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Abstract

Active networks are a promising way to develop new
services for data transport. But active routers could also
store “on the fly” streams of data to propose high level
services : web cache, reliable multicast. . . In this paper, we
describe the merging of Active networking with Distributed
storage solutions. We focus our approach on two dedicated
frameworks : the IBP suite1 and the Tamanoir execution
environment2. We describe the overall architecture of the
Active Logistical Storage suite and present first experimen-
tal results.

Keywords : Active networks, logistical storage,
Tamanoir, IBP

1. Introduction

Active Networks[18], allowing users or applications to
inject customized programs into the nodes of the network,
are considered a promising framework to enhance the com-
mon idea of what a network can do. The creation of new
services, such as on-the-fly compression or encryption, and
what is more important a new way to think about develop-
ment and deployment of customized modules to perform
computation within the network can lead to massive im-
provements to network functionality.

The Tamanoir project, based on active networks where

1This work is supported by the National Science Foundation under
Grants ACI- 9876895, EIA-9975015, EIA-9972889, ANI-9980203, the
Department of Energy under the SciDAC/ASCR program, and the Uni-
versity of Tennessee Center for Information Technology Research

2This work is supported by the RNTL Etoile and ANVAR Active Net-
working Platform

a new generation of network equipments (such as routers,
proxies, and gateways) apply services on the fly on data
packets, deals with, in a successful way, some of the his-
torical problems that this kind of approach has to face, such
as security and high performance, implementing an efficient
multi-streams active transport and dynamic services deploy-
ment in the net. Tamanoir services may operate either at a
lower level (packets marking, selective drops. . . ) or at a
higher one (QoS, cryptography, compression on the fly. . . ).

While the above results lie in the active networking
field, and can be seen as an optimization of existing ideas,
Tamanoir has an original and unexplored approach with re-
gards to on-the-fly storage in the network, as it takes ad-
vantage of the Internet Backplane Protocol (IBP) project re-
sults concerning network storage management. This project
aims to expose network storage resources in an Internet-
style way, and if we think about the incredible success of the
Internet, which is based on the sharing of resources such as
wires and routers, it is absolutely natural to think that shar-
ing more hardware leads, as it does in experimental results,
to very positive results.

This paper is organized as follows: section 2 describes
the involved frameworks (Tamanoir and the IBP suite) and
our first performance results. Section 3 focuses on the
implementation of a network storage service in an active
router; section 4 describes new network services. We briefly
describe related projects in section 5. In the last section, we
present our future works.

2. Background: Tamanoir and IBP frame-
works description

This section aims to describe the two projects. The
TAMANOIR active networking execution environment,
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Figure 1. Tamanoir active network topology. Active Routers are edge routers. IBP depots are
distributed close to the Tamanoir active nodes

and the Logistical Networking Infrastructure, in which the
Internet Backplane Protocol is the basic building block.

2.1. Tamanoir : High Performance Active Network-
ing

The integration of new and standard technologies into
the shared network infrastructure has become a challeng-
ing task, and the growing interest in the active network-
ing field[18] might be seen as a natural consequence. In
“active” networking vision, routers or any network equip-
ments (like gateway or proxy) within the network can per-
form computations on user data in transit, and end users can
modify the behavior of the network by supplying programs,
called services, that perform these computations. This kind
of routers are called active nodes (or active routers), and
show a greater flexibility towards the deployment of new
functionalities, more adapted to the architecture, the users
and the service providers’ requirements.

The Tamanoir[6, 7] architecture design does not inter-
phere with the core network, mainly to guarantee higher
performance results, and it’s deployed only on the network
periphery (Fig. 1).

The injection of new functionalities, called services, is
independent of data stream: services are deployed on de-
mand when streams reach an active node (see Figure 2)
which is not able to perform the expected data process.

Tamanoir Active Nodes (TAN) (see Fig. 3) provide per-
sistent active routers which are able to handle different ap-
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Figure 2. Service deployment between two
Active Routers. When a stream reaches an
active routers who doesn’t hold the required
service, it sends a request to the last active
router crossed by the stream. Then, the ser-
vice is sent, uploaded, installed in memory
and ready to process the stream. A stream
can cross equally a classical router, without
any processing actions.



plications and various data stream (such as audio/video) at
the same time. The two main transport protocol (TCP and
UDP) are supported by the TAN for carrying data. We use
the ANEP (Active Network Encapsulated Protocol)[1] for-
mat to send data over active networks.

For the implementation process we choose to use a com-
mon and portable language to let active networks users be
able to define and write their own services. For this rea-
son the TAMANOIR execution environment has been writ-
ten entirely in JAVA [9], because this language provides
great flexibility typical of an Object-Oriented language and
is shipped with standard library.

