
High Availability support for the design of stateful networking equipments

Pablo Neira Ayuso, Laurent Lefévre, Rafael Martı́nez Gasca

{pneira|gasca}@lsi.us.es
QUIVIR Research Group - Department of Languages and Systems

ETS Ingenierı́a Informatica - Avda. Reina Mercedes, s/n - 41012 SEVILLE - Spain

Laurent.Lefevre@inria.fr
INRIA RESO - LIP Laboratory (UMR CNRS, INRIA, ENS, UCB)

Ecole Normale Supérieure de Lyon - 46 allée d’Italie - 69364 LYON Cedex 07 - France

Abstract

The availability of some critical equipments like gate-
ways, firewalls and proxies must be guaranteed in opera-
tional networks. In early equipments, the routing and filter-
ing decisions were maded based on the packet information,
nowadays this static approach is not longer safe. Ex-
isting High Availability (HA) solutions do not cover
all the aspects to ensure availability of advanced set-
tings that are being deployed these days. Some impor-
tant issues like the reduction of unavailability time and the
need for failure detection in such scenarios must be stud-
ied. This paper describes the implementation of high avail-
able stateful network equipments: these systems apply
policies based on the state of the connections, such in-
formation is gathered in runtime by means of packet
inspection. This work specifically focus on Linux sys-
tems and firewalls because the IT industry is trusting more
and more OpenSource solutions to deploy critical ser-
vices because of its quality and the access to the source
code. We propose the SNE library (Stateful Network Equip-
ment), which is an add-on to current HA protocols, to
solve the existing limitations. In this paper, we intro-
duce describe the proposed arquitecture and we detail a set
problematic scenarios supported by our library, first exper-
iments and evaluation.

Keywords: High Availability, Firewall, OpenSource,
Security, Stateful

1. Introduction

Many organizations have their own servers and a pri-
vate Local Area Network (LAN) which is connected to
the Internet through network equipments (firewall, gate-
way, proxy...). This way, users can browse the web, check
their emails, communicate with people from other organi-
zations and use their internal applications in a secure way,
making their life easier and keeping it increasinly diffi-
cult for any kind of intrusion.

However, there is a problem linked with this view. A
Single Point Of Failure (SPOF) will inherently be intro-
duced if a standalone network equipment is used. The
availability of all the resources will depend on the avail-
ability of the SPOF. Because of that, the fraction of time
the SPOF is not operational, eg. the time of unavailabil-
ity, must be as low as possible. Moreover it is possi-
ble that some current network transactions could be lost.
This means that a valuable amount of data is at risk.[5]

Existing solutions are based on the idea of duplicat-
ing every critical resource of our network, also known as
the primary backup approach[4]. This way we keep a clus-
ter of machines where one is active (Primary node)
and the others (Backup nodes) are waiting for the Pri-
mary node to fail (Fig. 1).

If the Primary fails, a Backup node will take over the re-
sources that were assigned to the Primary node as fast as
possible. This way we the time of unavailability is reduced.
To carry out this task one needs protocols which :

- checks the health of all nodes;

Figure 1. Primary and Backup approach

- designates as fast as possible a new Primary node if the
current one has failed;

- sends as much information as possible about the cur-
rent status of the primary node to the Backup nodes,
this way they will be twin nodes of the active one.

On the other hand, in early firewalls handlings were
made based on the packet information, eg. OSI layer 3 and
4 headers could be used in the handling decisions. The
static nature of these firewalls have been exploited, result-
ing in Denial of Services attacks[16]. That is the reason
why modern firewalls comes with so-called stateful filter-
ing, that track and gather dinamically information about
every connection[16][15]. Based on that info, the adminis-
trator can apply different policies. This results in more ac-
curate packet handling.

The aim of this work is to describe all the possible prob-
lems and general issues related to the implementation of
stateful high available network equipments, focused specif-
ically on Linux systems[12]. Basically, this work studies
the flaws of the existing HA solutions deployed in state-
ful equipments.

Following the primary backup approachpreviously ex-
posed, current connections will come across problems
if the Primary node fails: the Backup node becomes ac-
tive but it will not have information about the state of
the current network transactions. So it is likely to misbe-
have, resulting in the lost of connections that will need to
be re-established. Such connections can be vital for criti-
cal applications.

In this paper we propose theStateful Network Equip-
ment (SNE) library. It allows network designers to eas-
ily implement and develop replicated network equipments
adapted to realistic and operational scenarios. We intro-

duce the set of scenarios supported by our library, first ex-
periments and evaluation.

