

The Green Computing Observatory

Michel Jouvin (LAL)

Cécile Germain-Renaud (LRI), Thibaut Jacob (LRI), Gilles Kassel (MIS), Julien Nauroy (LRI), Guillaume Philippon (LAL)

Grid Observatory

Outline

- Contexts
- Acquisition
- Status and roadmap
- Scientific issues
- Conclusions

GCO in a nutshell

- Research about sustainable computing is suffering the lack of representative experimental data
 - In particular about power consumption profiles
- The GCO project aims to provide scientific community with data about a large production grid computing center with an experimental cloud platform
 - GCO takes care of both data acquisition, data curation and a first data analysis
- GCO combines expertise in managing a production computing center, expertise in ontology for the semantics of data and expertise in machine learning for data interpretation
- GCO is a sub-project of the well established Grid Observatory
 - Will use the same HW and SW infrastructure to publish data

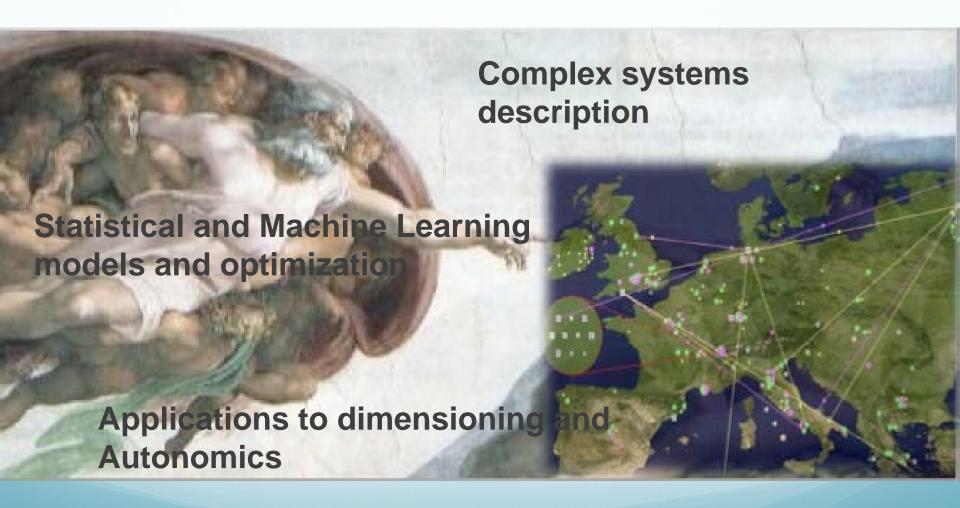
Who are we?

- A collaborative effort of
 - CNRS/UPS Laboratoire de Recherche en Informatique
 - CNRS/UPS Laboratoire de l'Accélérateur Linéaire (GRIF grid site)
 - U. Picardie MIS laboratory
- With the support of
 - France Grilles French NGI member of EGI
 - EGI-Inspire (FP7 project supporting EGI)
 - INRIA Saclay (ADT programme)
 - CNRS (PEPS programme)
 - University Paris Sud (MRM programme)

Motivation

- The metrics remain to be defined
 - "Energy efficient" means the delivery of the same or better service output with less energy input: how to define the service?
 - All costs should be considered: ideally should include building and recycling costs but probably too difficult to integrate
- Energy and power consumption are complex systems.
 - Sophisticated HW/SW mechanisms eg ACPI, dynamically overclocking of active cores, and other optimisations based on on-line statistical monitoring.
 - Interaction with cooling provisioning (eg. fan speed), cooling efficiency (PUE)
 - Usefulness of powered IT
- Evaluation ideally requires behavioral models based on real data
 - Importance of curated data collection at various centers

The Grid Observatory (I): Digital Curation



- Behavioral data of the EGEE/EGI grid
 - Collection, preservation, indexing
 - Correlation with known operational events
 - Continuous and exhaustive datasets
- Portal allowing to download/query data
 - For scientific and engineering usage

