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* Multicore and the power wall
— The Utilization Wall
— Dark Silicon

* Energy advantages of hardware
accelerators

* Reducing power on adaptive platforms
* Chips go 3D!
* Towards heterogeneous manycores

Motivations

* A data center is not an embedded system!
— But power is a major issue in ES since 20 years
* So what can we learn from embedded
systems?
— Hardware specialization
— Adaptive hardware platforms
* Heterogeneous manycores

— processors + accelerators + memory + network

Limits Exist
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The Multicore Era

* True since 2005-2008, but what’s next?

— Energy efficiency is not scaling along
with integration capacity
* Transistor and power budgets P,:a,f[C[Vddf
no longer balanced

Classical scaling Leakage limited scaling
Device count S?

Core;

Device count S?
Device frequency S Device frequency §
Device power (cap) |1/S Device power (cap) |1/S
Device power (Vy,) |1/5? Device power (V) |~1
Utilization 1 Utilization 1/
— Few applications have parallelism levels that

can efficiently use a >100-core chip

[Venkatesh et al., ASPLOS’10]

Multicore and Dark Silicon
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Dark Silicon

The Utilization Wall

* With each successive process generation, the
percentage of a chip that can switch at full
frequency drops exponentially due to power
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[Esmaeilzadeh et al., ISCA’11]

Business as Usual?

* Cost per gate trend with technology scaling

Cost per Gate Trend with Reduction in Feature Dimensions
4350 22nm FinFET
s4.01 (Intel)

$1.40  ME $1.42




Outline

* Multicore and the power wall

* Energy advantages of hardware
accelerators
— 100-1000x gap in efficiency

— Do not forget memory!

Reducing power on adaptive platforms
Chips go 3D!

Towards heterogeneous manycores

The Energy Cost of Data Movement

* Fetching operands costs more than computing

64-bit DP DRAM
200 | 260 256p)  16n) [ [Jelyws
256-bit L Efficient
buses GUCERY ] off-chip
link
256-bit access
8 kB SRAM

[Dally, IPDPS'11]

* Energy cost of cache coherence is huge! o

Energy per operation: 45nm CMOS

* 32-bit addition: 0.5p)

* 16-bit multiply: 2.2p)

* 64-bit FPU: 50pJ/op

* Embedded RISC Processor
— 32-bit register R/W: 0.33p)J
— 32-bit cache R/W: 3.5p)
— add instruction**: 5.32 pJ

**add instruction (best case) = fetch, decode, read 2
operands from RF, execute, write back (into local reg.
first, then copy into RF)

[Dally et al., Computer, 2010]
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The Efficiency of Specialization

Dedicated HW

Energy efficiency (MOPS/mW)

Processor Number (sorted by efficiency)

Source: ISSCC Proceedings

*Source: Ning Zhang and Bob Brodersen, ISSCC data

100-1000X Gap in Efficiency ... but Specialization
comes with Penalties in Programmability
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Where do the energy savings come

from?

D-cache D-cache
6% 6%

+— Datapath
3%
I-cache
23%
Datapath
Fetch/ 38%
Decode Energy
19% Saved
Reg. File 91%
14%
MIPS baseline Specialized core
91 pJ/instr. 8 pJ/instr.
[Goulding et al., Hot Chips’10] 13

Energy per operation: 40nm V6 FPGA

16/32-bit multiply and accumulate:

— 114p) (DSP blocks)

—170pJ (LUT)

32-bit I/O access: 1.47nl)

* 32-bit memory read: 660 pJ

* 32-bit register R/W: 1.12 pJ
Embedded microblaze processor

— 16/32-bit multiply and accumulate: 7.4u)

[Bonamy et al., 2013] 15

From Embedded Systems to Data Centers

* Many datacenter applications can be accelerated
— Web search, data mining, database access (e.g. SQL
domain-by aggregation)
— Information security, crypto (e.g. Fully Homomorphic
Encryption)

— Financial, video processing, etc.

