

Architect of an Open World™

Adaptive Resource and Job Management for limited power consumption

02/07/14

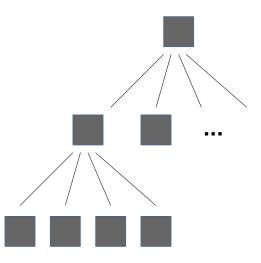
Yiannis Georgiou **David Glesser** Matthieu Hautreux Denis Trystram

- Target: Big clusters
 - >10k cores
 - Biggest has 3M cores
- Lot of resources, managed by the RJMS
 - Resource and Job Management System
 - Famous ones: Slurm, PBS, OAR
 - Resources: CPU, GPU, networks, energy...
- How this works?
 - Users submit jobs
 - The RJMS chooses when and where to launch them

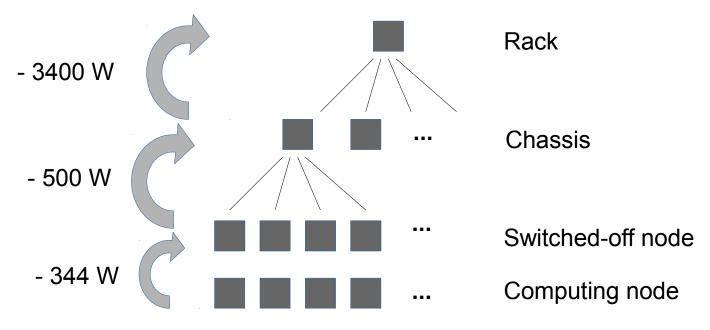
• This work targets the RJMS level

- What we know on each app at this level?
 - Max(runtime)
 - Resources needed (cores and other specific resources)
 - User
 - History of submissions

Energy is a driven constraint, going to the exascale requires to be able to gain 2 orders of magnitude in Power


- What can we do to manage energy?
 - Architecture design
 - Applications optimizations
 - DVFS (dynamic frequency and voltage scaling)
 - Switch-off

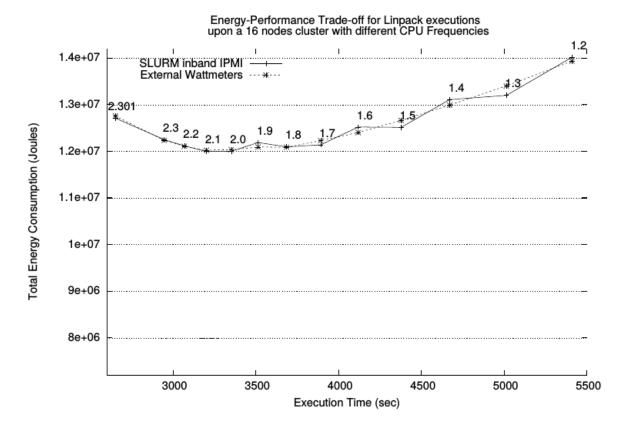
• Switch-off


- Switch-off some resources
- switched-off has a cost
- Not possible on all clusters
- Jobs can not run on switched-off nodes!

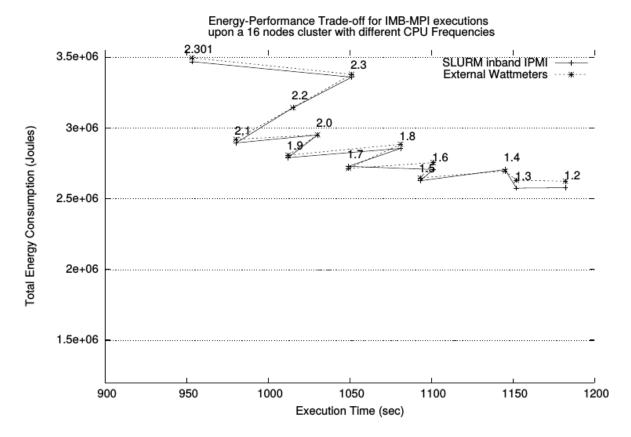
- « Power Bonuses »
 - If all components of a level are switched-off, the component of the upper level can be switched-off and provide an additional gain

- Exemples :
- Nodes are made of processors
- Chassis are made of nodes
- Rack are made of Chassis

- « Power Bonuses » on CURIE cluster:
 - Node is the smallest switched-off level
 - 18 nodes per chassis, 5 chassis per rack
 - Power(switch-off node) ~= 5 * Power(computing node)
 - Power(Chassis only) ~= Power(computing node)
 - Power(Rack) ~= 10 * Power(computing node)



- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off ?


- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off ?

 $\int POWER.dt = Energy$

- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off?

- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off?

 DVFS is a trade-off between completion time and power

- No obvious **performance** / **energy** trade-off
 - Minimizing energy != minimizing power
 - The impact of DVFS is highly dependent on the job

⇒ let's concentrate on power control

Let's powercap!

• Why reduce?