The Grid Observatory (II): analysis and modeling

GRIF/LAL Grid Site

- Grid Observatory
 LPNHE
- GRIF is a large distributed grid (EGI) site in Paris region operated by by 6 labs (CEA/Irfu + CNRS/IN2P3)
 - Resources spread over 6 locations with a 10 Gb/s private network
 - Currently 8000 cores, 2 PB disk
 - Technical team: 15 people (10 FTE)
- LAL contributes ~25% of GRIF resources
 - Also operating internal resources: ~1000 cores, 150 TB disks
 - Strong expertise in site management: infrastructure, system admin, services

Val-de-Ma

LAL Computing Room

- Mostly based on traditional racks + cooling
 - Cold-water based central cooling
 - 13 racks hosting 1U systems
 - 4 lower-density racks (network, storage)
- Recently introduced water-cooled racks
 - Cooling through back door (ATOS)

StratusLab

Information

- 1 June 2010—31 May 2012 (2 years)
- 6 partners from 5 countries
- Budget: 3.3 M€ (2.3 M€ EC)

CNRS (FR)

UCM (ES)

Goal

- Create a comprehensive, open-source "private" cloud distribution
- Focus on supporting grid services

GRNET (GR)

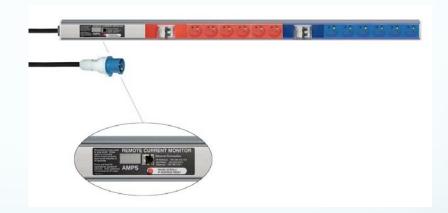
SIXSQ (CH)

Contacts

- Site web: http://stratuslab.eu/
- Twitter: @StratusLab
- Support: <u>support@stratuslab.eu</u>

TID (ES)

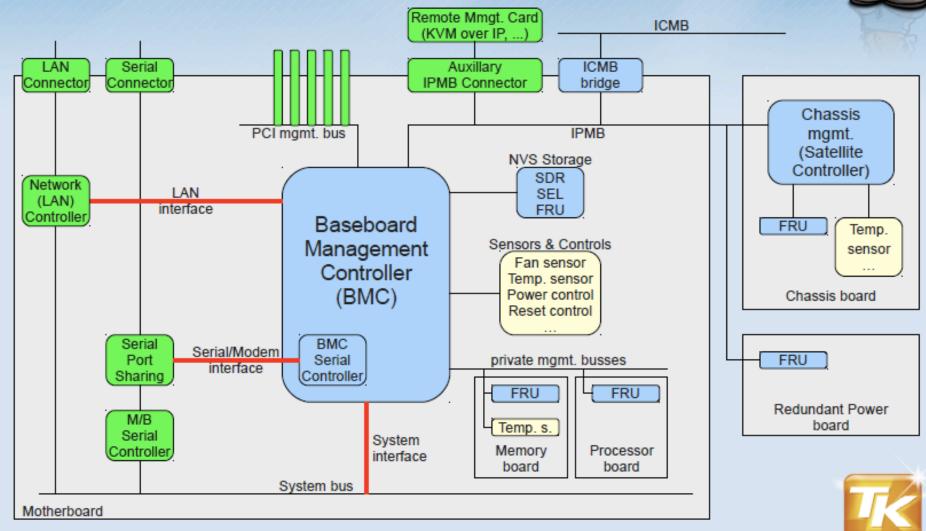
TCD (IE)


Acquisition

- Goal: monitoring the EGI GRIF/LAL site and the StratusLab testbed
 - Global energy usage based on room power distribution monitoring
 - Should include cooling power consumption
- 2 acquisition methods
 - PDU monitoring with outlet granularity
 - IPMI-based monitoring: fine grain information at motherboard level
- In-progress: correlating both to see if we can rely on IPMI