This paper is therefore organized as follows: in sec-
tion 2 we quickly describe protocols and other related
works about highly available network services, while sec-
tion 3 will detail the framework used for our proposed
solution. In section 4, we will describe the proposed archi-
tecture and section 5.2 will present the process evaluation
of SNE operations. Section 6 details further works.

2. Related works

Two families of protocols, classified by vendor, have
been designed and implemented to replicate network crit-
ical elements. They are :

• CISCO . VRRP (Virtual Redundancy Router
Protocol[14]). This protocol was standardized by
IETF. It provides a virtual IP address for a set of
routers which is used by all client machines. It is de-
ployed in the majority old CISCO routers. There are
also free implementations available, however CISCO
claims to have patented some aspects of this proto-
col. The specification is imprecise and the state ma-
chine only consists of three states[12]. On the other
hand, CISCO has also developed HSRP (Hot Stand-by
Redundancy Protocol[10]), a proprietary proto-
col implemented in the new generation of CISCO
Routers.

• Open Source . CARP (Common Address Redun-
dancy Protocol[3]). This protocol is not documented,
the only reference available is the source code. It is
similar to VRRP with no possible patent violations,
therefore it inherits all the limitations of VRRP. Linux
Heartbeat [2] is an implementation of a not described
HA protocol used in *NIX systems. It is not docu-
mented either, only source code is available. Its im-
plementation is monolithic and remains complex.

These protocols are defined to assume that at least one ma-
chine is running with all the services associated[4]. The
typical scenario where these protocols are deployed is com-
posed of two or more machines which are identical and run
the same services. The protocol ensures that there is al-
ways an active machine, also known as Primary. If Pri-
mary fails it determines which idle machine, also known as
Backup, will become Primary.

All the protocols have in common that one or more
virtual IP addresses are always associated to the Pri-
mary, and depending on the protocol a virtual MAC or not.
So clients use these virtual IP. All machines send mes-
sages to broadcast that they are alive. If Primary does

not tell others that is alive, one of the Backup ma-
chines will be selected as the new Primary.

OpenBSD release 3.5 includes a software called pf-
sync. It is an extension of CARP [1] [3] which replicates
states in a firewall which can be linked to some as-
pects of this paper. Current Netfilter lead developer has also
proposed a solution to implement HA firewalls in Netfil-
ter [17].

To conclude, [12] also describes a HA protocol based
on a UML state machine and a status table to decide which
machine will become Primary. It claims to solve the limita-
tions of current HA protocols and it also sligthtely defines
some procedures to integrate his proposed HA proto-
col with firewalls.

3. Development Framework

3.1. The Netfilter Framework

In kernel branch 2.4, a framework called Netfilter[8]
was introduced. It is well structured, modular, with a clean
source code and well documented [13] and lets us perform
several actions: inspection, mangling, filtering and rout-
ing.

Netfilter inserts five hooks (Fig. 2) into the Linux
TCP/IP stack which allows you to perform packet han-
dling at different stages.

1 3

2 5

4Route

Route

Local
Process

NF_IP_PRE_ROUTING NF_IP_FORWARD NF_IP_POST_ROUTING

NF_IP_LOCAL_IN NF_IP_LOCAL_OUT

Figure 2. Netfilter Hooks

3.2. The connection tracking table system

The connection tracking system is built on top of the
Netfilter Framework. It stores information related to a con-
nection in a memory structure, all source and destination
IP address and port number pairs, protocol types, state and
timeouts for every connection. This is also known as state-
ful firewalling. It is inherently a more intelligent way

to filter packets than traditional simple packet filter-
ing.

This system allows you to perform filtering based on
the state of connection in levels 3/4th of the OSI model,
as well as higher layer protocols such as FTP, TFTP,
IRC, PPTP. The possible states defined for a connec-
tion are NEW, ESTABLISHED, RELATED and IN-
VALID.

The connection tracking system is a modular compo-
nent that could be optionally present in the kernel, it is al-
ways required by the NAT module. Actually, it does not
drop packets, except by stress and possible incoherent situ-
ations, but these cases are not considered to be the normal
behaviour of the connection tracking system, that is, it al-
ways lets the packets continue to travel through the TCP/IP
stack, it just tracks packets.

3.2.1. Implementation issues

Basic structure The connection tracking table is imple-
mented with a hash table to perform efficient processing.
Every position in the hash table (bucket) has a linked list to
handle possible collisions. The structureip conntrackcon-
tains information about the state of a connection. Layer
3 and 4 protocol information are used to hash such struc-
ture in the table.