- Reduce cost
- 50% of the annual cost
- Reduce CO2

• Why control?

- Power peak = O(power of a city)
- Power installations lifetime
- Electricity providers limitations
- Controling energy = Controling cost

Our Model

- We work with maximum power consumptions
- Maximal computational work possible

$$W = T.\left(\frac{N - N_{off} - N_{dvfs}}{\sigma_{Max}} + \frac{N_{dvfs}}{\sigma_{Min}}\right)$$

• Powercap limitation

$$N_{off}.P_{off} + N_{dvfs}.P_{Min} + (N - N_{off} - N_{dvfs}).P_{Max} \le P$$

$$N_x =$$
 number of node in state X
 $\sigma_z =$ speed degradation at state Z
 $P_y =$ power consumption at Y
 $P =$ powercap

• In the space 3D (N_{dvfs}, N_{off}, W) $W = T.\left(\frac{N - N_{off} - N_{dvfs}}{\sigma_{Max}} + \frac{N_{dvfs}}{\sigma_{Min}}\right)$ is a plane

 $\begin{array}{l} N_{off}.P_{off} + N_{dvfs}.P_{Min} + \\ (N - N_{off} - N_{dvfs}).P_{Max} \leq P \end{array} \quad \text{is an half space} \end{array}$

⇒ The intersection is a straight line

• Within the bound of the total number of nodes, W is maximized when:

$$\begin{cases} N_{off} = \frac{P - N \cdot P_{Max}}{P_{off} - P_{Max}} \\ N_{dvfs} = 0 \end{cases} \quad \text{or} \quad \begin{cases} N_{off} = 0 \\ N_{dvfs} = \frac{P - N \cdot P_{Max}}{P_{Min} - P_{Max}} \end{cases}$$

$$\begin{cases} N_{off} = \frac{P - N.P_{Max}}{P_{off} - P_{Max}} & \text{or} \\ N_{dvfs} = 0 \end{cases} \quad \text{or} \quad \begin{cases} N_{off} = 0 \\ N_{dvfs} = \frac{P - N.P_{Max}}{P_{Min} - P_{Max}} \end{cases}$$

How to choose ?

$$\rho = 1 - \frac{\sigma_{Max}}{\sigma_{Min}} - \frac{P_{Max} - P_{dvfs}}{P_{max} - P_{off}}$$

When RHO <0, switch-off is prefered

• On CURIE cluster:

Benchmark	Degradation	ρ	Best mechanism
NA	2.27	0	-
linpack	2.14	-0.027	Switch-off
IMB	2.13	-0.029	Switch-off
SPEC Float [11]	1.89	-0.088	Switch-off
SPEC Integer [11]	1.74	-0.134	Switch-off
Common value [22]	1.63	-0.174	Switch-off
NAS suite [11]	1.5	-0.225	Switch-off
STREAM	1.26	-0.350	Switch-off
GROMACS	1.16	-0.422	Switch-off

Fig. 5: Comparison between DVFS and switch-off in Curie for various benchmarks.

- A usable algorithm
 - Implemented in Slurm
 - We keep the original algorithm (ordered list + backfilling)

• Compute less thing at runtime

- When a powercap limit is set
- Choose between DVFS and switch-off

- If DVFS
 - When a job is being launched,
 - Try to schedule it at the highest frequency
- If switch-off
 - switch-off nodes at runtime,
 - mark these nodes as « reserved » for the scheduler

- Slurm can emulate his environement
 - 336 Slurm nodes on 1 physical node
 - *Sleep* instead of real job
- Replay interesting part of the original log
 - 5 hours, high throughput, jobs representative of the whole log
- Add a powercap
 - Case study: 1 hour, in the middle of the trace, at different powers