Smart PDU

- PGEP PULTI
 - 16 outlets
 - Each PDU outlet managed separately
 - Query protocol : SNMP
 - Embedded Web server
- 1 rack (32U over 36) equiped
 - 1U system
 - Grid worker nodes
- Issue: last systems are Twin²
 - 4 systems in 2U
 - 2 redundant power supplies


Grid Observatory

IPMI

- IPMI = Intelligent Platform Management Interface,
- Based on a specialized processor card (BMC)
 - 1998: IPMI v1.0, 2001: IPMI v1.5, originally by Intel, HP, NEC, Dell
 - 2004: IPMI v2.0 (matured version of IMPI)
 - De facto standard implemented by all motherboard vendors
- Allows fine grain monitoring of individual system parts...
 - Temperatures, fans, voltages, etc.
- And many other things: http://www.intel.com/design/servers/ipmi
 - Recovery Control (power on/off/reset a server)
 - Logging (System Event Log)
 - Inventory (FRU information)

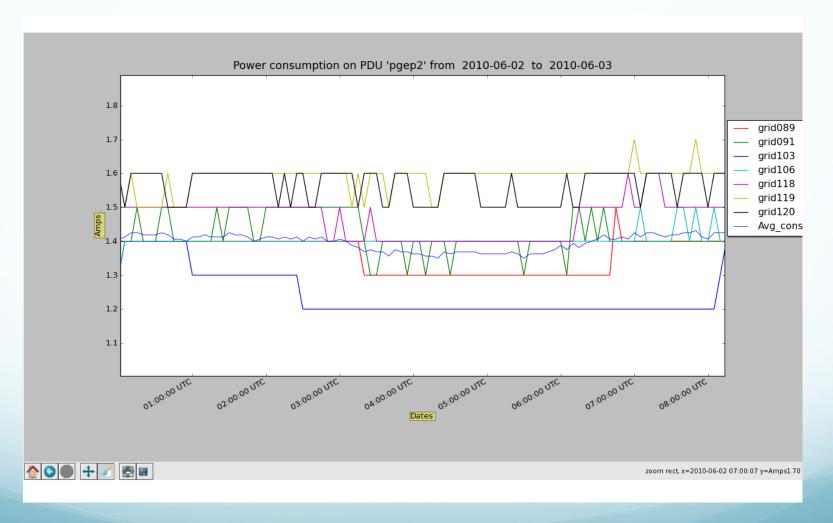
2) IPMI basics

Source: http://www.netways.de/uploads/media/Werner_Fischer_-The-Power-Of-IPMI.pdf

Slide 6/26

PowerMon Prototype

- A set of tools to collect and visualize the data about individual machine power consumption and load
- Written in Python, using SNMP for power data acquisition
 - Easy to extend for supporting new PDU HW
 - IPMI-based data acquisition to be added soon
 - Machine load retrieved from RRD tools DB generated by Ganglia, Nagios or other load monitoring tools
 - Consolidated data stored in a SQL db with a fixed sampling interval (currently 5 mn)
- Visualization for exploring correlations between load and power data



PowerMon Visualisation

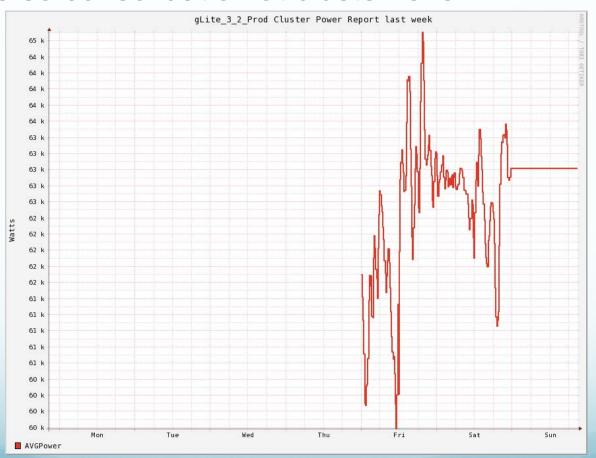
PowerMon Visualisation

Status and Roadmap...