There is another important structure called
ip conntrackexpect, commonly known asexpectation.
It holds information about a connection which is ex-
pected to happen in a short period of time. There are some
aspects are more difficult to track, eg. the File Transfer Pro-
tocol (FTP) in passive mode, which uses the port 21 for
control issues and a port between 1024 and 65535 for data.
Both connections are independent, but related. The con-
nection tracking defines a mechanism called connection
tracking helpers which let the connection tracking sys-
tem identify if a connection is linked to an existing one. To
do so, it defines the concept of expectation. An expecta-
tion is a connection which is expected to happen in a pe-
riod of time.

This expectation has a life time. A a timeout, if it is not con-
firmed, it will be released. On the other hand, if it’s con-
firmed, it will be linked to its respectiveip conntrack
structure which contains the information about the con-
nection and to his primary conntrack. This means that in
the case of the FTP, the conntrack which represents traf-
fic coming from and going to port 21.

Every time an ip conntrack structure is defined, Net-
filter tries to look for an expectation associated, if it doesn’t

exist, it will try to look for a helper that matches that type
of connection.

4. Proposing a Stateful Network Equipment
Library

The architecture supported by our work consists of a
highly available cluster of machines which can be com-
posed of two of more machines (Fig. 1). They are connected
by a switch that is considered to be the main link to the In-
ternet(1). Another redundant link(2) is used to guarantee
the communication between all the nodes, since the infor-
mation to be replicated as well as the state of every node
are critical. The main link could be used if this redun-
dant link fails[4].

It is considered that there is always a primary machine
in the cluster, which is active and working, and the rest of
machines are considered as Backups which are ready to be-
come active if primary fails [4]. This way we can solve pos-
sible consistency problems.

4.1. Architecture

The architecture proposed in this paper follows the mi-
crokernel operating system layout. It consists of two
main parts, one in kernel space and the other one in user
space. They are communicated through a messaging sys-
tem. This proposed approach gives us flexibility since
the main work is done in userspace, as well as the pos-
sibility of adapting our solution to the needs of a spe-
cific application like current HA protocol implementa-
tions, that live in user space.

This way, the userspace part of the Primary and Backup
nodes send message each other through the network, and in-
teract with the kernel part via Netlink message (Fig. 3).

Linux provides an interface to communicate with kernel
and user process: the Netlink sockets[6], a standarized[14]
and powerful[8] messaging protocol. From the pro-
grammer point of view, the API is similar to classical
sockets 4), because of that it is easy to use and intu-
itive.

In spite of all, the Netlink Sockets protocol is unre-
liable. That is the reason why, we introduce the use
of message sequence number to keep track of the last
message received and provide retransmission mecan-
isms. This sequence number algorithm used is based on
Lollipop-Shaped Sequence Number Spaces[11] which con-
sists of a space of numbers−k < 0 < k, the negative
numbers form the stick, and numbers from 0 to k are the cir-

cular space. Given two numbers a and b, a is more recent
than b if any of the following conditions are true:

• a< 0 and a< b

• a> 0, a< b, and (b - a)< n

2

• a> 0, b> 0, a> b, and (a - b)> n

2

Figure 3. SNE arquitecture

The use of this sequence numbering algorithm intro-
duces a mecanism to solve some problematic scenarios de-
tailed in the section 4.3.

With regards to theexpectationshandling, the solu-
tion proposed will only replicate confirmed expectations,
eg. those connections expected which has been finally es-
tablished. So, to keep things simpler, not confirmed expec-
tations will be kept in Primary until they get confirmation.
Two reasons keep us from replicating not yet fulfilledex-
pectations: they have a very short life time, normal expec-
tations are fulfilled very soon in a normal setting. The other
reason is that it would require some extra resource con-
sumption for connections that could not ever be established.

To identify a connection in the system, an ID is asigned to
the data structure that represents a connection, also known
as conntrack. This ID together with the OSI layer 3 and
4 information uniquely identifies a connection in the sys-
tems.

As we pointed out before, this replication system is con-
sidered to be on top of a highly available system[2][9][12]
which guarantees Primary’s failure detection and the take
over of resources.