Unfortunately, the execution environment provided by
the JVM (Java Virtual Machine) gives a very high level of
abstraction, through which applications have some difficul-
ties to reach the guts of a system. In the context of high per-
formance this abstraction can raise a huge number of opti-
mizations problems. Luckily, recent JVM releases (� 1.3.x)
provided by company like SUN[16], IBM[8] or by project
like Blackdown[2] give excellent performance for the main-
stream hardware architecture (i.e., x86). This is mainly due
to the improvements in Just-In-Time (JIT) compilation tech-
niques. It is important to notice that the GNU Compiler
for the Java Programming Language, called GCJ[5], can be
used to run a TAN in native mode.

As shown in Figure 3, a TAN is divided in two parts;
the main part, called TAMANOIRd, routes packets towards
the adapted service in function of a hash key contained in
the packet’s header. New services are plugged in it dynam-
ically. After being processed, the packet is forwarded to
the next TAN(s) in function of an internal routing table of
deployed TANs. The second part, called Active Node Man-
ager (ANM), is dedicated (1) to send services request to
another TAN if the one doesn’t have the appropriate service
installed for a particular stream and (2) to update its routing
table.
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Service #n

(Active Node Manager)

service channelTCP
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hash table

TAMANOIRd stream channel
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Figure 3. A Tamanoir Active Node (TAN)

2.2. The Logistical Networking Infrastructure and
IBP

IBP[13] is a middleware built to share distributed stor-
age resources of any size in any network size. What makes

IBP unique is the way of exposing those resources: any ap-
plication can allocate a predictable amount of space for a
predictable amount of time on a given server. This key as-
pect of the IBP storage model, the capacity of allocating
space on a shared network resource, can be seen as doing a
C-like malloc on an Internet resource, with some outstand-
ing differences, such, for instance, time-limitation to pre-
vent Denial-of-Use attacks.

From a networking point of view, IBP design matches
in many ways the design of the Internet Protocol (IP); as
IP is a more abstract service based on link-layer datagram
delivery, IBP is a more abstract service based on blocks of
data, managed as “byte arrays”.

As in the networking field the IP protocol alone does not
guarantee many highly desirable characteristics, and needs
to be complemented by a transport protocol such as TCP,
in a similar way many application who might need stronger
allocation properties, such as reliability and arbitrary, might
find IBP semantic too weak.

For this reason, the exNode, or external Node, following
the example of the Unix inode, aggregates sets of storage
allocations on the Internet (rather than aggregating blocks
on a single disk volume). As its definition is very generic
any kind of storage allocation can be suited; but the exposed
nature of IBP allocations makes IBP byte arrays perfectly fit
for such aggregations.

The IBP software, developed in C (for the server side)
and C and java (for the client library), has been successfully
tested for different OSes and hardware architectures (Linux
on i686 and ia64, Solaris, Windows 2000,AIX, DEC alpha,
OS X).

The exNode library (developed in C and java) allows to
serialize its contents using XML, to open the exNode use to
XML-based tools and inter-operability with XML systems
and protocols.

2.3. IBP overhead performance results

In this section we measure the overhead introduced by
the caching action in an IBP depot close to the Tamanoir
Active Node. For these results we ran an IBP depot on
the same node than the TAN, with the XcastIbpService (de-
scribed in section 4.2).

Our testbed, disconnected from the production network,
is set up with one active Tamanoir node which is a PC
(Dual-Pentium III, 1 Ghz, 256MB RAM) shipped with sev-
eral Ethernet 100Mbits network interface cards and a stan-
dard IDE hard-drive. We link to this PC different other PC
who have the role to either feed the network or receive data.
These PCs run under GNU/Linux with a 2.4.16 kernel (dis-
tribution Debian 2.2r3).

When an ANEP packet reaches the TAN, its payload is
extracted and sent towards the required service. At the be-



ginning, the service copies the payload in the local IBP de-
pot. For the measures we have set up only one client which
consume data as fast as possible. Next, the payload is read
in the cache and forwarded to the client immediately. For
each packet, we measure the time to cross a TAN (latency)
with and without caching action. A chronometer is located
as low as possible in the kernel. We use Netfilter [15] which
is a package for filtering in the Linux kernel. NetFilter al-
lows to introduce code just behind the network interface
card. When a packet reach the TAN, our NetFilter module
analyses the packet, if it is an ANEP packet a chronometer
is started. When the same ANEP packet leave the TAN, the
chronometer is stopped.

In figure 4 we present the latency of a TAN by an ANEP
packet. In the first case (lower curve) packets are imme-
diately forwarded and not cached in the IBP depot, in the
second case packets are cached and next forwarded.

