

Power Characterization of Servers in Heterogeneous Cloud Environments

Mascha Kurpicz, Anita Sobe, Pascal Felber Université de Neuchâtel

Motivation

- Bigger data centers
- More powerful CPUs

- Cloud computing requires more energy than India or Germany
- Goal:

Reduce energy consumption on multiple levels

Context

- Heterogeneous hardware within a data center is common
- Multi-cloud scenarios: connecting heterogeneous data centers

CrossCloud Brokers'14

- Study about power consumption for different workloads
 - CPU
 - Disk
 - Real-world application
- On heterogeneous hardware

600 600 600

"Using Power Measurements as a Basis for Workload Placement in Heterogeneous Multi-Cloud Environments", Kurpicz, M., A. Sobe, And P. Felber, CrossCloudBrokers '14 (co-located to Middleware 2014), Bordeaux, France, ACM, 12/2014.

600 600

Physical power meter

- PowerSpy device from Alciom
- Setup: power every second (Watt)

Metrics

$$E = P \times t$$
 Joule = Watt x seconds

$$\frac{Perf}{W} = \frac{Throughput}{P}$$

E.g. for disk workload: Read Rate / Watt

Workload

OS

Hardware

Idle power

Idle power consumption

M1-i3	M2-i5	M3-i7-2gm	M4-i7-4g	M5-xeon	M6-amd	M7-amdtc	M8-via
Desktop	Desktop	Mobile	Desktop	Desktop	Server	Desktop	Mobile

Idle power consumption

M1-i3	M2-i5	M3-i7-2gm	M4-i7-4g	M5-xeon	M6-amd	M7-amdtc	M8-via
Desktop	Desktop	Mobile	Desktop	Desktop	Server	Desktop	Mobile

CPU workload (factorial)

Disk workload (Bonnie++)

	M8-via	M3-i7-2gm	M2-i5	M1-i3	M4-i7-4g	M5-xeon	M7-amdtc	M6-amd
Туре	Mobile	Mobile	Desktop	Desktop	Desktop	Desktop	Desktop	Server
Disk RPM	5400	5400	5900	7200	7200	7200	7200	7200
000	000	0000	000	0000	00 00	0000	000	DADA

Impact on energy-aware scheduling

 Different scheduling possibilities on the same two machines

	M1-i3	M4-i7-4g	Total (J)	
Placement 1	5xDisk	5xCPU	14'370	
Placement 2	5xCPU	5xDisk	16'110	

M1-i3	M4-i7-4g
Desktop	Desktop

Current work: Job and HW profiles

- HW profile on reference machine
- Extrapolation from one machine to another
- Online job profiling
- Estimation of job energy consumption as input for scheduling decision

HW profile

- Profile machine m1 as a reference
- CPU (usr and sys) and disk
- Utilization intervals u₁,...,u_n

Extrapolation for other HW

Utilization mapping between machines

- Utilization mapping tables
 - For CPU (sys and usr)
 - For disk

sys(%)			
m1	10	20	
m2	\top		
m3	V		

Online job profiling – machine m1

- On job arrival, monitor part of the job on m1
- Measure CPU and disk utilization

600 600 600 600 600 600 600

 Look up power consumption in HW profile of m1

Expected power consumption on machine m1

Online job profiling – other machines

- Utilization mapping for machines m₂,..,m_n
- Look up power values in HW table for mapped utilization values

Expected power consumption on machines m₂,...,m_n

 Provide table with expected power consumption for the different machines to the scheduler

600 600 600 600 600 600 600

Workflow

Scheduler

Estimated power consumption on each machine

Estimated execution time

Energy efficient scheduling decision

Open points

- Data locality
- Which subset of the workload to monitor?
- What HW can be covered by the model?
- Exact definition of the mapping functions

Conclusion

Conclusion

Power Characterization of Servers in Heterogeneous Cloud-Environments

Mascha Kurpicz, Université de Neuchâtel