4.2. Events

We define a set of events for our arquitecture, these
events are included in the Netlink message that is send from

kernel to userspace, they are:

NEW : it contains information about a new connection that
has been established. It includes OSI layer 3 and 4 in-
formation, ie. the IP address and TCP protocol ports,
the state of the new connection, ie. ESTABLISHED,
the status bits, eg. replied has been seen, this is a ful-
filled expectation . . . together other significant infor-
mation like marks, timeout,

UPDATE : if any critical information related connection has
changed, a message containing the updates informa-
tion is sent to the backup machines. ie. the state of a
TCP connection has passed fromSYN SENTto SYN
RECEIVE.

DESTROY : this event occurs if a connection is closed, it contains
the ID and OSI layer 3 and 4 information.

4.3. Supported Scenarios

We support some scenarios as well as the way to solve
possible problems associated with them, they are:

• Primary fails : one of the Backup nodes which has a
copy of the primary’s connection tracking table up to
date is chosen to become primary, after the take over
of resources is done, as this node keeps the state of all
the connection forwarded, clients will not realise that
primary fails and no active connection will be lost. To
elect a Backup node candidate to become Primary, all
nodes broadcast a message which has the last message
ID seen. A node will discard itself if the last ID seen is
negative. One of the nodes which has the greatest last
ID seen will be elected as new Primary.

• Backup node S1 fails and it comes back to life again
: this is the typical scenario of short-time power-cut
and reboot. S1 can realise that it has just rebooted be-
cause last ID seen is negative. So, the Backup node S1
must request the whole connection tracking table to the
primary. If there is more than one Backup node, to re-
duce the workload of the primary machine, the Backup
node S1 could request the connection tracking table to
another up to date Backup node S2. S1 will select the
node from where it will fetch the table based on the
election algorithm described in the previous scenario.

• Backup node S1 fails and remains dead : as something
optional, Primary could notify the system administra-
tor that there’s a dead node. When Backup node is
brought back to life, because of its last message ID
seen is negative, it will request the whole connection
tracking table as described in scenario B.

• An old primary node M comes back to life : if this node
M is configured to become primary again, it will re-
quest the connection tracking table to the current pri-

mary node. As explained in scenario A, it could also
request it to a Backup node.

• Backup nodes lost communication with Primary :
commonly called as split brain. In this case, one of
the Backup nodes will try to become Primary, but Pri-
mary will keep being Primary. This happens because
of nodes can not know the state of the primary be-
cause they have no way of communicating with it.
To solve this problem two mechanisms are used, use
the main link to communicate primary with Back-
ups instead of the dedicated link, and the knowledge
of the physical status of the link which lets the ma-
chine understand the current status and, following a
given policy, stay as Backup or try to take over re-
sources.

4.4. Implementation

4.4.1. Communication Kernel/User spaceSince our ar-
quitecture needs a solid method to provide an API for
user space programs, such as HA protocol implementa-
tions. In this section we review all possible choices and de-
termine which one fits our requirements.

The Netlink sockets[8] are an extension of the IP
service[14] which allow messages to be exchanged with the
user space. Netlink sockets provide a powerful way to no-
tify events and a smart interface from user space. They
are implemented wrapped in socket syscalls opera-
tions, to be precise they are defined as a new socket type
(Fig.4). It is currently used by applications likeiproute2, ze-
bra and user spaceipsectools.

As a drawback, it must be considered that they are not re-
liable, specifically under big stress conditions. Because of
that, the programmer needs to perform some kind of se-
quence tracking to make sure that all the packets are
received. Unfortunately, there is no way to recover a pos-
sible loss of data when sending information from kernel
to user space. For that reason, we have previously intro-
duced the sequence numbering algorithm.

From user space point of view, they are similar to nor-
mal sockets. So all the specific sockets primitives, likepoll
andselect, can be used.

There are two types of Netlink messages:

- Unicast, which lets an unique process communicate
with the kernel space.

- Multicast, which lets a group of programs communi-
cate with the kernel.

KERNEL
SPACE

USER
SPACE

SYSCALLS

x SOCKET

x RECV
x SEND

x SELECT

Netlink
sockets

Generic
socket
layer

kernel module

Figure 4. Netlink Sockets communications
between Kernel and user space

Netlink sockets provides us granularity in the communica-
tion kernel/user space. This way there is no need to add
transfer a big arrays of memory when it’s something has
been modified. We can just send an update which will be
processed in kernel. This reduces the time necessary for up-
dates of kernel data which is shared with user space.

4.4.2. Definition of the SNE API The SNE API provides
us a method to replicate the crucial information information.
To be precise, SNE notifies asynchronously to user space:

- New conntrackcreated, updated and destroyed in the
connection tracking table.