- Currently monitoring 1 rack through PDU and 8 through IPMI
 - 200 IBM 3550 (1600 cores) and in 5 Dell C6100 (400 cores)
 - Focus on assessing IPMI reliability
 - Collecting 400MB/day with a sampling interval of 5 mn
 - Data available: power consumption/machine, CPU load
- Short term plans (funding by CNRS PEPS)
 - PDU-based acquisition for Dell C6100 systems (Twin²)
 - Collect information about global power consumption, ambiant temperature, fan speeds
 - Cooling inefficiency leads to increased fan speed which leads to +20% in power consumption
 - Integration of IPMI-based acquisition into PowerMon

... Status and Roadmap

- Visualisation: integration of power consumption into standard monitoring tools like Ganglia
 - Mostly a matter of producing RRD files
 - A prototype produces RRD files directly, could also be derived from PowerMon SQL DBs
- Data export to a common agreed format
 - Probably XML-based
 - Aim should be comparison between sites
 - Target date : January 2012
- Open questions: do we need motherboad and CPU temperatures


Grid Observatory

Ganglia-based Visualisation Grid Observatory

But also consolidation at cluster level

Data Curation...

- Digital curation is the selection, preservation, maintenance, collection and archiving of digital assets [Wikipedia]
- An important feature is to eliminate obvious outliers
 - Difficult, mostly a manual process
 - Importance of annotations (metadata)
- First implementation is based on an annotated calendar of known operational events
 - GRIF events are published by GRIF in a Google Calendar for its internal use: important for its accuracy
 - Google calendar is imported in a SQL DB and allows event annotation

... Data Curation

Event calendar February 2011 Change date : February 2011 ‡ go Monday Tuesday Wednesday Thurdsay Friday Saturday Sunday 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 From 2011-02-21 to 2011-03-06 Source: LAL Reason: Maintenance Possibly Affected Services: GridFTP Logs 27 Notes: Due to maintenance on the SE nodes, GridFTP logs have been reset. Expect losses. Incomplete Data Incomplete Data Incomplete Data 28 Incomplete Data Incomplete Data Incomplete Data

Metrics, Measures and Models

- First step: behavioral descriptive models i.e. parsimonious representations from the large dimension space available from the detailed monitoring
 - Stationarity should not be assumed -> detection of ruptures
 - On-line, dynamic clustering with GStrAP
- Next: identify optima in the resulting complex landscape
- Requires the developement of a framework for automated analysis, in particular data correlations/clustering
 - 200+ systems!

1/6/2011

Ontologies

- A requirement for data analysis and correlation
- Characterization of processes, services and collections do exist to model computational usages.
- These concepts are integrated in the ontological resources of the OntoSpec method defined by MIS.
 - They are linked to an ontology of Quantities and Units of Measure

Conclusions

- The GCO is build upon the Grid Observatory experience in grid behavioral data collection and publishing
 - Participates to the trend to Open Data
 - GCO is a task in Cloud benchmarking Activity Proposal for ICTLabs 2012
- GCO started a prototype for data collection at GRIF/LAL production grid site
 - Collection tool available and easy to extend to new HW
 - IPMI will be used for data collection extension to the whole site
 - Required for a fine enough granularity with Twin² systems
- We are willing to collaborate with "green computing" community and are open to community requirements

Useful Links

- Grid Observatory: http://www.grid-observatory.org/
- GRIF: http://grif.fr
- StratusLab: http://stratuslab.eu
- IPMI:
 - http://www.netways.de/osdc/y2010/programm/v/the_powe r_of_ipmi/
- OntoSpec : construction of ontologies
 - http://www.laria.u-picardie.fr/IC/site/?lang=en