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Introduction

Context

@ Machine Learning has become a powerful tool for various
applications

@ Modelling of complex functions for
processing/analysing/interpreting data

@ State-of-the-art models: Deep Neural Network (DNN)

@ Requires huge computational and memory resources

@ Especially for training but also for the deployed systems
@ Common solution: cloud computing
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Intro on

DNN models for image classification (ImageNet)
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Introduction

Context

@ Can DNNs be integrated in embedded systems, mobile and
low-power devices?

i
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Introduction

Motivation

@ Reducing server maintenance costs,
@ Scalability,

@ Reducing network transfer and lag,
@ Privacy

@ Reducing environmental impact
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Deep Neural Network Models

Model overview
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Deep Neural Network Models

Model overview

@ Convolutions:
e high computational complexity
e low memory requirements

@ Pooling: no memory and very fast

@ Fully connected layers:

e low computational complexity
e high memory requirements

@ Implementations heavily rely on parallelisation (using GPU)
— high power consumption
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e Neural Network Compression
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Neural Network Compression

Neural Network Compression

@ Very large redundancy in trained DNN models (i.e. the weights)

@ Some approaches try to avoid this during the design or training of
a model (AutoML)

@ Most current approaches:

@ Train a (highly redundant) DNN
@ Compress the model
© Retrain/refine the model (to compensate for errors)

@ Recent DNN models: ~ 106 — 107 parameters, ~ 10> MB
@ Compression rates: ~ 1: 10 — 1 : 200
@ Very little or no loss in classification performance!
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Neural Network Compression

Compression Approaches

Deep Model Compression
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Neural Network Compression

Existing code and solutions

@ Many implementations on-line (github etc.)
@ Tensorflow Lite

@ Core ML (Apple)

@ CNTK netopt module (Microsoft)

@ MXNet quantisation API (Apache) (BMXnet)
@ PyTorch pruning/quantization package

@ Deep Learning framework N2D2 (CEA LIST)
(https://github.com/CEA-LIST/N2D2)

@ Apache TVM
@ Alibaba MNN
@ Hardware-oriented: NVIDIA, Xilinx VITIS
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@ Weight quantisation with dyadic rationals
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Our approach

@ Post-training quantisation method
@ We focus on low-power approximations

@ Approximate weights by dyadic rationals
—all multiplications replaced by bit-shifts and additions

@ We approximate each convolution matrix M individually by:

M =a"T". (1)

@ Each element of T* is a dyadic rational m /2" from a set D

Stefan Duffner, LIRIS, INSA Lyon Low-Power Approximations of CNN 28/03/2023 16/28



Weight quantisation with dyadic rationals

Examples of D

Dl :{_17071}7
DQ :{_27_1707172}7
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pi-friniandd boty
D5:{—7, 6,—5,—4,—-3,—-2,—1, i, %, i,(),
113
4,2,4,1,2,3,4,5,6,7},
pofa sl mn )

Stefan Duffner, LIRIS, INSA Lyon Low-Power Approximations of CNN

17/28



Weight quantisation with dyadic rationals

CSD representation

@ o* > 0 € R is a expansion factor approximated by the closest CSD
representation (Canonical Signed Digit encoding)
e CSD:
e CSD presentation of a number consists of numbers 0, 1 and -1.
e The CSD presentation of a number is unique.
e The number of nonzero digits is minimal.
e There cannot be two consecutive non-zero digits.

@ Example: 1 0010 000-1 = 256 + 32 -1 = 287
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Weight quantisation with dyadic rationals

Optimisation

@ We formulate this as an optimisation problem:

(a7, T") = argmin M — o T2, (2)

@ Frobenius norm || M|| = \/zgl > mi;

@ Mixed integer non-linear programming (INLP)
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Optimisation

@ Linearisation of problem
@ M=[m;;] ij=12,...,NandreD
@ binary decision variables:
1, If mm- =7,
xriqilr)=
i (7) 0, otherwise.