- Newexpectationsconfirmed and destroyed.

To replicate updates, three solutions are proposed :

- Strong replication : In this case, SNE notifies every up-
date in current connections. Specifically, the update of
theconntracktimer implies a message for every packet
which hits the connection tracking system because a
timer is refreshed every time a packet arrives. This in-
herently consumes more resources.

- Weak replication : this mechanism only notifies cru-
cial updates. So, updates in timers or private structures
are ignored.

- Incremental backup approach, as described in [7] can
be used to reduce the number of messages, this fits
in well an environment which short-time connections
(like web server connections).

- Pre-process replication: the Primary node flushes the
changes to Backup nodes every so often. This way,
the Primary pre-process connections which are open
and closed in a short periods of time, not replicat-
ing them. This reduces the bandwidth consumption but
consumes more CPU resources.

A set of functions is proposed in the SNE library to per-
form different actions from user space via Netlink sockets:

• Manipulate conntracks from user space communicate:
Create, update and destroy.

• Manipulate expectations: Insert, update and destroy
an expectation which is associated with a given con-
ntrack.

• Manipulate the whole connection tracking table: De-
stroy and load the whole connection tracking table.

• Manipulate Netlink sockets: Create, destroy, bind
sockets as well as well as sending and receiving mes-
sages.

• Communicate a primary with the Backups ma-
chines via network sockets: Create, destroy, bind
normal sockets as well as send and receive mes-
sages.

• Know the status of the physical link via MII registers.

5. Experiments

5.1. Evaluation of Netlink sockets

The SNE API is built on top of Netlink sockets. For that
reason, we propose a tool callednetlinkbenchwhich con-
sists of two components, a kernel module and a user space
tool. It allows you to communicate unicast and broad-
cast messages of sizeγ between kernel and user space.
By this way throughput and timestamping can be evalu-
ated. It must be considered that Netlink sockets are not iso-
lated from other components of the Linux kernel like the
scheduler, virtual machine, memory manager, which mod-
ify system behaviour, so some of these components could
influence experiments. Because of that, the results ob-
tained have been normalised.

To evaluate throughput, the benchmark tool starts a
timer. When the last message has been sent, it stops it
and evaluates the results. On the other hand, to evalu-
ate the time needed to send a message, the time is stamped
to the packet, when it is received, that timestamp is com-
pared with the current time.

This benchmark has been done with a kernel 2.6.6
non-preemptable on a P-IV 2400 MHz CPU and 256 MB
SDRAM memory.

The throughput and timestamps are asymmetric : ker-
nel to user space performance decreases because netlink
messages are held in a buffer until they are retrieved by the
user space program, that delays the delivery. On the other
hand, when sending information from user to kernel, mes-
sages are also enqueued, but processed ipso facto.

Another important observation can be made when send-
ing consecutive big messages, i.e. 5 messages of 32Kbytes,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10000 20000 30000 40000 50000 60000

th
ro

ug
ht

pu
t (

M
by

te
s/

se
co

nd
s)

payload size (bytes)

Kernel to User Space

1 Messages
5 Messages

10 Messages

Figure 5. Kernel to user space communica-
tion

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000

th
ro

ug
ht

pu
t (

M
by

te
s/

se
co

nd
s)

payload size (bytes)

User Space to Kernel

1 Message
5 Messages

10 Messages

Figure 6. User space to Kernel communica-
tion

from kernel to user space (Fig. 5). The kernel inter-
nal socket buffer overruns, causing the drop of mes-
sages which cannot be enqueued because of lack of space.
The size of this buffer can be increased to reduce the prob-
abilities of suffering this problem.

We can also observe that the time needed to send
big messages is proportional to the size of the mes-
sage, since memory copies areθ(n) (Fig. 8 and 7). Another
point is that latency when sending consecutive messages
from user space gets reduced. On the other hand, from ker-
nel, a single message obtains better results. This behaviour
is also linked to the delay introduced by the socket buffer al-
ready pointed out.

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000

av
er

ag
e

tim
e

(m
ic

ro
se

co
nd

s)

payload size (bytes)

Kernel to User Space timestamping

1 Message
5 Messages

10 Messages

Figure 7. Timestamping kernel to user

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000

av
er

ag
e

tim
e

(m
ic

ro
se

co
nd

s)

payload size (bytes)

User Space to Kernel timestamping

1 Message
5 Messages

10 Messages

Figure 8. Timestamping user to kernel

To resume, the system performs better when send-
ing a lot of messages from user space to kernel because of
the buffer issue, and messages smaller than 32Kbytes must
be used to ensure that packets are not dropped (Fig. 5).

