min or max

Can take into account several objectives depending on rules

- Energy only
- Energy with taking into account performance

...

With more control comes more efficiency

Georges Da Costa IRIT, Toulouse University

Conclusion on application profiling

- Application characterization is possible with no impact!
- It leads to optimize resources usages and reduce energy (J)

Still much to do

- Improve statistical post-processing
- Improve reactivity (reduce window)
- Create a kernel governor

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000
Plan			

1 Context

- 2 Passive gathering of information
- 3 Experiments
- 4 Integrated behavioral dvfs method

5 Hydrasim

- Hydrasim simulator
- Example

Georges Da Costa IRIT, Toulouse University

GPU are efficient for some algorithms

- Fast
- Energy-efficient

The system uses 7,168 NVIDIA Tesla M2050 GPUs and 14,336 CPUs; it would require more than 50,000 CPUs and twice as much floor space to deliver the same performance using CPUs alone (Nvidia)

With only CPU : 12 megawatts Hybrid version : 4.04 megawatts

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 00000 000000

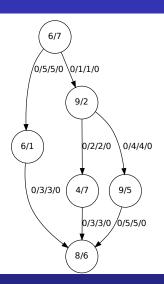
Runtime vs Placement

Where to run a task ? Two possibilities:

- Runtime
 - StarPU
 - + Low-impact, reactive
 - Can be far from optimal
- Placement
 - Need a-priori information
 - Cannot adapt
 - + Can be optimal

Georges Da Costa IRIT, Toulouse University

Hydrasim: Tool to evaluate placement algorithm

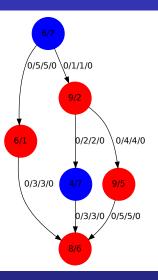

- Realistic hardware
 - Number of processors and GPU
 - Energy and performance of hardware
 - Several policies (more later)
- Output
 - Makespan
 - Energy (for CPU, GPU and both)

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 0●000 000000
Hydrasim sim	ulator		

Task Model

- DAG of tasks
- Tagged *dot* file
- Tasks: time on CPU and GPU
- Communications: time of
 - CPU→CPU
 - CPU→GPU
 - GPU→CPU
 - GPU→GPU



Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim oo●oo ○○○○○○
Hydrasim sir	nulator		

Allocation Model

- Colored *dot* file
- Blue processor
- Red GPU

Georges Da Costa IRIT, Toulouse University

Hydrasim simulator

Complete performance evaluation environment

Starting point depends on the problem

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim 0000● 000000
Hydrasim si	mulator		
<u> </u>			

Simulator zoom

Simulator needs

- Number of CPU/GPU
- Characteristics of CPU/GPU
- Runtime policy to choose jobs
 - Fifo, Random, Fastest
 - Max_connections
- Runtime policy for the bus

Georges Da Costa IRIT, Toulouse University

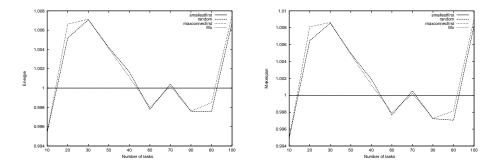
Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim ○○○○○ ●○○○○○
Example			

Comparison of schedulers

Let's take several schedulers

- All_CPU
- All_GPU
- Fastest
- EE (most energy efficient)
- Rand
- Spgti

Georges Da Costa IRIT, Toulouse University

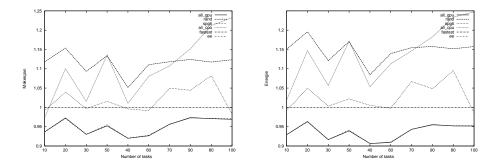

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim ○○○○○ ○●○○○○
Example			
Envir	onment		

- Applications
 - Generated using a random strategy
 - 10 to 100 tasks
- Hardware
 - CPU Intel Xeon E5540 and GPU Nvidia Tesla C1060.
 - 1 to 16 CPU and 1 to 16 GPU

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim ○○○○○ ○○●○○○
Example			

Direct results

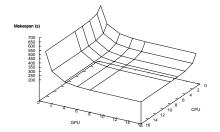


Energy and Makespan are not impacted by runtime

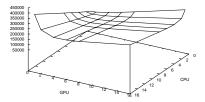
Georges Da Costa IRIT, Toulouse University

Example

Direct results (cont)



They are by scheduler


Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim ○○○○○ ○○○○●○
Example			

Optimize resource number

Energy (J)

Georges Da Costa IRIT, Toulouse University

Context	Passive gathering of information	Integrated behavioral dvfs method	Hydrasim ○○○○○ ○○○○○●
Example			

Conclusion

Using Hydrasim you can

- Test several hardware configuration
 - For free !
- Obtain the optimal number of resources
- Compare algorithms

We are interested in

- Use-cases
- Feedback on the simulator

```
http://hydrasim.sourceforge.net/
C++/Discrete event simulator/GPL
```

Georges Da Costa IRIT, Toulouse University