* Acceleration in FPGA can keep flexibility while
increasing energy efficiency
— Issue of bandwidth/latency between CPU and FPGA

MCH (FSB Switch)

[Chow, FPT'13]

Intel Front-Side Bus (FSB)

Intel Quick Path Interco. (QPI) 14
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* Multicore and the power wall

* Energy advantages of hardware
accelerators

* Reducing power on adaptive platforms
— Dynamic voltage and frequency scaling
— Playing with accuracy of operations
— Sub-word parallelism / SIMD

* Chips go 3D!
* Towards heterogeneous manycores
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Dynamic Voltage Frequency Scaling

Energy vs. size in FPGAs (Virtex6, 40nm)

* ARM Big.Little
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Energy vs. size

* Multiplier (DSP Blocks)
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Subword Parallelism (SWP)*

* Wire energy
— 240f)/bit/mm per transition
— 32 bits, 10mm: 40pJ/word
— 8 bits, 10mm: 10pJ/word
* Memory
— Energy depends on word-length
— Multiple word access

19

*also called subword-parallel SIMD

* Parallel operations on reduced-precision data

— Data (sub-words) are packed into words processed
by the execution unit in parallel [Frioo0]

* Parallel processing increases energy efficiency
— Trade-off between accuracy and parallelism level

16 bits 16 bits 16 bits 16 bits

N D L

Xt~ X,t,-
1 1
Example: Two 16-bit
SWP-operations in parallel A— 1
16bits |  16bits
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* Signed multiplication !
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Chips go 3D

* 3D Integrated Circuits
— Stack Multiple Dies
— Connect Dies with Through Silicon Vias (TSV)

i

* Examples

[F. Petrot, TIMA]

— Image Sensors, Sensor Network Nodes

— Processor + Memory

Outline

* Multicore and the power wall
— Dark Silicon

* Energy advantages of hardware accelerators
— 100-1000x gap in efficiency
— Do not forget memory

* Reducing power on adaptive platforms
— Dynamic voltage and frequency scaling
— Playing with accuracy of operations
— Sub-word parallelism / SIMD

* Chips go 3D!

* Towards heterogeneous manycores
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* Wire Length Reduction
— Replace long, high capacitance wires by TSVs
— Low latency, low energy, high bandwidth

(U]

* Small footprint
* Heterogeneous Integration




Cooling!

* Thermal effects
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3D Memory Stacks

* Moving the compute closer to the data
* Non-Uniform Cache Architecture (NUCA)
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[Dutoit et al., DATE’13] 27

3D Memory Stacks

* Moving the compute closer to the data

* Non-Uniform Cache Architecture (NUCA)
— Dynamic reconfiguration of cache structure
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[Jung et al., GLSVLSI'11] 26
PicoServer

* Energy-efficient multicore architecture
with 3D-stacked DRAM

DRAM die #5 F—
DRAM die #4 e

DRAM die #3
DRAM die #2 By
logic die #1
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Heat sink
—

[Kgil et al., SIGOPS’08] 28




Hybrid Memory Cube

* Micron/Intel’s HMC couples a logic layer
with 3D-stacked DRAM on the same chip
— 160GB/sec

29

Heterogeneous Multicores

 Different cores on a single chip
— GPPs, HW accelerators, memory, network-on-chip
* Self-adapting devices
— Dynamically adapt the hardware to the application
— Continuously adapt to changing environments

Power @ Proc.
E;em.
Errors

Variability| Hw

Acc.

Security
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* Multicore and the power wall

* Energy advantages of hardware
accelerators

* Reducing power on adaptive platforms
* Chips go 3D!
* Towards heterogeneous manycores
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Can 3D Stacking Help?

» 3D-Stacked Reconfigurable Accelerators
— Improved performance (3D coupling)

— Improved flexibility

— Improved resource usage

reconfigurable layer
multicore layer




FlexTiles Architecture Overview

* 3D-Stacked Heterogeneous manycore
— General Purpose Processors (GPP), for flexibility and
programming homogeneity
— Accelerators, for computing efficiency
« Digital Signal Processors (DSP)

* Dedicated hardware accelerators on an embedded FPGA
(eFPGA)

— Network On Chip (NoC): ANoC and Aethereal

* Reconfigurable layer with improved relocation and
migration capabilities

¢ Virtualization layer to provide an abstraction of
the manycore and self adaptive services

¢ Tool-chain for parallelisation and compilation

http://flextiles.eu
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FlexTiles Architecture Overview |
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FlexTiles Architecture Overview
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Conclusions

The end of multicore?

— At least an exciting time for computer
architects to deliver performance and
efficiency gains

Dark Silicon for hardware accelerators
 Human Brain

— 100 trillion synapses @ 20 W!
—Very “dark” circuits

* Does The Last Programmer Standing will
be holding an FPGA?

36




Conclusions

* Bring a new demand for genuinely high
level synthesis tools that map programs to
circuits

* Domain Specific Languages (DSLs)

— Focus on applications rather than compute
kernels

— Able to compile dynamic data structures,
recursion and very heterogeneous parallelism

— Can we devise a set of languages to program
heterogeneous computing systems?
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