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Context and overview of the problem

Datacenter consumption and renewable sources

Worldwide: 270 TWh in 2012
≈ Italy electricity consumption
High economical and environmental costs

Possible mitigations
Improve energy efficiency, software and hardware
Use renewable energy sources power

Solar, wind: intermittent and little predictability
New challenges to make efficient use in datacenters

ANR Datazero: on-site renewable sources
IT and electrical cooperation
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Context and overview of the problem

Multi-objective aspect

Each DM has one or more objectives to satisfy
Objectives may differ between DM

QoS related for ITDM, environmental impact for PDM

Managing different objectives
Avoiding the problem: find common objective (money?)
Scalarization (e.g. weighted sum)
Finding a set of good solutions (set of possible trade-offs)
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Context and overview of the problem

Multi-objective optimization and heuristics

Find Pareto front
(best trade-offs)
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Multi-Objective Evolutionary Algorithms
Well studied area, various approaches
Focused on SPEA2 (genetic algorithm)
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Utility approximation

Approximation of power profile utility

Evaluation of power profile is costly
Genetic algorithms require many evaluations

Workaround: Utility approximation
Fast approximation based on known solutions
Evaluate only potentially good ones

Example: utility function, 2 time steps
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Approximation of power profile utility
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Utility approximation

Approximation of power profile utility

Evaluation of power profile is costly
Genetic algorithms require many evaluations

Workaround: Utility approximation
Fast approximation based on known solutions
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Utility approximation

Approximation of power profile utility

Evaluation of power profile is costly
Genetic algorithms require many evaluations

Workaround: Utility approximation
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Utility approximation

Constraints for approximation methods

Goal: find a function RT → R (profile to utility).

Online learning with few training data
Utility function changes between negotiations

Curse of dimensionality...

RT is huge (T > 100 in many scenarios)
Most regression method become impractical
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Utility approximation

Approximation in the overall infrastructure

Optimization 
algorithm

Electrical infrastructure

PDM

Forecast

IT infrastructure

ITDM

Tasks

Power profile
evaluation Power profile

evaluation 

Improving negotiation for utility approximation
Estimator between negotiation algorithm and DM
Acts like a smart cache
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Approach
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Adapting MOEA for objective approximation

Integration of objective approximation

New
individuals

ArchiveArchive

New
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Initial
population 

Sorted
individuals 

Evaluate
objectives

Strength
Pareto sorting 

Eliminated

Next
archive

Selection

Next generation offspring (mutation & crossover) 

Asynchronous approximation integration
Evaluation may be replaced by approximation
Mix of evaluated and approximated individuals
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Adapting MOEA for objective approximation

Integration of objective approximation (2)

Attribution of objective values
Lifetime associated to individuals
Evaluated if conserved until lifetime is zero (archive)

Added to knowledge base

For each individual:

New individual?

- Approximation 
- Lifetime = lfinit 

Lifetime > 0

- Evaluate
- Add to base 
- Lifetime = ∞

Decrement
lifetime

Miss? 

Done
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Adapting MOEA for objective approximation

Limitations of SPEA2

SPEA2 not well adapted to asynchronous approximation
Limited archive of individuals
Bad (optimistic) approximations → good solutions lost
Still approximated solutions after ending condition reached
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Adapting MOEA for objective approximation

Uncertain-SPEA2 (USPEA2)

Modify SPEA2 to manage uncertain solutions (approximations)
Add an archive of evaluated solutions (certain archive)
Avoiding duplication of individuals

Stopping USPEA2 at any time results in a set of valid solutions.
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Multi-resolution Haar approximation

Overview

+1

 -1

0 0.5 1

Haar wavelet transform
Extract frequency and temporal features of
a signal.

Fast to compute
Works well with discrete series
≈ successive mean between time steps
Conserve euclidean distances

mean=7 mean=3

  (  8,    6,    1,    5 )
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Multi-resolution Haar approximation

Multi-resolution Haar approximation

Distance between partial Haar representations from known
solutions

Lowest frequencies features first

Select known solutions closer than a threshold
If enough solutions: repeat with higher frequency
Result: weighted average of close utilities
Complexity: O(n log(n)) (n solutions in base)
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Methodology

Quality indicators

Pareto front
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Objective 1 (max)

Hypervolume indicator
Area covered between Pareto front of
solution set and any reference point.
≥ if solutions are better (dominate)
≥ if solution set is more spread

Generational distance
Average distance between approximation
front and best known Pareto front

Requires a good comparison set
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Methodology

Infrastructure and decision modules

Simplified models, keep optimum computable

IT decision module
«Fluid» workload: total
amount of CPU time
Utility: revenue

Reward for each unit
scheduled
Incentive to execute unit
early

Electrical decision module
Solar panels, batteries,
electrical grid in/out
Utility: equivalent CO2
emission

Zero for renewable
Grid electricity average
emission
Battery aging, based on
manufacturing cost
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Methodology

Evaluation

3 days scenarios
Workload: 75% of maximum data center capacity

ExcessRenew: sunny days, initial battery 50%
Normal: less sunny days
FewRenew: almost no sun, initial battery at 25%
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Optimal formulation → comparison Pareto front
(U)SPEA2 ending condition: budget of utility evaluations
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