Experimental validation

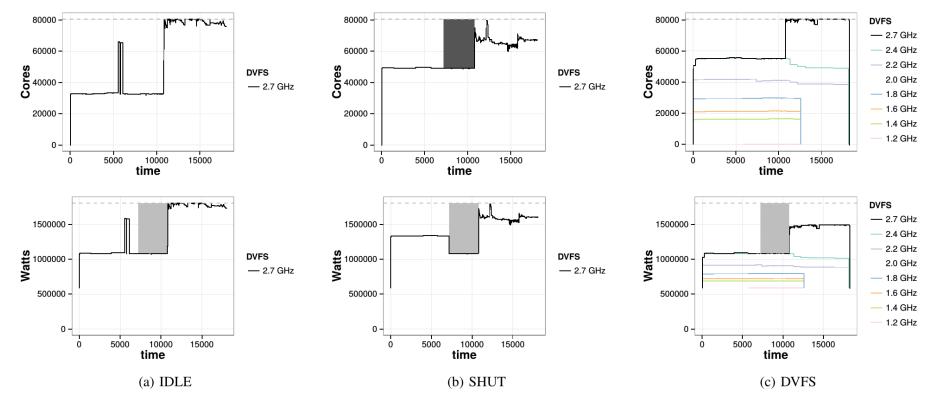
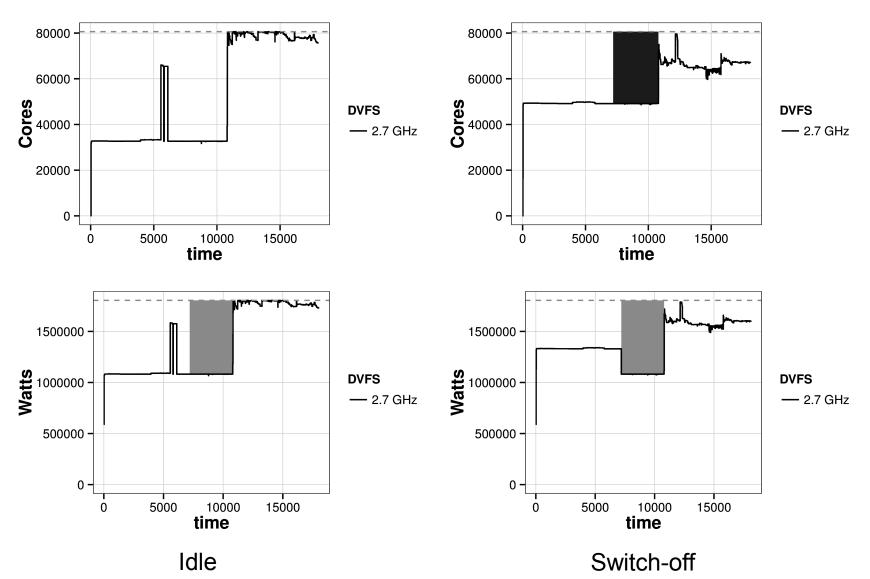
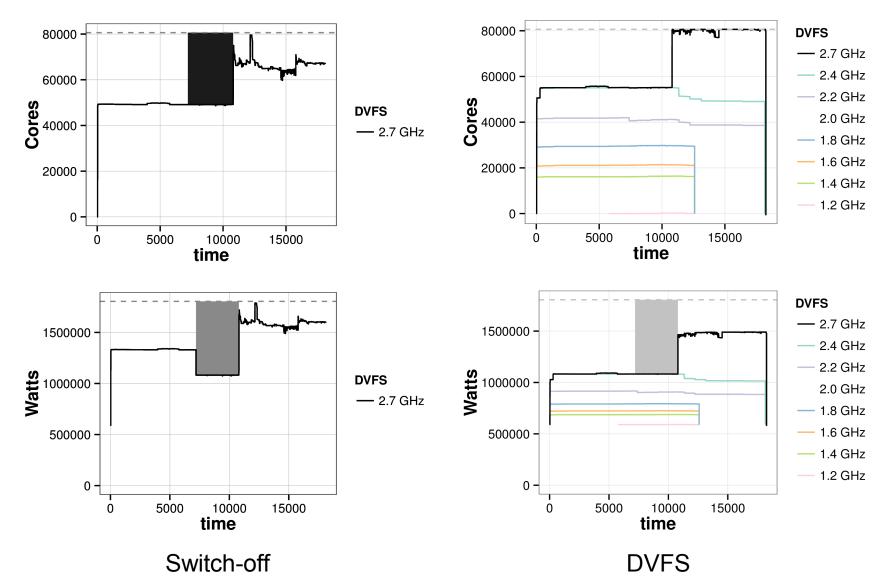




Fig. 7: System utilization for the IDLE, DVFS and SHUT policies in terms of cores (up) and power (bottom) during the 5 hours workload with a reservation of 60% of total powercap

Experimental validation

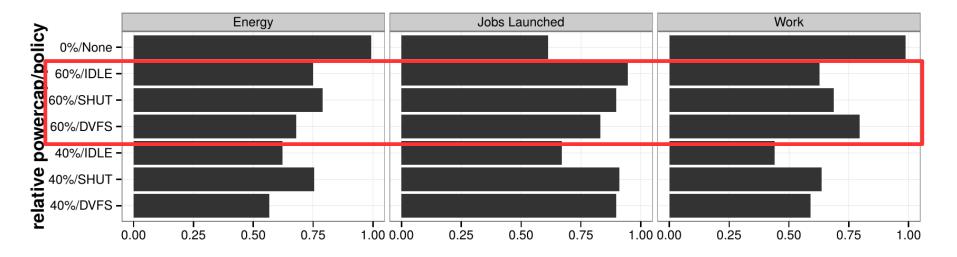


Fig. 8: Comparison of different scenarios of policies and powercaps based on normalized values of launched jobs, accumulated cpu time and total consumed energy during the 5 hours workload interval

• Powercap on real power values ?

- More switch-off
 - New scheduling algorithms
 - Switch-off (with bonuses) whithout powercaps

Less DVFS

- At least not at our level
- What about reproducibility of jobs runs?
- To do DVFS right, we need to know the job

Architect of an Open World™