As shown, caching doesn’t introduce a very important
overhead. For any packet size, overhead remains constant.
For small packets size, performances are weak due too the
policy of transmission of Linux kernel TCP implementation
which tries to aggregate small packets before being trans-
mitted. So, small packets are released just after a timeout.
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Figure 4. Overhead introduced by caching
data in a local IBP depot

3. Implementation : Design of IBP Services for
Tamanoir

A Tamanoir Active Node (TAN) is an autonomous pro-
cess running on a node (PC) waiting for processing new ac-
tive streams. An IBP depot is an autonomous process which
can run on the same or another local node. As shown in fig-
ure 5, Tamanoir and its services run in the application layer
(the higher rectangle) and access directly the IBP layer.
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Figure 5. Tamanoir - IBP architecture

A Tamanoir service communicates with an IBP depot
through a socket over a reliable transport protocol (TCP/IP).
It is worth noticing that it is not mandatory for an IBP depot
to run on the same node, because communications between
depot and active service are done through the intermediary
of sockets; but, of course, this architecture might show a
better performance. The original Java client for IBP was re-
used to implement our code, as a Tamanoir service is con-
sidered as a client from an IBP depot point of view. We
have to instantiate IBP client classes in each service requir-
ing to communicate with an IBP depot. These classes pro-
vide constructors and methods to create Capabilities (point-
ers to IBP allocations) on any IBP depot, with whom the
Tamanoir service can write, read and manage data remotely
on any IBP depot.

Figure 6 presents a very basic service for the Tamanoir
Active Node. This service is designed to cache data in a
IBP depot and forward them immediately. Each service is
inherited from a generic Service which is a Thread. When
this service is instantiated, the constructor Ibp testS()
(in our example) is called. Its goal is to allocate a storage
area in the chosen IBP depot, and returns the pointers (or
capabilities) to this area. When this is done, the main loop
run() copy the ANEP payload to the IBP depot and for-
ward the entire ANEP packet to the receiver.

4. Network services

In this section, we illustrate active services which can be
used by applications willing to take advantage of the mix-
ture of the IBP storage capabilities and TAMANOIR dy-
namic behavior alteration capabilities.



class Ibp_testS extends Service
{

static final String IBP_DEPOT_NAME = "ibp01.ens-lyon.fr";
static final int IBP_DEPOT_PORT = 6716;
static final int CAP_SIZE = 1000 ; // KBytes
IBPDepot dpt ;
CapAttribute attr ;
IBPCaps caps ;
WriteCap wc ;
ReadCap rc ;

Ibp_testS()
{

try{
dpt = new IBPDepot( IBP_DEPOT_NAME ,IBP_DEPOT_PORT );
attr = new CapAttribute(0,IBPProtocol.IBP_STABLE,

IBPProtocol.IBP_BYTEARRAY);
caps = new IBPCaps(dpt,CAP_SIZE*1024,attr,0,0);
wc = caps.getWriteCap();
rc = caps.getReadCap();

} catch (UnknownHostException e) {
} catch (IBPException e) {...}
} catch (IOException e) {...}

}
public void run()
{

long ret1 = 0;
while(!FINISHED) {

try {
// 1/ cache payload in the local ibp depot
ret1 = wc.write( getANEPkt().payload,

getANEPkt().payload.length );
System.err.println("Ibp_testS: write in " + IBP_DEPOT_NAME +

" depot : " + ret1 + " bytes");
// 2/ send cached data immediately
forward();

}catch (IOException e) {
System.err.println("Ibp_testS 1: " + e);

}catch (IBPException e) {
System.err.println("Ibp_testS 2: " + e);

}
// 3/ wait for the next ANEP packet
recv();

} // while(!FINISHED)
} // run()
public void process() {}

} // class Ibp_testS

Figure 6. IBP service in TAN



4.1. Data caching during service deployment

As the TAMANOIR project was planned essentially as
a high performance active networking environment for the
transmission of multimedia streams, using some unreliable
protocol like UDP for applications like VoD (Video on De-
mand), the packet loss was tolerated. On the other hand,
what was not acceptable was losing packets because the ser-
vice that should have taken care of the data was not present.
Therefore, when a Tamanoir Active Node (TAN) received
a stream without holding the service needed, the first pack-
ets were simply discarded until the service was loaded and
installed in the TAN memory. To correct this behaviour,
we run an IBP depot on the local node (where the TAN is
running) in order to cache data (see Fig.7).

This first new service, called IBPService uses a
IBP store operation to redirect the data stream beginning
towards the IBP depot. The IBP service checks as well the
presence of the required service each time that a new packet
arrive, and if so, a IBP load operation is done to redirect all
the data cached in the IBP depot towards the service able
to process, route and forward efficiently these data. The
only difference between the IBPService and any other ser-
vice lies in the load-time, which is done at boot time for the
IBPService, in order to be able to cache data immediately.