5.2. Evalution of SNE

The limitation of messages bigger than 32 KB is diffi-
cult to exceed by SNE since the message size average is 64
bytes. The throughput obtained spamming user space with
messages of 64 bytes is around 96 Mbits/s. In theory, the
number of messages needed to overrun the socket buffer is:

Messages =
Rate ∗ 1024000

MessageSize ∗ 8
= 1900000

In conclusion, in theory, we have to send 190.000 mes-
sages per second, which is a reasonable limitation.

6. Conclusion and future works

Proposing stateful network equipments on open source
systems is a challenging task. In this paper we have de-
scribed and proposed the basic blocks (SNE library) for
building a stateful network equipment. This library can
be combined with high-availability protocols (CARP,
Linux HA. . .). We focus on Linux system in order to pro-
vide software solutions for designing high-available
solutions for NAT, firewalls, proxies or gateways equip-
ments. . . This library is based on parts located in ker-
nel and in the user space of the network equipment. First
micro-benchmark of communications mechanisms with
Netlink sockets have shown the effectiveness of our ap-
proach.

In addition to the technical challenges outlined in this
article, the direction of our research is towards the inte-
gration of intelligent equipments (programmable switch,
active network node) with stateful network compo-
nents. We have also plans to study active-active set-
tings: a more scalable solution that does not waste re-
sources. Theprimary-backup approachwastes resources
because of the fact that the Backup nodes remain latent un-
til the Primary fails. A different approach could be share the
workload between all the cluster, so all the nodes will be ac-
tives, and in case of failure the non-failing node will take
over the failling node. Our plan is to integrate these tech-
nologies further, we are currently developing a complete
Stateful Network Equipment adapted to firewall require-
ments and based on our library, joining our efforts to the
Netfilter project.

References

[1] Firewall failover with pfsync and carp.
http://www.countersiege.com/doc/pfsync-carp/.

[2] High-availability linux project. http://linux-ha.org/.

[3] Openbsd project. http://www.openbsd.org/index.html.

[4] N. Budhijara, K. Marzullo, F. B. Schneider, and S. Toueg.
The primary-backup approach. InDistributed Systems, ACM
Press, pp.199-216, New York, USA, 1993.

[5] T. Chou. Beyond fault tolerance. InIEEE Computer
30(4):31-36, 1997.

[6] G. Dhandapani and A. Sundaresan. Netlink sockets
overview. http://qos.ittc.ukans.edu/netlink/netlink.pdf, 1999.

[7] T. Guang, J. Hai, and L. Pang. Layer 4 fault tolerance: Reli-
ability techniques for cluster system in internet services. In
Advanced Environments, Tools, and Applications for Clus-
ter Computing, NATO Advanced Research Workshop, IWCC
2001, Mangalia, Romania, sep 2001.

[8] J. Hadi Salim, R. Olsson, and A. Kuznetsov. Beyond softnet.
In Proceedings of the 5th Annual Linux, USENIX, Oakland,
California, USA, nov 2001.

[9] R. Hinden. Rfc 3768: Virtual router redundancy protocol
(vrrp), apr 2004.

[10] T. Li, B. Cole, P. Morton, and D. Li. Rfc 2281: Cisco hot
standby router protocol, mar 1998.

[11] R. Perlman. Fault tolerant broadcasting of routing informa-
tion. In Computer Networks, volume 7, dec 1983.

[12] H. Roelle. A hot-failover state machine for gateway ser-
vices and its application to a linux firewall. InManagement
Technologies for E-Commerce and E-Business Applications,
13th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management, DSOM 2002, Montreal,
Canada, oct 2002.

[13] P. Russel and H. Welte. Netfilter hacking how-to.
http://www.netfilter.org/documentation/HOWTO//netfilter-
hacking-HOWTO.txt.

[14] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov.
Rfc 3549 - linux netlink as an ip services protocol.
http://www.faqs.org/rfcs/rfc3549.html, jul 2003.

[15] L. Senner. Anatomy of a stateful firewall. InSANS Institute
Information Security Reading Room, may 2001.

[16] G. Van Rooij. Real stateful tcp packet filtering in ip filter. In
10th USENIX Security Symposium, Washington, D.C, USA,
aug 2001.

[17] H. Welte. How to replicate the fire - ha for netfilter based
firewalls. InOttawa Linux Symposium, 2002.