@ (2) can be re-written according to the following binary linear
programming problem:

min Z Z Z r—o- mw)2 - xi5(r), (3)

@i, (1) i=1 j=1reD
subject to

in’j(/r.):l’ i?.j:1727'~~7N-
reD
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Weight quantisation with dyadic rationals

Optimisation

@ Each entry of T,, can be computed as:

tz(»z-) = Z 7 %(3) (r). (4)

reD

@ Resulting approximation error:
Error(a) = |[M — a - T,

@ Can be solved in O(N)
@ Global optimum value o*:

o = arg min Error(a), (5)
(03
@ Solved by simple minimization over a vector of values.
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Weight quantisation with dyadic rationals

Example

1.5200701 1.0317051 0.7906240 —0.2153791 —0.2340538
1.3982610 2.1860176 2.0152923 1.5620477 0.8270900
My = | —0.6848867 0.7470516 1.6923728 1.2537112 1.1946758
—1.2387477 —0.5483563 0.1261987 0.8677799 0.7742613
—1.4691808 —1.2178997 —0.2924347 0.2172496 0.1325074
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Weight quantisation with dyadic rationals

Example

Solving (2) for the above matrix using Dg, we obtain:

a* =0.30931,

5 3.25 2.5

4.5 7 6.5

T = |-

1
4
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Weight quantisation with dyadic rationals

Example

@ CSD approximation of o*:
a* =0.30931 ~ 272 + 24 — 278 = (.30859375.

@ Fully multiplierless approximation:

20 13 10
18 28 26
M=(2"%+20_271%. 1 _9 10 22
-16 -7 2
-19 —16 —4
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Weight quantisation with dyadic rationals

Results

@ Tested on three different models of different complexity:

e Face detection CNN: 1k parameters, 97% of exact model
e MNIST: 180k parameters, 99% of exact model
o AlexNet/ImageNet: 1.2M convolution matrices, 96% of exact model

@ Different approximations for different layers
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Weight quantisation with dyadic rationals

Low-complexity face detection with our approach

approximate vs. exact
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Weight quantisation with dyadic rationals

Results

Mean classification rates for the MNIST test set and different

approximations relative to the exact model.

| Exact ASG PLAN Linear| Linearll Quadraticl Quadratic |

Exact 1.0000 1.0000 0.9847 0.9680 0.9978 1.0000 1.0000
Ay 0.9684 0.9684 0.9588 0.9260 0.9615 0.9684 0.9684
Ao 0.9643 0.9643 0.9627 0.8805 0.9573 0.9643 0.9643
As 0.9961 0.9961 0.9848 0.9655 0.9944 0.9961 0.9961
Ay 0.9973 0.9973 0.9863 0.9700 0.9969 0.9973 0.9973
As 0.9976 0.9976 0.9866 0.9666 0.9969 0.9976 0.9976
Ag 0.9991 0.9991 0.9868 0.9701 0.9973 0.9991 0.9991
Az 0.9992 0.9992 0.9846 0.9680 0.9977 0.9992 0.9992
Asg 0.9994 0.9994 0.9848 0.9675 0.9981 0.9994 0.9994
Assas | 09931 0.9931 0.9749 0.9625 0.9924  0.9931 0.9931
Az, | 0.9891  0.9891 0.9684 0.9580 0.9866 0.9891 0.9891
Asga1,1 | 0.9937 0.9937 0.9780 0.9618 0.9943 0.9937 0.9937
As1,1,1 | 09885 0.9885 0.9655 0.9572 0.9872 0.9885 0.9885
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Weight quantisation with dyadic rationals

Further information

@ R. J. Cintra, S. Duffner, C. Garcia, A. Leite, "Low-complexity
Approximate Convolutional Neural Networks", IEEE Transactions
on Neural Networks and Learning Systems, 2018

@ Y. Cheng, D. Wang, P. Zhou, T. Zhang, and S. Member, “A Survey
of Model Compression and Acceleration for Deep Neural
Networks,” IEEE Signal Processing Magazine, 2017

@ J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu, “Recent Advances in
Efficient Computation of Deep Convolutional Neural Networks,”
Frontiers of Information Technology Electronic Engineering, 2018

@ T. Elsken, J. H. Metzen, F. Hutter, "Neural Architecture Search: A
Survey", JMLR, 2019

@ http://www.automl.org
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