This service is also useful for a reliable transport proto-
col such as TCP. As we said above, until the service was
loaded and ready to operate, all the packets were dropped.
In case of a reliable connection, as we don’t have the “right”
to loose data, the TAN should send a message to the server
to inform it about the loss of packets and ask him to re-
transmit. As above, with an IBP depot this is not necessary
because data are cached in the local depot until the TAN is
able to process and transmit them efficiently. With a FIFO
spirit, cached data are sent first, and if the capability gets
empty, the remaining data are forwarded to the service with-
out passing through the local IBP depot.

4.2. Reliable Multicast

There are three benefits of performing storage in the net-
work for a reliable multicast application. First, we can look
at the TAN with its depot as a kind of mirror for data dis-
tribution, to download them from the geographically (or
network) closest point to the consumers. Next, clients can
consume data with their own processing speed capabilities
without disturbing the server where data come from, and fi-
nally, a TAN can retransmit lost data without uselessly over-
loading the network between the server and the TAN.

The above considerations led us to design a second ser-
vice, called XcastIbpService and it is targeted for multicast
applications. Figure 7 shows a view of multicast topology
with on the left a data server (e.g push server, ASP server)

and on the right heterogeneous clients in terms of connec-
tions speed and processing capabilities. Because clients
don’t ask the same data at the same time and don’t con-
sume them at the same speed we put an IBP depot in (or
close to) a TAN to cache data. For this application, a TAN
can be seen has a multicast node with caching capabilities.
Server have just to send only once data towards the closest
active node to the clients. Then, clients can consume data
at their own speed.

For the first experiments, we implemented a very sim-
ple multicast algorithm, but we are currently implement-
ing a more complex algorithm of reliable multicast called
DyRAM (Dynamic Replier Active Reliable Multicast)[11].

4.3. IBP-mail done with Tamanoir

IBP-mail [4] allows a user to send an attachment of what-
ever size without overloading the mail server by making use
of the network storage available through a set of IBP stor-
age depots. The file is stored in a IBP depot for the duration
specified. The receiver can download the file at its conve-
nience, using a tool developed for this purpose.

For this application we would like to leverage the pro-
cessing capability of a TAN for managing the movement
from an IBP depot close to the sender to an IBP depot close
to the receiver in order to take advantage of proximity (i.e
high throughput and low latency) of the attachments, which
are usually big.

This kind of application involves the use of process-
ing capabilities in network to route attachment towards the
nearest IBP depot to the receiver. The notion of proximity in
computer networks is still an active open problem [17] and
can be measured with different metrics (round-trip time, la-
tency, throughput, space, hops numbers. . . )

Since the need to move very large digital objects around
within the science, engineering, financial and even graphic
multimedia community is getting stringent, we expect that
the capacity to manage extremely large attachments will be
fundamental for the e-community.

5. Related works

Despite intensive search, we do not find any related
projects directly merging distributed logistical storage with
active networks technology.

IBP occupies an architectural niche similar to that of net-
work file systems such as AFS[12] and Network Attached
Storage appliances , but its model of storage is more prim-
itive, making it similar in some ways to Storage Area Net-
working (SAN) technologies developed for local networks.
In the Grid community, projects such as GASS [10] and the
SDSC Storage Resource Broker [3] are file system overlays
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that implement a uniform file access interface and also im-
pose uniform directory, authentication and access control
frameworks on their users.

Active networks projects using storage facilities are not
intensively addressed. Most related projects are Active
Disks [14] or active-network-storage [19] which explore the
increasing of intelligence in Network Attached Storage.

6. Conclusion and future works

By merging two environments like IBP and Tamanoir,
we allow users and network operators to provide new kind
of high level services.

The benefits for the frameworks are double. Tamanoir
can use storage distributed facilities (IBP depots) for ser-
vice deployment and temporary storage of data streams. It
is now easy to transform an active router in an active proxy
with on the fly storage capabilities. The latency added
by a dynamic storage is insignificant. IBP benefits from
Tamanoir dynamic service deployment infrastructure.

As adding storage in the network could also mean to add
disks in the routers, which is an unusual approach for net-
works operators (low MTBF, failure...), a RAM-based ver-
sion of IBP is currently under design by LoCI Laboratory.

Our next step will consist in the design of high level net-
work services dedicated to Grid computing middleware re-
quirements.

More information on both frameworks can be found on
the following sites :

� Tamanoir : ���� � ��������� � 	
���������
����������� ����������������	

� IBP : ���� � ��	������������������
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